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Review

» Weighted independent set on the chain
— Input: a chain graph of length n with values v,,..,v,
— Goal: find a heaviest independent set

« Let OPT()) =777
« Write down a recursive formula for OPT
— How many different subproblems?
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Exercise

* Do the same with a 2 X n grid graph

8 3 7 10 7 2

12 52 7 14 10 8
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Exercise

* Do the same with a 2 X n grid graph

8 3 7 10 7 2

12 52 7 14 10 8

» Three types of subproblems:
— grid(i)
—gridTop(i)
— gridBottom(i)
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Exercise

— grid(i): maximum independent set in the subgraph consisting of only the first i pairs
of nodes

1
8 3 7 0 7

1 5 1 1
2 2 4 0

| )
"i pairs
— gridTop(i): maximum independent set in the subgraph consisting of the first i pairs
of nodes plus the top node of the (i+1)-st pair

i
0

1 b 1 1
2 2 4 0

' . .
| pairs
— gridBottom(i): maximum independent set in the subgraph consisting of the first i
pairs of nodes plus the bottom node of the (i+1)-st pair

T .
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RNA Secondary Structure
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RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

C— A
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G

complementary base pairs: A-U, C-G
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RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b)) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-6, or G-C.
. [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b;,b;) e S, theni<j-4.
- [Non-crossing.] If (b;, b;) and (b, b)) are two pairs in S, then we
cannot have i< k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.
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RNA Secondary Structure:

Examples.
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RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bb,...b;.

match b, and b,

Difficulty. Results in two sub-problems.
. Finding secondary structure in: b;b,...b, ;. — OPT(-1)
. Finding secondary structure in: by,;by.5...b, 1. «— need more sub-problems
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Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bb,,;...b;.
. Casel. i>j-4.

- OPT(i, j) = 0 by no-sharp turns condition.

. Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

. Case 3. Base b, pairs with b, for some i <1< j- 4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + max, { OPT(i, t-1) + OPT(¥+1, j-1) }
!

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q. In what order should we solve the subproblems?
A. Do shortest intervals first.

e 410|010
for k =5, 6, .., n-1
for i =1, 2, .., n-k : 3100
j=1i+% 210
Compute M[i, j] 1 J
\ 6 7 8 9

return M[1, n] using recurrence

Running time. O(n3).
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Dynamic Programming Summary

Recipe.
. Decide which subproblems to use (define OPT(2?2?)). ™ 1 tails. try again
. Recursively define value of optimal solution.
. Compute value of optimal solution (bottom up or via memoization).
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.
. . Viterbi algorithm for Hidden Markov Models
. Mu|1'|_way choice: Segmenfgd least squares. «— also uses DP to optimize a maximum likelihood

. ) tradeoff between parsimony and accuracy
. Adding a new variable: knapsack.
. Dynamic programming over intervals: RNA secondary structure.

parsing algorithm for context-free
grammars has similar structure

Top-down vs. bottom-up: different people have different intuition.
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Bellman-Ford: Shortest paths
via dynamic programming
For consistency with book: shortest

paths from all vertices
to a destination t
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Single-source Shortest Path Problem

* Input:
— Directed graph G = (V, E).
— Source node s, destination node t.

— for each edge ¢, length /(e) = length of e.
— length path = sum of edge lengths

 Find: shortest directed path from s to t.
,—2)r & (3

Ny "
\ﬁ 1 /q 1o Length of path (s,2,3,5,1)
15 5 is 9+23+2+16=50.
20 16 i
7 44 N
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When Is there a shortest path?

Under which conditins do shortest paths
— Always exist?
— Sometimes exist and sometimes not exist?
— Never exist?

* In a directed graph with nonnegative edge
lengths?

* |n a directed graph with negative edges lengths?

10/17/2016
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When Is there a shortest path?

 Edge welights nonnegative:
— shortest path always exists

* Negative weight edges:
— shortest path may exist or not
— If no negative cycles in G, then shortest path exists
— If negative cycles in G, then no shortest path
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Shortest Paths: Negative-Cost Cycles

Negative cost cycles
g y _6/?
O/ S

Observation. If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t path;
otherwise, there exists one that is simple.

e”ﬁ/w

c(W)<O0
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Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

. Case 1. P uses at most i-1 edges.
- OPT(i, v) = OPT(i-1, v)

. Case 2: P uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best
w-T path using at most i-1 edges

0 if i=0
OPT(l,v) = min{OPT(i—l, V), min {OPT(i—1, w)+c,, }} otherwise

(v,w)e E

Remark. By previous observation, if ho negative cycles, then
OPT(n-1, v) = length of shortest v-t path.
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Shortest Paths: Implementation

Analysis. ®(mn) time, ©(n?) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.
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Shortest Paths: Improvements

- Maintain one array M[v] = length of shortest v-t path found so far.
. No need to check edges of the form (v, w) unless M[w] changed
in previous iteration.

Theorem. Throughout the algorithm,
. M[v]is length of some v-t path, and
. For every i: after i rounds of updates, the value M[v] is no larger than
the length of shortest v-t path using < i edges.

Space and time complexity.

. Memory: O(m + n).
. Running time: O(mn) worst case, but substantially faster in practice.
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Belman-Ford: Efficient Implementation

Bellman-Ford-Shortest-Path (G, s, t) {
foreach node v € V {
M[v] & o
successor[v] <« ¢

}

M[t] =0
for 1 =1 to n-1 {
foreach node w € V {
if (M[w] has been updated in previous iteration) ({
foreach node v such that (v, w) € E {
if (M[v] > M[w] + c,,) {
M[v] <« M[w] + c,,
successor[v] <« w

}
}

If no M[w] value changed in iteration i, stop.
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Example of Bellman-Ford

The demonstration is for a sligtly different version of the algorithm (see
CLRS) that computes distances from the sourse node rather than distances
to the destination node.

10/17/2016 L15.28



Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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