
Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURES 18
Network Flow

•Algorithms:

•Ford-Fulkerson

•Capacity Scaling

•Applications

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.1

Network Flow

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.2

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Minimum Cut Problem

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Goal. Find an s-t cut of minimum capacity.



cap(A, B)  c(e)
e out of A



Capacity = 9 + 15 + 8 + 30
= 62

Def. An s-t flow is a function that satisfies:

 For each e  E: (capacity)

 For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:

Goal. Find s-t flow of maximum value.

Maximum Flow Problem

4

0

0

0

0 0

0 4 4

0

0

0

Value = 40



f (e)
e in to v

  f (e)
e out of v





0  f (e)  c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



v(f)  f (e)
e out of s

 .

4

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

the net flow sent across the cut is equal to the amount leaving s.

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the

max flow is equal to the value of the min cut.

What we proved about flows and cuts



f (e)
e out of A

  f (e)
e in to A

  v(f)

Residual Graph

Original edge: e = (u, v)  E.

 Flow f(e), capacity c(e).

Residual edge.

 "Undo" flow sent.

 e = (u, v) and eR = (v, u).

 Residual capacity:

Residual graph: Gf = (V, Ef).

 Residual edges with positive residual capacity.

 Ef = {e : f(e) < c(e)}  {eR : c(e) > 0}.

u v17

6

capacity

u v11

residual capacity

6
residual capacity

flow



c f (e) 
c(e) f (e) if e E

f (e) if eR  E





Ford-Fulkerson: Analysis

Ford-Fulkerson summary:

• While you can,

• Greedily push flow

• Update residual graph

Feasibility lemma: Ford-Fulkerson outputs a valid flow.

Optimality: If Ford-Fulkerson terminates then

• the output is a max flow;

• set of vertices reachable from s in residual graph forms a minimum cut.

Still to do:

• Running time (in particular, termination!)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*)  nC iterations.

Proof. Each augmentation increases flow value by at least 1. ▪

Running time of Ford-Fulkerson on a graph with integer capacities?

Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {

foreach e  E, f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

Augment(f, c, P) {

b  bottleneck-capacity(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(𝒆𝑹)  f(𝒆𝑹) - b

}

return f

}

forward edge

reverse edge

Min residual capacity of an edge in P

𝑂(𝑚 + 𝑛)

𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*)  nC iterations.

Proof. Each augmentation increases flow value by at least 1. ▪

Running time of Ford-Fulkerson on a graph with integer capacities:

O(mnC).

Space: O(m+n).

Important special case. If C = 1, Ford-Fulkerson runs in O(mn) time.

Review Question

• Is this flow a maximum flow?

• Def: Integral flow: flows on all edges are integers

• Does this graph have an integral maximum flow?

• Does every graph with integer capacities

have an integral maximum flow?

s

a

c

b

d

t

1

1

1

0.5

1

1

1

1

1

0.5

2

1.5

1

0.5

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.11

Ford-Fulkerson Summary

• Assumption: All capacities are integers between 1 and C.

• Running time: The FF algorithm terminates in at most
𝑣 𝑓∗ ≤ 𝑛𝐶 iterations.
Running time = 𝑂(𝑚𝑛𝐶). Space: 𝑂(𝑚 + 𝑛).

• Correctness:

– FF outputs a flow with maximum value

– Set of vertices reachable from s in residual graph forms a
minimum cut

– Integrality theorem: FF outputs an integral flow, so every
graph with integer capacities has an integral maximum flow.

• Important special case: if 𝐶 = 1, Ford-Fulkerson runs
in 𝑂(𝑚𝑛) time.

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.12

Review Question

• Does Ford-Fulkerson always terminate if capacities are rational?

• Does Ford-Fulkerson always terminate if capacities are irrational?

𝑟 =
5 − 1

2
⟹ 𝑟2 = 1 − 𝑟

• Exercise: Find a sequence of augmenting paths so that FF does

not terminate and does not converge to max flow.

s

b

a

d

c

t

1

100 100

100

100

100

100

1

𝑟

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.13

Faster algorithms when

capacities are large

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.14

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Intuition: We’re choosing the wrong paths!

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

 Some choices lead to exponential algorithms.

 Clever choices lead to polynomial algorithms.

 If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

 Can find augmenting paths efficiently.

 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

 Max bottleneck capacity.

 Sufficiently large bottleneck capacity.

 Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.

 Don't worry about finding exact highest bottleneck path.

 Maintain scaling parameter .

 Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t
1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e  E f(e)  0

  smallest power of 2 greater than or equal to C

Gf  residual graph

while (  1) {

Gf()  -residual graph

while (there exists augmenting path P in Gf()) {

f  augment(f, c, P) // augment flow by  

update Gf()

}

   / 2

}

return f

}

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Proof.

 By integrality invariant, when  = 1  Gf() = Gf.

 Upon termination of  = 1 phase, there are no augmenting paths. ▪

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.

Proof. Initially C   < 2C;  decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the

value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.

 Let f be the flow at the end of the previous scaling phase.

 Lemma 2  v(f*)  v(f) + m (2).

 Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value

of the maximum flow is at most v(f) + m .

Proof. (almost identical to proof of max-flow min-cut theorem)

 We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B)  v(f) + m .

 Choose A to be the set of nodes reachable from s in Gf().

 By definition of A, source s  A.

 By definition of f, sink t  A.

So, v(f*)≤ cap(A,B) ≤ v(f) +m.



v(f)  f (e)
e out of A

  f (e)
e in to A



 (c(e)
e out of A

 )  
e in to A



 c(e)
e out of A

  
e out of A

  
e in to A



 cap(A, B) - m

original network

s

t

A B

General Principle

• Let
– 𝐺 = (𝑉, 𝐸) be a directed graph

with capacities 𝑐𝑒 𝑒∈𝐸

– 𝑓 be any valid flow in 𝐺

– 𝐺𝑓 be the residual graph for 𝑓 in 𝐺
– 𝑓∗ be any maximum flow in 𝐺

• Then we have
𝑣 𝑓∗ = 𝑣 𝑓 + (value of max 𝑠-𝑡 flow in 𝐺𝑓)

• In particular, for any cut 𝐴, 𝐵:
𝑣 𝑓∗ ≤ 𝑣 𝑓 + (capacity of 𝐴, 𝐵 in 𝐺𝑓)

• Applications:
– Correctness of Ford-Fulkerson

– Running time analysis for capacity scaling
10/11/10

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.22

Best Known Algorithms For Max Flow

• Reminder: The scaling max-flow algorithm runs in
𝑂(𝑚2 log 𝐶) time.

• There are algorithms that run in time
– 𝑂 𝑚𝑛 (Orlin, 2013)

– 𝑂(𝑚
10

7 log𝑎𝑚) for constant 𝑎 and 𝐶 = 1 (Madry, 2013)

– 𝑂 min 𝑛
2

3, 𝑚
1

2 ⋅ 𝑚 ⋅ log 𝑛 ⋅ log 𝐶

• Active topic of research:
• Flow algorithms for specific types of graphs

• Special cases (bipartite matching, etc)

• Multi-commodity flow

• …

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.23

Applications when C=1

• Maximum bipartite matching

– Reducing MBM to max-flow

– Hall’s theorem

• Edge-disjoint paths

– another reduction

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.24

Matching.

 Input: undirected graph G = (V, E).

 M  E is a matching if each node appears in at most 1 edge in M.

 Maximum matching: find a matching with as many edges as possible.

Matching

25

Bipartite Matching

Bipartite matching.

 Input: undirected, bipartite graph G = (L  R, E).

 M  E is a matching if each node appears in at most edge in M.

 Maximum matching: find a matching with as many edges as possible.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

We cannot add edges to this
matching.
• It is maximal (local max)
• But not maximum (global max)

26

Bipartite Matching

Bipartite matching.

 Input: undirected, bipartite graph G = (L  R, E).

 M  E is a matching if each node appears in at most edge in M.

 Maximum matching: find a matching with as many edges as possible.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

There is no matching in this
graph with more than 4 edges
• This matching is both

maximal (local max) and
maximum (global max)

Do not confuse with
stable matching (different
inputs and goals)

Reductions

• “Problem A reduces to problem B”
– Rough meaning: there is a simple algorithm for A that uses an

algorithm for B as a subroutine.

– Denote 𝐴 ≤ 𝐵

• Usually:
• Given instance 𝑥 of problem A

we find a instance 𝑥’ of problem B

• Solve 𝑥’
• Use the solution to build a solution to 𝑥

• Useful skill: quickly identify problems where existing
solutions may be applied.

• Good programmers do this all the time

10/11/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L18.28

Reduction to Max flow.

 Create digraph G' = (L  R  {s, t}, E').

 Direct all edges from L to R, and assign capacity 1.

 Add source s, and capacity 1 edges from s to each node in L.

 Add sink t, and capacity 1 edges from each node in R to t.

Reducing Bipartite Matching to Maximum Flow

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

RL

G'

29

Theorem. Max cardinality matching in G = value of max flow in G’.

Proof: We need two statements

• max. matching in G ≤ max flow in G’

• max. matching in G ≥ max flow in G’

Bipartite Matching: Proof of Correctness

30

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. 

 Given max matching M of cardinality k.

 Consider flow f that sends 1 unit along each of k paths.

 f is a flow, and has value k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

11

3

5

1'

3'

5'

2

4

2'

4'

G'G

31

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. 
 Let f be a max flow in G' of value k.
 Integrality theorem  we can find a max flow f that is integral;

– all capacities are 1  f takes values only in {0,1}
 Consider M = set of edges from L to R with f(e) = 1.

– Each node in L and R participates in at most one edge in M
 Because all capacities are 1 and flow must be conserved

– |M| = k: consider cut ({𝑠}, 𝑆 ∪ 𝑅 ∪ 𝑡)

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G'

32

