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LECTURES 19
Maximum Flow Applications

•With unit capacities

•Bipartite matching

•Perfect matching

•Edge-disjoint paths
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Reminders: Max Flow Algorithms

• Algorithms to find max s-t flow & min s-t cut 

when capacities are integers ≤ 𝐶

– Ford-Fulkerson runs in 𝑶(𝒏𝒎𝑪) time

– the scaling max-flow algorithm runs in

𝑶(𝒎𝟐 𝒍𝒐𝒈𝑪) time. 

• Duality: Max flow value = min cut capacity

• Integrality: If capacities are integers, then both 

algorithms produce an integral max flow
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Review Question

Suppose we run Ford Fulkerson in a graph where 

all capacities are in 0,1, … , 𝐶,∞ , but the value of 

the maximum flow is finite.

Give a bound on the running time.
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Bipartite Matching

Bipartite matching.

 Input:  undirected, bipartite graph G = (L  R, E).

 M  E is a matching if each node appears in at most edge in M.

 Maximum matching:  find a matching with as many edges as possible.
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Reductions

• “Problem A reduces to problem B”
– Rough meaning: there is a simple algorithm for A that uses an 

algorithm for B as a subroutine.

– Denote 𝐴 ≤ 𝐵

• Usually: 
• Given instance 𝑥 of problem A

we find a instance 𝑥’ of problem B

• Solve 𝑥’
• Use the solution to build a solution to 𝑥

• Useful skill: quickly identify problems where existing 
solutions may be applied.

• Good programmers do this all the time 
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Reduction to Max flow.

 Create digraph G' = (𝐿 ∪ 𝑅 ∪ {s, t},  E' ).

 Direct all edges from L to R, and assign capacity 1.

 Add source s, and capacity 1 edges from s to each node in L.

 Add sink t, and capacity 1 edges from each node in R to t.

Run FF and return the edges between 𝐋 ∪ 𝑹 carrying flow.

Reducing Bipartite Matching to Maximum Flow

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

RL

G'

Could also make 
capacities in the 

middle ∞

6



Theorem.  # edges in max matching in G = value of max flow in G’.

Proof: We need two statements

• # edges in max. matching in G ≤ max flow in G’

• # edges in max. matching in G ≥ max flow in G’

Bipartite Matching:  Proof of Correctness
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Theorem.  # edges in max matching in G = value of max flow in G'.

Proof.  

 Given max matching M of cardinality k.

 Consider f sending 1 unit along path (s,u,v,t) for each (u,v)∈ 𝑀.

 f is a flow, and has value k.   ▪

Bipartite Matching:  Proof of Correctness
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Theorem.  # edges in max matching in G = value of max flow in G'.

Proof.  
 Let f be a max flow in G' of value k.
 Integrality theorem   we can find a max flow f that is integral; 

– all capacities are 1  can find f that takes values only in {0,1}
 Consider M = set of edges from L to R with f(e) = 1.

– Each node in L and R participates in at most one edge in M
 Because all capacities are 1 and flow must be conserved

– |M| = k:  consider flow across cut (L ∪ {𝑠}, R∪ {𝑡})   ▪

Bipartite Matching:  Proof of Correctness
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Exercises

• Give an example where the greedy algorithm for MBM fails.

• How bad can the greedy algorithm be, i.e. how far can the size of 

the maximum matching (global max) be from the size of the 

greedy matching (local max)?

• What do augmenting paths look like in this max-flow instance?
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Def.  A matching M  E is perfect if each node appears in exactly one 

edge in M.

Q.  When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings. 

 Clearly we must have |L| = |R|.

 What other conditions are necessary?

 What conditions are sufficient?

Perfect Matching
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Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes 

adjacent to nodes in S.

Observation.  If a bipartite graph G = (L  R, E), has a perfect 

matching, then |N(S)|  |S| for all subsets S  L.

Proof.  Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:

S = { 2, 4, 5 }

N(S) = { 2', 5' }.
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Marriage Theorem.  [Frobenius 1917, Hall 1935] Let G = (L  R, E) be a 

bipartite graph with |L| = |R|. Then, G has a perfect matching iff

|N(S)|  |S| for all subsets S  L.

Proof.   This was the previous observation.

Marriage Theorem

1

3

5

1'

3'

5'

2

4

2'

4'

L R

No perfect matching:

S = { 2, 4, 5 }

N(S) = { 2', 5' }.
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Pf.   Suppose G does not have a perfect matching.

 Formulate as a max flow problem with ∞ capacities 

on edges from L to R and let (A, B) be min cut in G'.

 Key property #1 of this graph: min-cut cannot use ∞ edges.

 So  cap(A, B)  =  | L  B | + | R  A |

 Key property #2: integral flow corresponds to a matching, as before.

– By max-flow min-cut, cap(A, B) = (size of maximum matching) < | L |.

 Choose S = L  A.

– Since min cut can't use  edges:  N(S)  R  A.

 |N(S )|  | R  A |  =  cap(A, B) - | L  B |  <  | L | - | L  B |  =  | S|.  ▪

Proof of Marriage Theorem

S = {2, 4, 5}

L  B = {1, 3}

R  A = {2', 5'}

N(S) = {2', 5'}
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Which max flow algorithm to use for bipartite matching?

 Ford-Fulkerson:  O(mn).

 Capacity scaling:  O(m2 log C )  = O(m2).

 Shortest augmenting path (not covered in class):  O(m n1/2).

 Recent progress:  𝑂(𝑚10/7) [Madry, 2013]

Non-bipartite matching.

 Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]

 Blossom algorithm:  O(n4).   [Edmonds 1965]

 Best known:  O(m n1/2). [Micali-Vazirani 1980]

 Better algorithms for dense graphs, e.g. O(n2.38) 

[Harvey, 2006]

Bipartite Matching:  Running Time
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Review Question

• A bipartite graph is k-regular if |L|=|R| and every 

vertex (regardless of which side it is on) has 

exactly k neighbors

• Prove or disprove: every k-regular bipartite graph 

has a perfect matching
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7.6  Disjoint Paths
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Two problems

Given a network:

• Find edge-disjoint paths

• Find how many edges must be deleted to 

disconnect the graph
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Edge Disjoint Paths

• Disjoint paths problem. Given a digraph 𝐺 = (𝑉, 𝐸) and two 

nodes s and t, find the max number of edge-disjoint s-t paths.

– Two paths are edge-disjoint if they have no edge in common.

– In networks: how many packets can I send in parallel?
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Edge Disjoint Paths

• Disjoint paths problem. Given a digraph 𝐺 = (𝑉, 𝐸) and two 

nodes s and t, find the max number of edge-disjoint s-t paths.

– Two paths are edge-disjoint if they have no edge in common.

– In networks: how many packets can I send in parallel?
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Network Connectivity

• Network connectivity problem.  Given a digraph G = (V, E) and 

two nodes s and t,  find min number of edges whose removal 

disconnects t from s.

– A set of edges F  E disconnects t from s if each s-t paths uses at least one 

edge in F.

(That is, removing F would make t unreachable from s.)
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Proof.   

 Suppose there are k edge-disjoint paths P1, . . . , Pk.

 Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0.

 Since paths are edge-disjoint, f is a flow of value k.   ▪

Edge Disjoint Paths
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Proof.   

 Suppose max flow value is k.

 Integrality theorem   there exists 0-1 flow f of value k.

 Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1

– continue until reach t, always choosing a new edge

 Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge Disjoint Paths
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Edge Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Proof.  

 Suppose the removal of F  E disconnects t from s, and |F| = k.

 All s-t paths use at least one edge of F. Hence, the number of edge-

disjoint paths is at most k.  ▪
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Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Pf.  

 Suppose max number of edge-disjoint paths is k.

 Then max flow value is k.

 Max-flow min-cut   cut (A, B) of capacity k.

 Let F be set of edges going from A to B.

 |F| = k and disconnects t from s.   ▪
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