
Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURES 18
Network Flow

•Algorithms:

•Ford-Fulkerson

•Capacity Scaling

•Applications

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.1

Network Flow

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.2

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Minimum Cut Problem

Def. An s-t cut is a partition (A, B) of V with s A and t B.

Def. The capacity of a cut (A, B) is:

Goal. Find an s-t cut of minimum capacity.

cap(A, B) c(e)
e out of A

Capacity = 9 + 15 + 8 + 30
= 62

Def. An s-t flow is a function that satisfies:

 For each e E: (capacity)

 For each v V – {s, t}: (conservation)

Def. The value of a flow f is:

Goal. Find s-t flow of maximum value.

Maximum Flow Problem

4

0

0

0

0 0

0 4 4

0

0

0

Value = 40

f (e)
e in to v

 f (e)
e out of v

0 f (e) c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

v(f) f (e)
e out of s

 .

4

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

the net flow sent across the cut is equal to the amount leaving s.

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the

max flow is equal to the value of the min cut.

What we proved about flows and cuts

f (e)
e out of A

 f (e)
e in to A

 v(f)

Residual Graph

Original edge: e = (u, v) E.

 Flow f(e), capacity c(e).

Residual edge.

 "Undo" flow sent.

 e = (u, v) and eR = (v, u).

 Residual capacity:

Residual graph: Gf = (V, Ef).

 Residual edges with positive residual capacity.

 Ef = {e : f(e) < c(e)} {eR : c(e) > 0}.

u v17

6

capacity

u v11

residual capacity

6
residual capacity

flow

c f (e)
c(e) f (e) if e E

f (e) if eR E

Ford-Fulkerson: Analysis

Ford-Fulkerson summary:

• While you can,

• Greedily push flow

• Update residual graph

Feasibility lemma: Ford-Fulkerson outputs a valid flow.

Optimality: If Ford-Fulkerson terminates then

• the output is a max flow;

• set of vertices reachable from s in residual graph forms a minimum cut.

Still to do:

• Running time (in particular, termination!)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) nC iterations.

Proof. Each augmentation increases flow value by at least 1. ▪

Running time of Ford-Fulkerson on a graph with integer capacities?

Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {

foreach e E, f(e) 0

Gf residual graph

while (there exists augmenting path P) {

f Augment(f, c, P)

update Gf
}

return f

}

Augment(f, c, P) {

b bottleneck-capacity(P)

foreach e P {

if (e E) f(e) f(e) + b

else f(𝒆𝑹) f(𝒆𝑹) - b

}

return f

}

forward edge

reverse edge

Min residual capacity of an edge in P

𝑂(𝑚 + 𝑛)

𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) nC iterations.

Proof. Each augmentation increases flow value by at least 1. ▪

Running time of Ford-Fulkerson on a graph with integer capacities:

O(mnC).

Space: O(m+n).

Important special case. If C = 1, Ford-Fulkerson runs in O(mn) time.

Review Question

• Is this flow a maximum flow?

• Def: Integral flow: flows on all edges are integers

• Does this graph have an integral maximum flow?

• Does every graph with integer capacities

have an integral maximum flow?

s

a

c

b

d

t

1

1

1

0.5

1

1

1

1

1

0.5

2

1.5

1

0.5

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.11

Ford-Fulkerson Summary

• Assumption: All capacities are integers between 1 and C.

• Running time: The FF algorithm terminates in at most
𝑣 𝑓∗ ≤ 𝑛𝐶 iterations.
Running time = 𝑂(𝑚𝑛𝐶). Space: 𝑂(𝑚 + 𝑛).

• Correctness:

– FF outputs a flow with maximum value

– Set of vertices reachable from s in residual graph forms a
minimum cut

– Integrality theorem: FF outputs an integral flow, so every
graph with integer capacities has an integral maximum flow.

• Important special case: if 𝐶 = 1, Ford-Fulkerson runs
in 𝑂(𝑚𝑛) time.

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.12

Review Question

• Does Ford-Fulkerson always terminate if capacities are rational?

• Does Ford-Fulkerson always terminate if capacities are irrational?

𝑟 =
5 − 1

2
⟹ 𝑟2 = 1 − 𝑟

• Exercise: Find a sequence of augmenting paths so that FF does

not terminate and does not converge to max flow.

s

b

a

d

c

t

1

100 100

100

100

100

100

1

𝑟

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.13

Faster algorithms when

capacities are large

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.14

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Intuition: We’re choosing the wrong paths!

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

 Some choices lead to exponential algorithms.

 Clever choices lead to polynomial algorithms.

 If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

 Can find augmenting paths efficiently.

 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

 Max bottleneck capacity.

 Sufficiently large bottleneck capacity.

 Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.

 Don't worry about finding exact highest bottleneck path.

 Maintain scaling parameter .

 Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t
1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e E f(e) 0

 smallest power of 2 greater than or equal to C

Gf residual graph

while (1) {

Gf() -residual graph

while (there exists augmenting path P in Gf()) {

f augment(f, c, P) // augment flow by

update Gf()

}

 / 2

}

return f

}

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Proof.

 By integrality invariant, when = 1 Gf() = Gf.

 Upon termination of = 1 phase, there are no augmenting paths. ▪

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.

Proof. Initially C < 2C; decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the

value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.

 Let f be the flow at the end of the previous scaling phase.

 Lemma 2 v(f*) v(f) + m (2).

 Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value

of the maximum flow is at most v(f) + m .

Proof. (almost identical to proof of max-flow min-cut theorem)

 We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B) v(f) + m .

 Choose A to be the set of nodes reachable from s in Gf().

 By definition of A, source s A.

 By definition of f, sink t A.

So, v(f*)≤ cap(A,B) ≤ v(f) +m.

v(f) f (e)
e out of A

 f (e)
e in to A

 (c(e)
e out of A

)
e in to A

 c(e)
e out of A

e out of A

e in to A

 cap(A, B) - m

original network

s

t

A B

General Principle

• Let
– 𝐺 = (𝑉, 𝐸) be a directed graph

with capacities 𝑐𝑒 𝑒∈𝐸

– 𝑓 be any valid flow in 𝐺

– 𝐺𝑓 be the residual graph for 𝑓 in 𝐺
– 𝑓∗ be any maximum flow in 𝐺

• Then we have
𝑣 𝑓∗ = 𝑣 𝑓 + (value of max 𝑠-𝑡 flow in 𝐺𝑓)

• In particular, for any cut 𝐴, 𝐵:
𝑣 𝑓∗ ≤ 𝑣 𝑓 + (capacity of 𝐴, 𝐵 in 𝐺𝑓)

• Applications:
– Correctness of Ford-Fulkerson

– Running time analysis for capacity scaling
10/11/10

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.22

Best Known Algorithms For Max Flow

• Reminder: The scaling max-flow algorithm runs in
𝑂(𝑚2 log 𝐶) time.

• There are algorithms that run in time
– 𝑂 𝑚𝑛 (Orlin, 2013)

– 𝑂(𝑚
10

7 log𝑎𝑚) for constant 𝑎 and 𝐶 = 1 (Madry, 2013)

– 𝑂 min 𝑛
2

3, 𝑚
1

2 ⋅ 𝑚 ⋅ log 𝑛 ⋅ log 𝐶

• Active topic of research:
• Flow algorithms for specific types of graphs

• Special cases (bipartite matching, etc)

• Multi-commodity flow

• …

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.23

Applications when C=1

• Maximum bipartite matching

– Reducing MBM to max-flow

– Hall’s theorem

• Edge-disjoint paths

– another reduction

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.24

Matching.

 Input: undirected graph G = (V, E).

 M E is a matching if each node appears in at most 1 edge in M.

 Maximum matching: find a matching with as many edges as possible.

Matching

25

Bipartite Matching

Bipartite matching.

 Input: undirected, bipartite graph G = (L R, E).

 M E is a matching if each node appears in at most edge in M.

 Maximum matching: find a matching with as many edges as possible.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

We cannot add edges to this
matching.
• It is maximal (local max)
• But not maximum (global max)

26

Bipartite Matching

Bipartite matching.

 Input: undirected, bipartite graph G = (L R, E).

 M E is a matching if each node appears in at most edge in M.

 Maximum matching: find a matching with as many edges as possible.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

There is no matching in this
graph with more than 4 edges
• This matching is both

maximal (local max) and
maximum (global max)

Do not confuse with
stable matching (different
inputs and goals)

Reductions

• “Problem A reduces to problem B”
– Rough meaning: there is a simple algorithm for A that uses an

algorithm for B as a subroutine.

– Denote 𝐴 ≤ 𝐵

• Usually:
• Given instance 𝑥 of problem A

we find a instance 𝑥’ of problem B

• Solve 𝑥’
• Use the solution to build a solution to 𝑥

• Useful skill: quickly identify problems where existing
solutions may be applied.

• Good programmers do this all the time

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.28

Reduction to Max flow.

 Create digraph G' = (L R {s, t}, E').

 Direct all edges from L to R, and assign capacity 1.

 Add source s, and capacity 1 edges from s to each node in L.

 Add sink t, and capacity 1 edges from each node in R to t.

Reducing Bipartite Matching to Maximum Flow

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

RL

G'

29

Theorem. Max cardinality matching in G = value of max flow in G’.

Proof: We need two statements

• max. matching in G ≤ max flow in G’

• max. matching in G ≥ max flow in G’

Bipartite Matching: Proof of Correctness

30

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf.

 Given max matching M of cardinality k.

 Consider flow f that sends 1 unit along each of k paths.

 f is a flow, and has value k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

11

3

5

1'

3'

5'

2

4

2'

4'

G'G

31

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf.
 Let f be a max flow in G' of value k.
 Integrality theorem we can find a max flow f that is integral;

– all capacities are 1 f takes values only in {0,1}
 Consider M = set of edges from L to R with f(e) = 1.

– Each node in L and R participates in at most one edge in M
 Because all capacities are 1 and flow must be conserved

– |M| = k: consider cut ({𝑠}, 𝑆 ∪ 𝑅 ∪ 𝑡)

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G'

32

