Algorithm Design and Analysis

L ECTURES 18
Network Flow

Qg
EL.,% *Algorithms:
, Ford-Fulkerson
W\ L
@ﬁb Capacity Scaling

*Applications

Sofya Raskhodnikova

/11/
111111 118.1

Network Flow

11111111 118.2

Minimum Cut Problem

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is: cap(A,B) = 3 c(e)

e out of A

Goal. Find an s-t cut of minimum capacity.

9

15 10

>(5)
8\:@) 10 (1)

10

Capacity =9 + 15 + 8 + 30

30 =62

Def. Ans-t flow is a function that satisfies:
0 < f(e) < c(e)
> f(e) =

. Foreache e E:

Maximum Flow Problem

. Foreachv e V-{s, t}h

Def. The value of a flow f is:
Goal. Find s-t flow of maximum value.

10

(8]

©

capacity — 15
flow — 0

eintoVv

v(f) =

@

30

> f(e).

®

15

©

15

0

(capacity)
(conservation)

Value = 4

What we proved about flows and cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
the net flow sent across the cut is equal Yo the amount leaving s.

2f(e) = 2fle) = W)

e out of 4 einto A

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cuft.

Residual Graph

Original edge: e =(u,v) € E. Y capacity
. Flow f(e), capacity c(e). @
u 17 —’®
6
N flow

Residual edge.
- "Undo" flow sent.
. e=(u,v)andeR = (v, u).

. Residual capacity: @< /Q

c.(e) :{c(e)—f(e) if ecE
f f(e) if R eE ™ residual capacity

resudual capacity

Residual graph: G¢ = (V, E;).
. Residual edges with positive residual capacity.
. Er={e: f(e)<c(e)} U {eR: c(e)> 0},

Ford-Fulkerson: Analysis

Ford-Fulkerson summary:
. While you can,
- Greedily push flow
- Update residual graph

Feasibility lemma: Ford-Fulkerson outputs a valid flow.
Optimality: If Ford-Fulkerson terminates then

the output is a max flow;
set of vertices reachable from s in residual graph forms a minimum cut.

Still to do:
* Running time (in particular, tfermination!)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Proof. Each augmentation increases flow value by at least 1. =

Running time of Ford-Fulkerson on a graph with integer capacities?

Augmenting Path Algorithm

Min residual capacity of an edge in P

forward edge

reverse edge

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Proof. Each augmentation increases flow value by at least 1.

Running time of Ford-Fulkerson on a graph with integer capacities:
O(mnC).

Space: O(m+n).

Important special case. If C =1, Ford-Fulkerson runs in O(mn) time.

Review Question

Is this flow a maximum flow?

« Def: Integral flow: flows on all edges are integers
 Does this graph have an integral maximum flow?

» Does every graph with integer capacities
nave an integral maximum flow?

10/11/10
L18.11

Ford-Fulkerson Summary

« Assumption: All capacities are integers between 1 and C.
« Running time: The FF algorithm terminates in at most
v(f*) < nC iterations.
Running time = O (mnC). Space: O(m + n).
» Correctness:
— FF outputs a flow with maximum value

— Set of vertices reachable from s in residual graph forms a
minimum cut

— Integrality theorem: FF outputs an integral flow, so every
graph with integer capacities has an integral maximum flow.

« |Important special case: If C = 1, Ford-Fulkerson runs
In O (mn) time.

10/11/10 L18.12

Review Question

» Does Ford-Fulkerson always terminate if capacities are rational?
» Does Ford-Fulkerson always terminate if capacities are irrational?

@\ 100 :/(D
100 /\
r

= r2=1-r7r

« Exercise: Find a sequence of augmenting paths so that FF does
not terminate and does not converge to max flow.

10/11/10
1L18.13

Faster algorithms when
capacities are large

11111111 L18.14

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

C C
o\é/)q 1 1§(\é/18(1

Intuition: We're choosing the wrong paths!

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
. Let G (A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

SN

110 102 110 102
1 >
122 170 122 170

) 4
2

G, 6, (100)

Capacity Scaling

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Proof.

. By integrality invariant, when A =1 = G,(A) = G;.

. Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1+ log, C| times.
Proof. Initially C <A< 2C; A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A, — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. Lemma2 = v(f*) < v(f) + m (2A).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time. =

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Proof. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A,

- Choose A to be the set of nodes reachable from s in G¢(A).

- By definition of A, source s € A.

. By definition of f, sink t ¢ A.

w(f) =
>

>

2 fle) = 2 fle)

e out of 4 einto A

2 (c(e)-A) - 2 A
e out of 4 einto A4

> cle)- X A- XA
e out of 4 eout of 4 einto A4
cap(A, B) - mA

So, v(f*)< cap(A,B) < v(f) +mA.

T T

original network

General Principle

o Let

- G = (V,E) be adirected graph
with capacities {c,}.cx

— f be any valid flow in G
~ Gy be the residual graph for f In G
— ™ be any maximum flow in G

e Then we have
v(f*) = v(f) + (value of max s-t flow in G¢)

* In particular, for any cut 4, B

v(f*) < v(f) + (capacity of 4, B in G¢)
 Applications:

— Correctness of Ford-Fulkerson

— Running time analysis for capacity scaling

10/11/10

L18.22

Best Known Algorithms For Max Flow

o Remmder The scaling max-flow algorithm runs in
0(m? log C) time.

 There are algorithms that run in time
— O(mn) (Orlin, 2013)

— 0(m7 log® m) for constant a and € = 1 (Madry, 2013)

-0 (min(ng, mE) -m - logn - log C)

 Active topic of research:
« Flow algorithms for specific types of graphs
« Special cases (bipartite matching, etc)
» Multi-commodity flow

10/11/10
1L18.23

Applications when C=1

« Maximum bipartite matching
— Reducing MBM to max-flow

— Hall’s theorem

 Edge-disjoint paths
— another reduction

10/11/10
1.18.24

Matching

Matching.
. Input: undirected graph G = (V, E).
. M c E is a matching if each node appears in at most 1 edge in M.
. Maximum matching: find a matching with as many edges as possible.

25

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is a matching if each node appears in at most edge in M.
. Maximum matching: find a matching with as many edges as possible.

@ 1)

@

1-2', 3-1', 4-5'

© ,
We cannot add edges to this
@ matching.

« Itis (local max)
« But not maximum (global max)

R

26

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is a matching if each node appears in at most edge in M.
. Maximum matching: find a matching with as many edges as possible.

max matching
1-1', 2-2°, 3-3" 4-4'

9

@)

« This matching is both
maximal (local max) and

maximum (global max)

®)

4 e
Do not confuse with
R Ls’rable matching (different

1
»‘M

()

inputs and goals)

Reductions

* “Problem A reduces to problem B”

— Rough meaning: there is a simple algorithm for A that uses an
algorithm for B as a subroutine.

— Denote A < B

« Usually:

« Given instance x of problem A
we find a instance x’ of problem B

 Solve x’
« Use the solution to build a solution to x

 Useful skill: quickly identify problems where existing

solutions may be applied.
« Good programmers do this all the time

10/11/10
1.18.28

Reducing Bipartite Matching to Maximum Flow

Reduction to Max flow.
. Create digraph G' = (LUR U {s, t}, E").
. Direct all edges from L to R, and assign capacity 1.
. Add source s, and capacity 1 edges from s to each node in L.
. Add sink t, and capacity 1 edges from each node in R to t.

& ©)

e

1
. @

@
©

29

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow inG'.

Proof: We need two statements
- max. matching in G < max flow in G’
- max. matching in G 2 max flow in G’

30

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

. Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

. fisa flow, and has value k.

(1) 1 1
1 1
2 2
® 3 @) f

31

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. >
. Let f be a max flow in G' of value k.
. Integrality theorem = we can find a max flow f that is integral;
- all capacities are 1 = f takes values only in {0,1}
. Consider M = set of edges from L to R with f(e) = 1.
- Each node in L and R participates in at most one edge in M
Because all capacities are 1 and flow must be conserved
- |M| = k: consider cut ({s}, SURUt)

0 1 >(1'
7@ HN
>3 @ t
ol 3
G - = G

32

