# Algorithm Design and Analysis





•Edge-disjoint paths

### Sofya Raskhodnikova

10/26/2016

# **Reminders: Max Flow Algorithms**

- Algorithms to find  $\max s t$  flow &  $\min s t$  cut when capacities are integers  $\leq C$ 
  - Ford-Fulkerson runs in O(nmC) time
  - the scaling max-flow algorithm runs in  $O(m^2 \log C)$  time.

- **Duality**: Max flow value = min cut capacity
- **Integrality**: If capacities are integers, then both algorithms produce an integral max flow

10/26/2016

# **Review Question**

Suppose we run Ford Fulkerson in a graph where all capacities are in  $\{0, 1, ..., C, \infty\}$ , but the value of the maximum flow is finite.

Give a bound on the running time.

### **Bipartite Matching**

#### Bipartite matching.

- Input: undirected, bipartite graph  $G = (L \cup R, E)$ .
- $M \subseteq E$  is a matching if each node appears in at most edge in M.
- Maximum matching: find a matching with as many edges as possible.



## Reductions

- "Problem A reduces to problem B"
  - Rough meaning: there is a simple algorithm for A that uses an algorithm for B as a subroutine.
  - Denote  $A \leq B$
- Usually:
  - Given instance *x* of problem A we find a instance *x*' of problem B
  - Solve *x*'
  - Use the solution to build a solution to x
- Useful skill: quickly identify problems where existing solutions may be applied.
  - Good programmers do this all the time

### Reducing Bipartite Matching to Maximum Flow

#### Reduction to Max flow.

- Create digraph  $G' = (L \cup R \cup \{s, t\}, E')$ .
- Direct all edges from L to R, and assign capacity 1.
- Add source s, and capacity 1 edges from s to etch node in L.
- Add sink t, and capacity 1 edges from each node in R to t.

Run FF and return the edges between  $L \bigcirc R$  carrying flow.



Could also make capacities in the middle ∞

#### Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G'.

#### Proof: We need two statements

- # edges in max. matching in  $G \leq \max$  flow in G'
- # edges in max. matching in  $G \ge \max$  flow in G'

#### Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G'. Proof.  $\leq$ 

- Given max matching M of cardinality k.
- Consider f sending 1 unit along path (s,u,v,t) for each  $(u,v) \in M$ .
- f is a flow, and has value k.



#### Bipartite Matching: Proof of Correctness

Theorem. # edges in max matching in G = value of max flow in G'. Proof.  $\geq$ 

- Let f be a max flow in G' of value k.
- Integrality theorem  $\Rightarrow$  we can find a max flow f that is integral;
  - all capacities are  $1 \Rightarrow$  can find f that takes values only in {0,1}
- Consider M = set of edges from L to R with f(e) = 1.
  - Each node in L and R participates in at most one edge in M
    - Because all capacities are 1 and flow must be conserved
  - $|\mathbf{M}| = \mathbf{k}$ : consider flow across cut  $(\mathbf{L} \cup \{s\}, \mathbf{R} \cup \{t\})$  •



### Exercises

- Give an example where the greedy algorithm for MBM fails.
- How bad can the greedy algorithm be, i.e. how far can the size of the maximum matching (global max) be from the size of the greedy matching (local max)?
- What do augmenting paths look like in this max-flow instance?

### Perfect Matching

**Def.** A matching  $M \subseteq E$  is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

### Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph  $G = (L \cup R, E)$ , has a perfect matching, then  $|N(S)| \ge |S|$  for all subsets  $S \subseteq L$ . Proof. Each node in S has to be matched to a different node in N(S).



#### Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let  $G = (L \cup R, E)$  be a bipartite graph with |L| = |R|. Then, G has a perfect matching iff

 $|N(S)| \ge |S|$  for all subsets  $S \subseteq L$ .

**Proof.**  $\Rightarrow$  This was the previous observation.



### Proof of Marriage Theorem

- Pf.  $\leftarrow$  Suppose G does not have a perfect matching.
  - Formulate as a max flow problem with  $\infty$  capacities on edges from L to R and let (A, B) be min cut in G'.
  - Key property #1 of this graph: min-cut cannot use  $\infty$  edges.

 $\mathscr{P}$  So cap(A, B) =  $|L \cap B| + |R \cap A|$ 

- Key property #2: integral flow corresponds to a matching, as before.
  - By max-flow min-cut, cap(A, B) = (size of maximum matching) < |L|.
- Choose S = L  $\cap$  A.
  - Since min cut can't use  $\infty$  edges:  $N(S) \subseteq R \cap A$ .
- $|N(S)| \le |R \cap A| = cap(A, B) |L \cap B| < |L| |L \cap B| = |S|$ .



S = {2, 4, 5} L  $\cap$  B = {1, 3} R  $\cap$  A = {2', 5'} N(S) = {2', 5'}

### Bipartite Matching: Running Time

### Which max flow algorithm to use for bipartite matching?

- Ford-Fulkerson: O(mn).
- Capacity scaling:  $O(m^2 \log C) = O(m^2)$ .
- Shortest augmenting path (not covered in class):  $O(m n^{1/2})$ .
- Recent progress:  $\tilde{O}(m^{10/7})$  [Madry, 2013]

#### Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: O(n<sup>4</sup>). [Edmonds 1965]
- Best known: O(m n<sup>1/2</sup>). [Micali-Vazirani 1980]
- Better algorithms for dense graphs, e.g. O(n<sup>2.38</sup>)
  [Harvey, 2006]

# **Review Question**

 A bipartite graph is k-regular if |L|=|R| and every vertex (regardless of which side it is on) has exactly k neighbors

• Prove or disprove: every k-regular bipartite graph has a perfect matching

# 7.6 Disjoint Paths Application of Max Flow With C=1

10/26/2016

# **Two problems**

Given a network:

• Find edge-disjoint paths

• Find how many edges must be deleted to disconnect the graph

# **Edge Disjoint Paths**

- **Disjoint paths problem.** Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.
  - Two paths are edge-disjoint if they have no edge in common.
  - In networks: how many packets can I send in parallel?



# **Edge Disjoint Paths**

- **Disjoint paths problem.** Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.
  - Two paths are edge-disjoint if they have no edge in common.
  - In networks: how many packets can I send in parallel?



# **Network Connectivity**

- Network connectivity problem. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.
  - A set of edges  $F \subseteq E$  disconnects t from s if each s-t paths uses at least one edge in F.

(That is, removing F would make t unreachable from s.)



s. Raskhudi Wajsaterelated to edge the joint paths hith, K. Wayne

### Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.



Theorem. Max number edge-disjoint s-t paths equals max flow value. Proof.  $\leq$ 

- Suppose there are k edge-disjoint paths  $P_1, \ldots, P_k$ .
- Set f(e) = 1 if e participates in some path  $P_i$ ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

### Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.



Theorem. Max number edge-disjoint s-t paths equals max flow value. Proof.  $\geq$ 

- Suppose max flow value is k.
- . Integrality theorem  $\Rightarrow$  there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
  - by conservation, there exists an edge (u, v) with f(u, v) = 1
  - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired

### Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

#### Proof. $\leq$

- Suppose the removal of  $F \subseteq E$  disconnects t from s, and |F| = k.
- All s-t paths use at least one edge of F. Hence, the number of edgedisjoint paths is at most k.



#### Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

#### Pf. $\geq$

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut  $\Rightarrow$  cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- IF = k and disconnects t from s.

