Algorithm Design and Analysis

LECTURES 19

Maximum Flow Applications

*With unit capacities
Bipartite matching
Perfect matching
*Edge-disjoint paths

Sofya Raskhodnikova

L19.1

Reminders: Max Flow Algorithms

 Algorithms to find max s-t flow & min s-t cut
when capacities are integers < C
— Ford-Fulkerson runs in O (nmc) time

— the scaling max-flow algorithm runs in
0(m? log C) time.

» Duality: Max flow value = min cut capacity

 Integrality: If capacities are integers, then both
algorithms produce an integral max flow

10/26/2016
L19.2

Review Question

Suppose we run Ford Fulkerson in a graph where
all capacities are in {0,1, ..., C, oo}, but the value of
the maximum flow is finite.

Give a bound on the running time.

L19.3

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is a matching if each node appears in at most edge in M.
. Maximum matching: find a matching with as many edges as possible.

@ 1)

@

1-2', 3-1', 4-5'

© ,
We cannot add edges to this
@ matching.

« Itis (local max)
« But not maximum (global max)

R

Reductions

* “Problem A reduces to problem B”

— Rough meaning: there is a simple algorithm for A that uses an
algorithm for B as a subroutine.

— Denote A < B

« Usually:

« Given instance x of problem A
we find a instance x’ of problem B

 Solve x’
« Use the solution to build a solution to x

 Useful skill: quickly identify problems where existing

solutions may be applied.
« Good programmers do this all the time

10/26/2016
L19.5

Reducing Bipartite Matching to Maximum Flow

Reduction to Max flow.
. Create digraph G' = (LU RU{s, t}, E").
. Direct all edges from L to R, and assign capacity 1.
. Add source s, and capacity 1 edges from s to e@ch node in L.
. Add sink t, and capacity 1 edges from each node in R to t.
Run FF and return the edges between L ®R carrying flow.

GI

Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G'.

Proof: We need two statements
- # edges in max. matching in 6 £ max flow in G’
- # edges in max. matching in G 2 max flow in G’

Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G'.
Proof. <
. Given max matching M of cardinality k.
. Consider f sending 1 unit along path (s,u,v,t) for each (u,v)e M.
. fis aflow, and has value k.

(1) 1 1
1
2 2
& s ®

Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G,

Proof. >

. Let f be a max flow in G' of value k.

. Integrality
- all capaci
- Consider M

theorem = we can find a max flow f that is integral;
ties are 1 = can find f that takes values only in {O,1}
= set of edges from L to R with f(e) = 1.

- Each node in L and R participates in at most one edge in M
Because all capacities are 1 and flow must be conserved

- [M] = k:

-

ST

consider flow across cut (L U {s}, Ru {t}) -

7

2
5

Exercises

- Give an example where the greedy algorithm for MBM fails.
- How bad can the greedy algorithm be, i.e. how far can the size of
the maximum matching (global max) be from the size of the

greedy matching (local max)?

- What do augmenting paths look like in this max-flow instance?

10

Perfect Matching

Def. A matching M c E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
. Clearly we must have |L| = |R].
. What other conditions are necessary?
. What conditions are sufficient?

1

Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L UR, E), has a perfect
matching, then |N(S)| > |S| for all subsets S c L.
Proof. Each node in S has to be matched to a different node in N(S).

No perfect matching:
S5={2,4,5}
N(s)={2',5"}.

12

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR,E) bea
bipartite graph with |L| = |R|. Then, 6 has a perfect matching iff

IN(S)| > |S| for all subsets S L.

Proof. = This was the previous observation.

No perfect matching:
$={2,4,5}
N()={2',5"}.

13

Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
. Formulate as a max flow problem with o capacities
on edges from L to R and let (A, B) be min cut inG'.
. Key property #1 of this graph: min-cut cannot use « edges.
So cap(A,B) = [LnB|+|RNA]

. Key property #2: integral flow corresponds to a matching, as before.

- By max-flow min-cut, cap(A, B) = (size of maximum matching) < | L |.
. Choose S=L n A.

- Since min cut can't use © edges: N(S)c R A.
- IN(S)I<IRNA| = cap(A,B)-|L~B| < |L|-|L~AB|] =1]5]. =

' 00
© A 1 M)

o - S={2, 4, 5)

LA B={1,3}
RAA={2' 5
N(S) = {2', 5"}

® @

14

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

. Ford-Fulkerson: O(mn).

. Capacity scaling: O(m?log C) = O(m?).

. Shortest augmenting path : O(m nl/2),
. Recent progress: 0(m%7) [Madry, 2013]

Non-bipartite matching.
. Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
. Blossom algorithm: O(n*). [Edmonds 1965]
. Best known: O(m nl/2). [Micali-Vazirani 1980]
. Beftter algorithms for dense graphs, e.g. O(n238)
[Harvey, 2006]

Review Question

* A bipartite graph is k-regular if |L|=|R| and every
vertex (regardless of which side It Is on) has
exactly k neighbors

* Prove or disprove: every k-regular bipartite graph
has a perfect matching

L19.16

7.6 Disjoint Paths
Application of Max Flow With C=1

L19.17

Two problems

Given a network:
 Find edge-disjoint paths

» Find how many edges must be deleted to
disconnect the graph

1L19.18

Edge Disjoint Paths

» Disjoint paths problem. Givenadigraph G = (V,E) and two
nodes s and t, find the max number of edge-disjoint s-t paths.
— Two paths are edge-disjoint if they have no edge in common.
— In networks: how many packets can | send in parallel?

2 5
(- 2\ .

S \3 ‘6/ > T
4) 7

10/26/2016 L19.19

Edge Disjoint Paths

« Disjoint paths problem. Given adigraph ¢ = (V,E) and two
nodes s and t, find the max number of edge-disjoint s-t paths.
— Two paths are edge-disjoint if they have no edge in common.
— In networks: how many packets can | send in parallel?

10/26/2016 L19.20

Network Connectivity

e Network connectivity problem. Given a digraph G = (V, E) and
two nodes s and t, find min number of edges whose removal
disconnects t from s.

— A set of edges F < E disconnects t from s if each s-t paths uses at least one
edge in F.
(That is, removing F would make t unreachable from s.)

10/26/2016

L19.21

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

1
@< 1 1 \é 1>
! ! 1 I 1
\Cl; \/
1
Theorem. Max number edge-disjoint s-t paths equals max flow value.
Proof. <
. Suppose there are k edge-disjoint paths P, . . ., Py.

. Set f(e) = 1if e participates in some path P; . else set f(e) = O.
. Since paths are edge-disjoint, f is a flow of value k.

22

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.
O
e 1 /?\ 1
1
1
\é 1 \®

|
l\é ll\i/l/

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Proof. 2
. Suppose max flow value is k.
. Integrality theorem = there exists 0-1 flow f of value k.
. Consider edge (s, u) with f(s,u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a hew edge
. Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired
23

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Proof. <
. Suppose the removal of F c E disconnects t from s, and |F| = k.
. All s-t paths use at least one edge of F. Hence, the number of edge-
disjoint paths is at most k. =

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. >
. Suppose max number of edge-disjoint paths is k.
. Then max flow value is k.
. Max-flow min-cut = cut (A, B) of capacity k.
. Let F be set of edges going from A to B.
. |F| = k and disconnects t from s.

