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LECTURES 20
Maximum Flow Applications

•Edge-disjoint paths

•Image segmentation

•Project selection

Extensions to Max Flow
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Exercise

We have been considering flows in graphs where the source has only 

outgoing edges and the sink has only incoming edges.

• Suppose the source also has incoming edges. How should we 

define max flow in such a graph?

• Can we reduce this variant of the problem to the one we solved 

before?

(When the sink has outgoing edges, the solution is ``symmetric’’.)
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7.6  Disjoint Paths
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Two problems

Given a network:

• Find edge-disjoint paths

• Find how many edges must be deleted to 

disconnect the graph

10/26/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L20.4



Edge Disjoint Paths

• Disjoint paths problem. Given a digraph 𝐺 = (𝑉, 𝐸) and two 

nodes s and t, find the max number of edge-disjoint s-t paths.

– Two paths are edge-disjoint if they have no edge in common.

– In networks: how many packets can I send in parallel?
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Network Connectivity

• Network connectivity problem.  Given a digraph G = (V, E) and 

two nodes s and t,  find min number of edges whose removal 

disconnects t from s.

– A set of edges F  E disconnects t from s if each s-t paths uses at least one 

edge in F.

(That is, removing F would make t unreachable from s.)
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Proof.   

 Suppose there are k edge-disjoint paths P1, . . . , Pk.

 Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0.

 Since paths are edge-disjoint, f is a flow of value k.   ▪

Edge Disjoint Paths
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Proof.   

 Suppose max flow value is k.

 Integrality theorem   there exists 0-1 flow f of value k.

 Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1

– continue until reach t, always choosing a new edge

 Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge-Disjoint Paths
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Edge-Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Proof.  

 Suppose the removal of F  E disconnects t from s, and |F| = k.

 All s-t paths use at least one edge of F. Hence, the number of edge-

disjoint paths is at most k.  ▪
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Edge-Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Pf.  

 Suppose max number of edge-disjoint paths is k.

 Then max flow value is k.

 Max-flow min-cut   cut (A, B) of capacity k.

 Let F be set of edges going from A to B.

 |F| = k and disconnects t from s.   ▪
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In-class exercise

• Getting ambulances to accidents.

– Inputs: 𝑇, 𝑑1, … . , 𝑑𝑛 and 𝑠1, … , 𝑠𝑘 and driving times 𝑡𝑖,𝑗 for all 𝑖, 𝑗
• Accident 𝑖 needs 𝑑𝑖 ambulances (𝑖 ∈ {1,… , 𝑛})
• Ambulance station 𝑗 has s𝑗 ambulances (𝑗 ∈ {1,… , 𝑘})
• Ambulance needs to be within 𝑇 minutes’ drive of accident

– Give an algorithm to determine if there is a way to assign enough nearby 
ambulances to each accident

• Pose as a flow problem
– What is the graph?

– What are the capacities?

– How do you solve the original problem once you know the maximum 
flow?

– What is the running time of the resulting algorithm?

• Variation: What if T is not given? Can we find the smallest T for which 
the problem is feasible?
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