
Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURES 19
Maximum Flow Applications

•With unit capacities

•Bipartite matching

•Perfect matching

•Edge-disjoint paths

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.1

Reminders: Max Flow Algorithms

• Algorithms to find max s-t flow & min s-t cut

when capacities are integers ≤ 𝐶

– Ford-Fulkerson runs in 𝑶(𝒏𝒎𝑪) time

– the scaling max-flow algorithm runs in

𝑶(𝒎𝟐 𝒍𝒐𝒈𝑪) time.

• Duality: Max flow value = min cut capacity

• Integrality: If capacities are integers, then both

algorithms produce an integral max flow

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.2

Review Question

Suppose we run Ford Fulkerson in a graph where

all capacities are in 0,1, … , 𝐶,∞ , but the value of

the maximum flow is finite.

Give a bound on the running time.

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.3

Bipartite Matching

Bipartite matching.

 Input: undirected, bipartite graph G = (L R, E).

 M E is a matching if each node appears in at most edge in M.

 Maximum matching: find a matching with as many edges as possible.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

We cannot add edges to this
matching.
• It is maximal (local max)
• But not maximum (global max)

4

Reductions

• “Problem A reduces to problem B”
– Rough meaning: there is a simple algorithm for A that uses an

algorithm for B as a subroutine.

– Denote 𝐴 ≤ 𝐵

• Usually:
• Given instance 𝑥 of problem A

we find a instance 𝑥’ of problem B

• Solve 𝑥’
• Use the solution to build a solution to 𝑥

• Useful skill: quickly identify problems where existing
solutions may be applied.

• Good programmers do this all the time

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.5

Reduction to Max flow.

 Create digraph G' = (𝐿 ∪ 𝑅 ∪ {s, t}, E').

 Direct all edges from L to R, and assign capacity 1.

 Add source s, and capacity 1 edges from s to each node in L.

 Add sink t, and capacity 1 edges from each node in R to t.

Run FF and return the edges between 𝐋 ∪ 𝑹 carrying flow.

Reducing Bipartite Matching to Maximum Flow

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

RL

G'

Could also make
capacities in the

middle ∞

6

Theorem. # edges in max matching in G = value of max flow in G’.

Proof: We need two statements

• # edges in max. matching in G ≤ max flow in G’

• # edges in max. matching in G ≥ max flow in G’

Bipartite Matching: Proof of Correctness

7

Theorem. # edges in max matching in G = value of max flow in G'.

Proof.

 Given max matching M of cardinality k.

 Consider f sending 1 unit along path (s,u,v,t) for each (u,v)∈ 𝑀.

 f is a flow, and has value k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

11

3

5

1'

3'

5'

2

4

2'

4'

G'G

8

Theorem. # edges in max matching in G = value of max flow in G'.

Proof.
 Let f be a max flow in G' of value k.
 Integrality theorem we can find a max flow f that is integral;

– all capacities are 1 can find f that takes values only in {0,1}
 Consider M = set of edges from L to R with f(e) = 1.

– Each node in L and R participates in at most one edge in M
 Because all capacities are 1 and flow must be conserved

– |M| = k: consider flow across cut (L ∪ {𝑠}, R∪ {𝑡}) ▪

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G'

9

Exercises

• Give an example where the greedy algorithm for MBM fails.

• How bad can the greedy algorithm be, i.e. how far can the size of

the maximum matching (global max) be from the size of the

greedy matching (local max)?

• What do augmenting paths look like in this max-flow instance?

10

Def. A matching M E is perfect if each node appears in exactly one

edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

 Clearly we must have |L| = |R|.

 What other conditions are necessary?

 What conditions are sufficient?

Perfect Matching

11

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes

adjacent to nodes in S.

Observation. If a bipartite graph G = (L R, E), has a perfect

matching, then |N(S)| |S| for all subsets S L.

Proof. Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:

S = { 2, 4, 5 }

N(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R
12

Marriage Theorem. [Frobenius 1917, Hall 1935] Let G = (L R, E) be a

bipartite graph with |L| = |R|. Then, G has a perfect matching iff

|N(S)| |S| for all subsets S L.

Proof. This was the previous observation.

Marriage Theorem

1

3

5

1'

3'

5'

2

4

2'

4'

L R

No perfect matching:

S = { 2, 4, 5 }

N(S) = { 2', 5' }.

13

Pf. Suppose G does not have a perfect matching.

 Formulate as a max flow problem with ∞ capacities

on edges from L to R and let (A, B) be min cut in G'.

 Key property #1 of this graph: min-cut cannot use ∞ edges.

 So cap(A, B) = | L B | + | R A |

 Key property #2: integral flow corresponds to a matching, as before.

– By max-flow min-cut, cap(A, B) = (size of maximum matching) < | L |.

 Choose S = L A.

– Since min cut can't use edges: N(S) R A.

 |N(S)| | R A | = cap(A, B) - | L B | < | L | - | L B | = | S|. ▪

Proof of Marriage Theorem

S = {2, 4, 5}

L B = {1, 3}

R A = {2', 5'}

N(S) = {2', 5'}

s

1

3

5

1'

3'

5'

t

2

4

4'

1

2'

1

1

1

A
G'

14

Which max flow algorithm to use for bipartite matching?

 Ford-Fulkerson: O(mn).

 Capacity scaling: O(m2 log C) = O(m2).

 Shortest augmenting path (not covered in class): O(m n1/2).

 Recent progress: 𝑂(𝑚10/7) [Madry, 2013]

Non-bipartite matching.

 Structure of non-bipartite graphs is more complicated, but

well-understood. [Tutte-Berge, Edmonds-Galai]

 Blossom algorithm: O(n4). [Edmonds 1965]

 Best known: O(m n1/2). [Micali-Vazirani 1980]

 Better algorithms for dense graphs, e.g. O(n2.38)

[Harvey, 2006]

Bipartite Matching: Running Time

15

Review Question

• A bipartite graph is k-regular if |L|=|R| and every

vertex (regardless of which side it is on) has

exactly k neighbors

• Prove or disprove: every k-regular bipartite graph

has a perfect matching

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.16

7.6 Disjoint Paths

10/26/2016

Application of Max Flow With C=1

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.17

Two problems

Given a network:

• Find edge-disjoint paths

• Find how many edges must be deleted to

disconnect the graph

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.18

Edge Disjoint Paths

• Disjoint paths problem. Given a digraph 𝐺 = (𝑉, 𝐸) and two

nodes s and t, find the max number of edge-disjoint s-t paths.

– Two paths are edge-disjoint if they have no edge in common.

– In networks: how many packets can I send in parallel?

s

2

3

4

5

6

7

t

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.19

Edge Disjoint Paths

• Disjoint paths problem. Given a digraph 𝐺 = (𝑉, 𝐸) and two

nodes s and t, find the max number of edge-disjoint s-t paths.

– Two paths are edge-disjoint if they have no edge in common.

– In networks: how many packets can I send in parallel?

s

2

3

4

5

6

7

t

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.20

Network Connectivity

• Network connectivity problem. Given a digraph G = (V, E) and

two nodes s and t, find min number of edges whose removal

disconnects t from s.

– A set of edges F E disconnects t from s if each s-t paths uses at least one

edge in F.

(That is, removing F would make t unreachable from s.)

s

2

3

4

5

6

7

t

How is it related to edge-disjoint paths?10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L19.21

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Proof.

 Suppose there are k edge-disjoint paths P1, . . . , Pk.

 Set f(e) = 1 if e participates in some path Pi ; else set f(e) = 0.

 Since paths are edge-disjoint, f is a flow of value k. ▪

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

22

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Proof.

 Suppose max flow value is k.

 Integrality theorem there exists 0-1 flow f of value k.

 Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1

– continue until reach t, always choosing a new edge

 Produces k (not necessarily simple) edge-disjoint paths. ▪

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

can eliminate cycles to get simple paths if desired

23

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is

equal to the min number of edges whose removal disconnects t from s.

Proof.

 Suppose the removal of F E disconnects t from s, and |F| = k.

 All s-t paths use at least one edge of F. Hence, the number of edge-

disjoint paths is at most k. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

24

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is

equal to the min number of edges whose removal disconnects t from s.

Pf.

 Suppose max number of edge-disjoint paths is k.

 Then max flow value is k.

 Max-flow min-cut cut (A, B) of capacity k.

 Let F be set of edges going from A to B.

 |F| = k and disconnects t from s. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

A

25

