Algorithm Design and Analysis

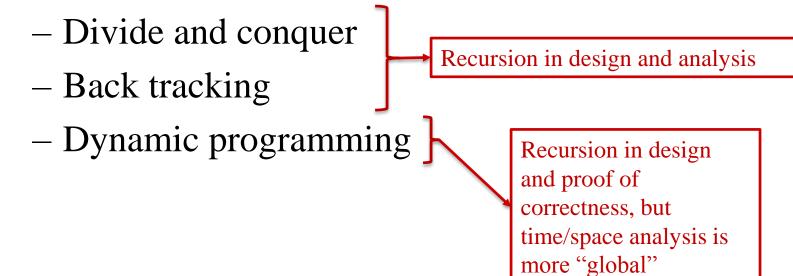
LECTURE 9 Divide and Conquer

- Merge sort
- Counting Inversions
- Binary Search
- Exponentiation Solving Recurrences
- Recursion Tree Method
- Master Theorem

Sofya Raskhodnikova

Recursion

- Next couple of weeks: recursion as an algorithms design technique
- Three important classes of algorithms



Divide and Conquer

- Break up problem into several parts.
- Solve each part recursively.

```
Divide et impera.
Veni, vidi, vici.
- Julius Caesar
```

- Combine solutions to sub-problems into overall solution.
- Most common usage.
 - Break up problem of size n into two equal parts of size n/2.
 - Solve two parts recursively.
 - Combine two solutions into overall solution in linear time.
- Consequence.
 - Brute force: $\Theta(n^2)$.
 - Divide & conquer: Θ ($n \log n$).

Divide and Conquer

- Break up problem into several parts.
- Solve each part recursively.

```
Divide et impera.
Veni, vidi, vici.
- Julius Caesar
```

- Combine solutions to sub-problems into overall solution.
- Examples
 - Mergesort, quicksort, binary search
 - Geometric problems: convex hull, nearest neighbors, line intersection, algorithms for planar graphs
 - Algorithms for processing trees
 - Many data structures (binary search trees, heaps, k-d trees,...)

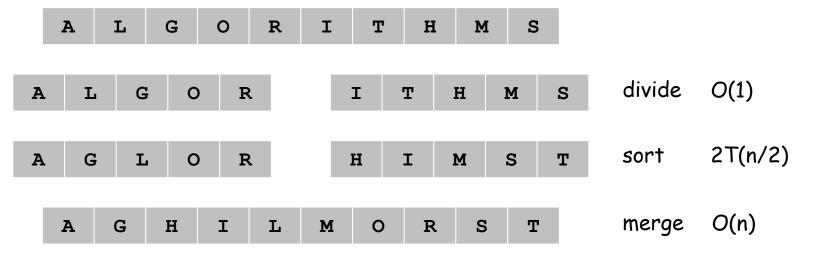
Analyzing Recursive Algorithms

- Correctness almost always uses strong induction
 - 1. Prove correctness of base cases (typically: $n \leq constant$)
 - 2. For arbitrary *n*:
 - Assume that algorithm performs correctly on all input sizes k < n
 - Prove that algorithm is correct on input size *n*
- Time/space analysis: often use recurrence
 - Structure of recurrence reflects algorithm

9/21/2016

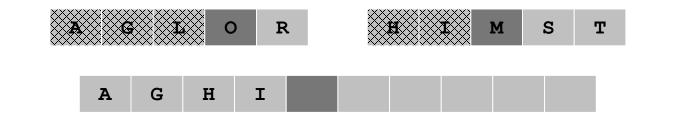
Mergesort

- -Divide array into two halves.
- -Recursively sort each half.
- -Merge two halves to make sorted whole.



Merging

- •Combine two pre-sorted lists into a sorted whole.
- •How to merge efficiently?
- -Linear number of comparisons.
- -Use temporary array.



•Challenge for the bored: in-place merge [Kronrud, 1969]

Recurrence for Mergesort

 $T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$

•T(n) = worst case running time of Mergesort on an input of size n.

•Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

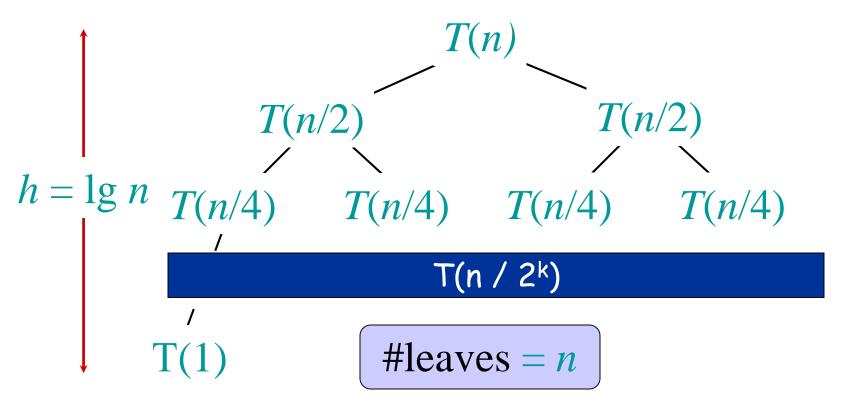
•Usually omit the base case because our algorithms always run in time $\Theta(1)$ when *n* is a small constant.

• Several methods to find an upper bound on T(n).

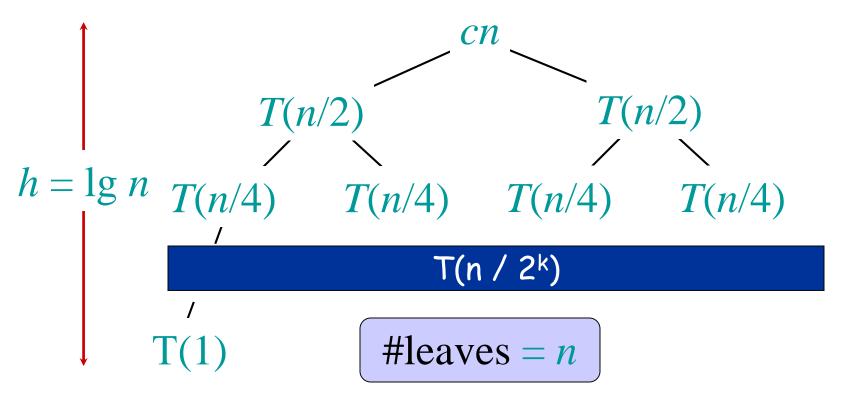
Recursion Tree Method

- Technique for guessing solutions to recurrences
 - Write out tree of recursive calls
 - Each node gets assigned the work done during that call to the procedure (dividing and combining)
 - Total work is **sum** of work at all nodes
- After guessing the answer, can prove by induction that it works.

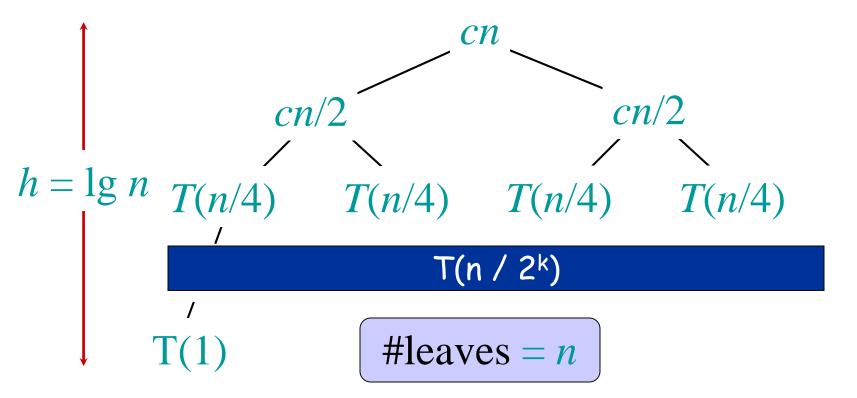
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



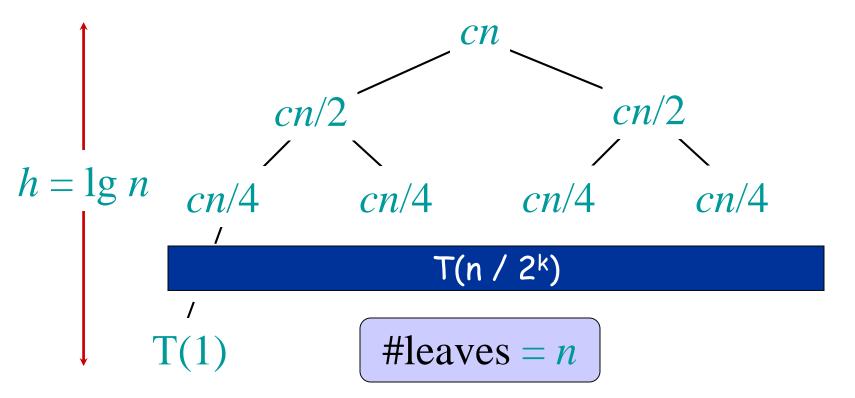
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



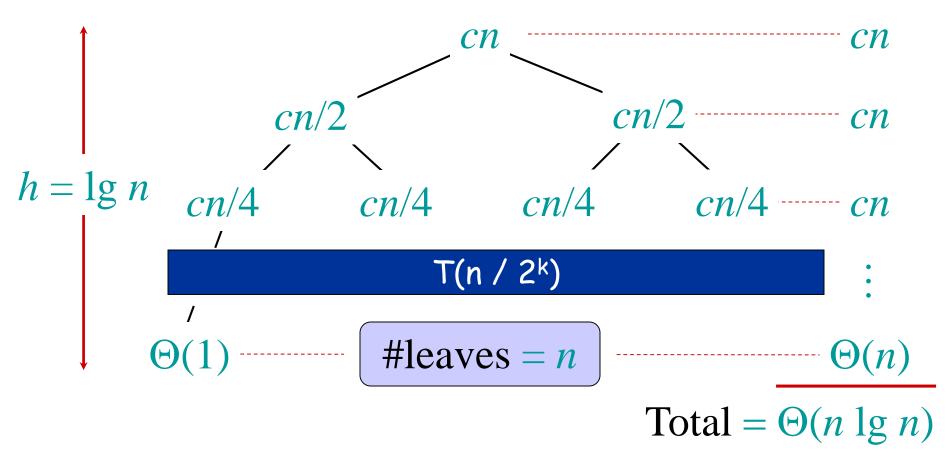
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



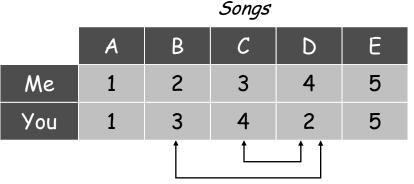
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.15

Counting inversions

Counting Inversions

•Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.
- •Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: a_1, a_2, \ldots, a_n .
- Songs i and j **inverted** if i < j, but $a_i > a_j$.



<u>Inversions</u> 3-2, 4-2

•Brute force: check all $\Theta(n^2)$ pairs i and j.

•Divide-and-conquer

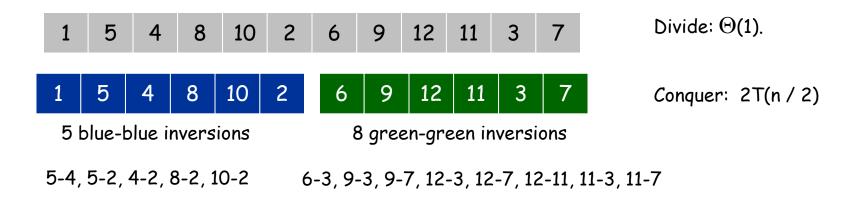
1	5	4	8	10	2	6	9	12	11	3	7
---	---	---	---	----	---	---	---	----	----	---	---

•Divide-and-conquer

- **Divide**: separate list into two pieces.

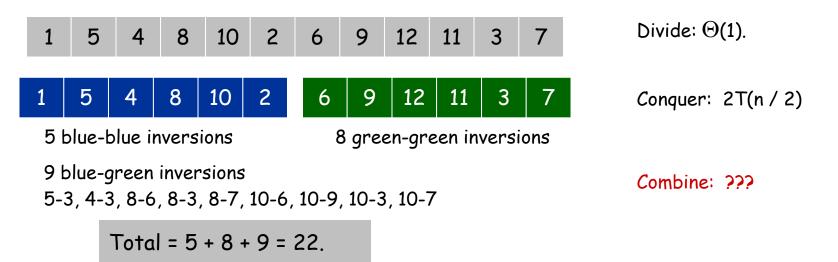
•Divide-and-conquer

- Divide: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.



•Divide-and-conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- **Combine**: count inversions where a_i and a_j are in different halves, and return sum of three quantities.



Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is **sorted**.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

3
 7
 10
 14
 18
 19
 2
 11
 16
 17
 23
 25

 6
 3
 2
 2
 0
 0

 13
 blue-green inversions:

$$6 + 3 + 2 + 2 + 0 + 0$$
 Count: $\Theta(n)$

 2
 3
 7
 10
 11
 14
 16
 17
 18
 19
 23
 25
 Merge: $\Theta(n)$

 $T(n) = 2T(n/2) + \Theta(n)$. Solution: $T(n) = \Theta(n \log n)$.

Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    (r_A, A) \leftarrow Sort-and-Count(A)
    (r_B, B) \leftarrow Sort-and-Count(B)
    (r, L) \leftarrow Merge-and-Count(A, B)
    return r = r_A + r_B + r and the sorted list L
}
```

- 1. Divide: Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

Example: Find 9

- 1. Divide: Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

 Example: Find 9

 3
 5
 7
 8
 9
 12
 15

- 1. *Divide:* Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

Example: Find 9

- 1. *Divide:* Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

Example: Find 9

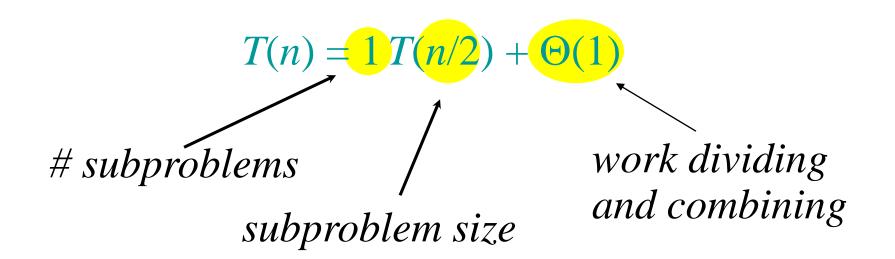
- 1. *Divide:* Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

Example: Find 9

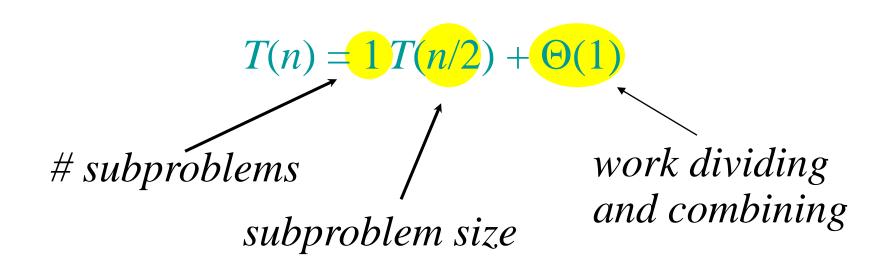
- 1. *Divide:* Check middle element.
- *Conquer:* Recursively search 1 subarray.
 Combine: Trivial.

Example: Find 9

Recurrence for binary search



Recurrence for binary search



$$\Rightarrow T(n) = T(n/2) + c = T(n/4) + 2c$$

...
$$= c \lfloor \log n \rfloor + O(1) = \Theta(\lg n) .$$

9/21/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.33

Review Question: Exponentiation

Problem: Compute a^{b} , where $b \in \mathbb{N}$ is *n* bits long. Question: How many multiplications?

Naive algorithm: $\Theta(b) = \Theta(2^n)$ (exponential in the input length!) **Divide-and-conquer algorithm:**

$$a^{b} = \begin{cases} a^{b/2} \times a^{b/2} & \text{if } b \text{ is even;} \\ a^{(b-1)/2} \times a^{(b-1)/2} \times a & \text{if } b \text{ is odd.} \end{cases}$$

 $T(b) = T(b/2) + \Theta(1) \implies T(b) = \Theta(\log b) = \Theta(n)$.

So far: 2 recurrences

- Mergesort; Counting Inversions $T(n) = 2 T(n/2) + \Theta(n) = \Theta(n \log n)$
- Binary Search; Exponentiation $T(n) = 1 T(n/2) + \Theta(1) = \Theta(\log n)$

Master Theorem: method for solving recurrences.

Master Theorem

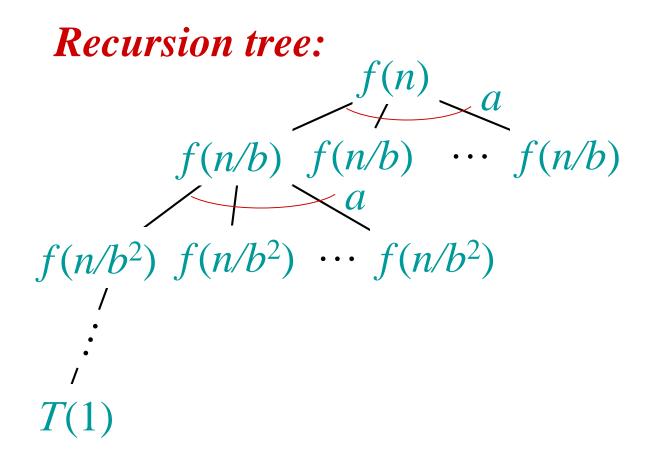
The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

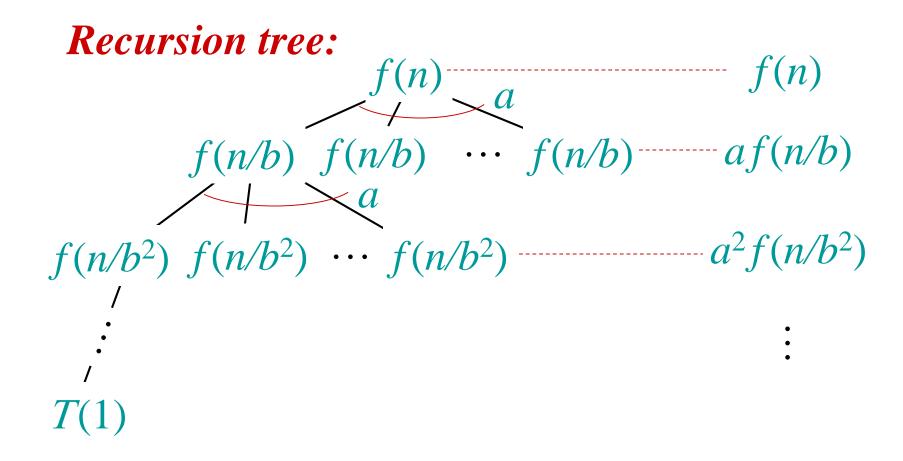
where $a \ge 1$, b > 1, and f is asymptotically positive, that is f(n) > 0 for all $n > n_0$.

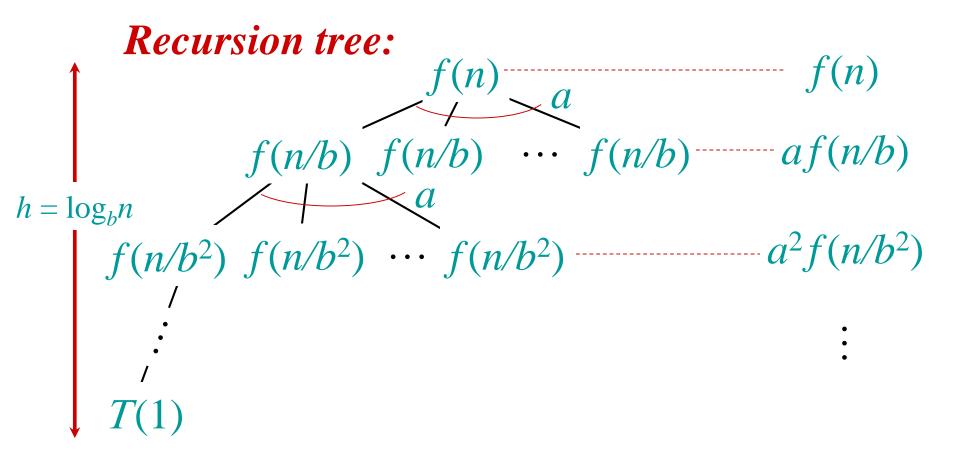
First step: compare f(n) to $n^{\log_b a}$.

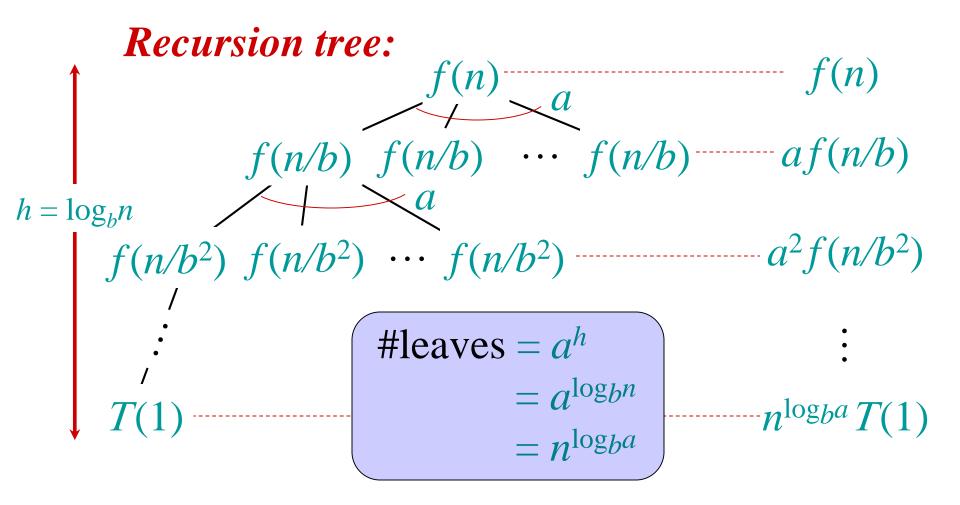
Idea of master theorem

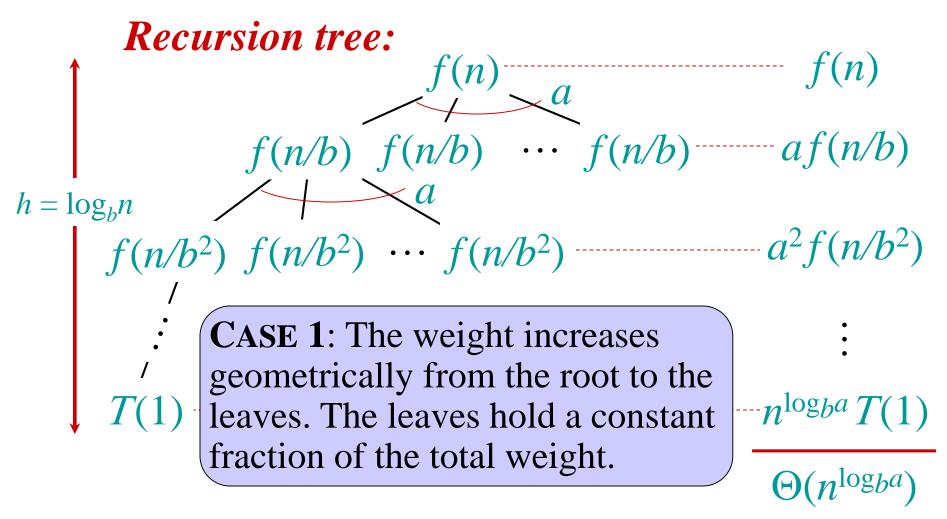


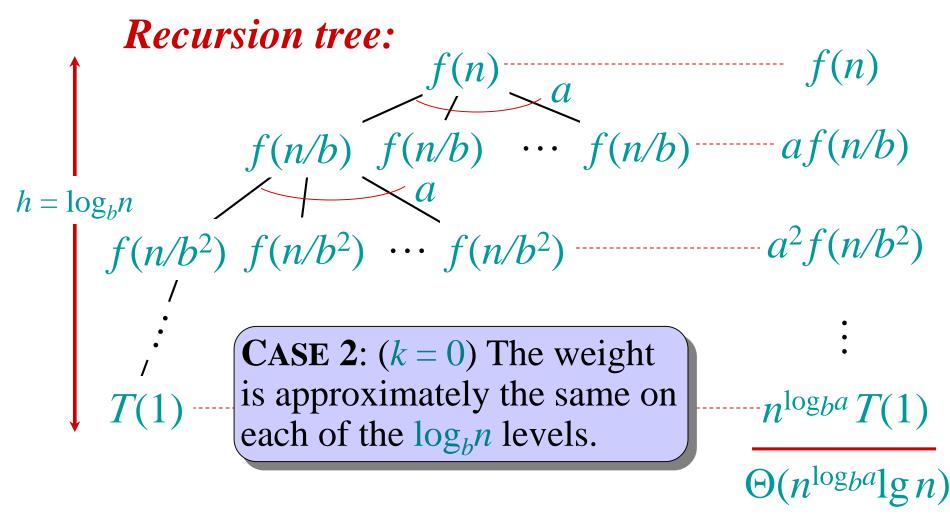
Idea of master theorem

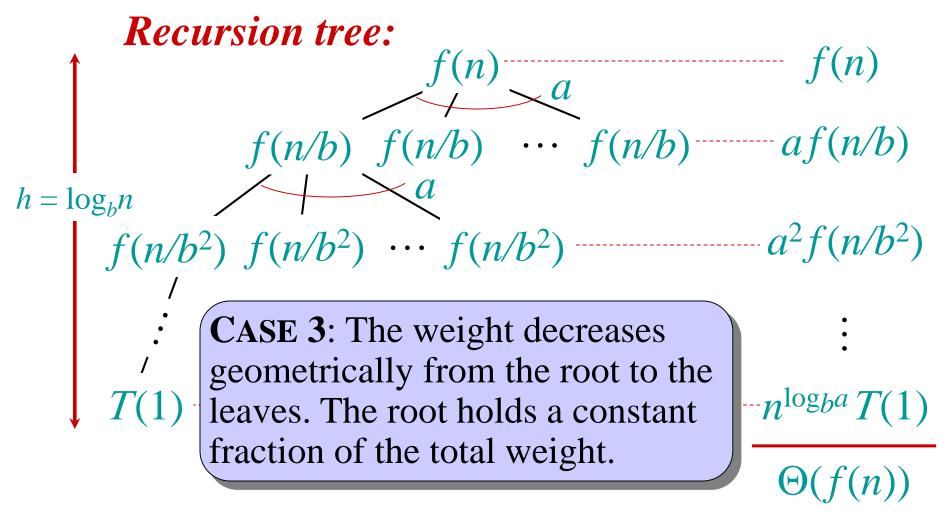












Master Theorem: 3 common cases

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Master Theorem: 3 common cases

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log b^a})$.

2. f(n) = Θ(n^{logba} lg^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} lg^{k+1}n).

Master Theorem: 3 common cases

Compare f(n) with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially faster than n^{logba}
 (by an n^ε factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Ex. T(n) = 4T(n/2) + n $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$ CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$ $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n).$

Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ and $4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular,
for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

Notes on Master Theorem

• Master Thm was generalized by Akra and Bazzi to cover many more recurrences:

 \mathbf{k}

$$T(n) = f(n) + \sum_{i=1}^{n} a_i T(b_i n + h_i(n))$$

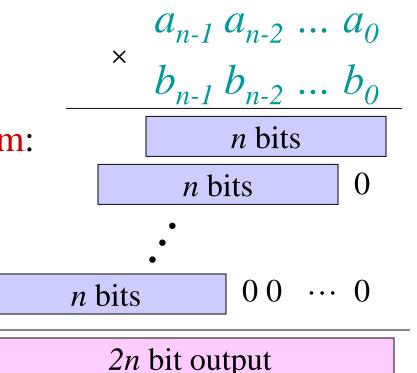
where $h_i(n) = O(\frac{n}{\log^2 n})$

• See the wikipedia article on Akra-Bazzi method and pointers from there.

Integer multiplication

Arithmetic on Large Integers

- Addition: Given *n*-bit integers *a*, *b* (in binary), compute c=a+b
 - O(n) bit operations.
- **Multiplication**: Given *n*-bit integers *a*, *b*, compute *c*=*ab*
- Naïve (grade-school) algorithm:
 - Write *a*,*b* in binary
 - Compute *n* intermediate products
 - Do *n* additions
 - Total work: $\Theta(n^2)$



Multiplying large integers

• **Divide and Conquer** (warmup):

- Write
$$a = A_1 2^{n/2} + A_0$$

 $b = B_1 2^{n/2} + B_0$

- We want $ab = A_1B_1 2^n + (A_1B_0 + B_1A_0) 2^{n/2} + A_0B_0$
- Multiply n/2 -bit integers recursively
- $T(n) = 4T(n/2) + \Theta(n)$
- Alas! this is still $\Theta(n^2)$ (Master Theorem, Case 1)