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Review

1)We saw Menger’s theorem in the last lecture.

– Try to recall the statement of Menger’s theorem for 

directed graphs.

– Does a similar statement hold if the graph is 

undirected?
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7.10  Image Segmentation
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Image Segmentation

•Image segmentation.

Central problem in image processing.

Divide image into coherent regions.

•Ex:  Pictures of people standing against a nature 

background. Identify each person as a coherent 

object, distinct from the background.
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Image Segmentation

Foreground / background segmentation.

 Want to label each pixel in picture as belonging to

foreground or background.

Inputs:

 V = set of pixels, E = pairs of neighboring pixels.

 𝑎𝑖  0 is likelihood pixel i in foreground.

 𝑏𝑖  0 is likelihood pixel i in background.

 𝑝𝑖𝑗 : separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.

 Accuracy:  if 𝑎𝑖 > 𝑏𝑖 in isolation, prefer to label i in foreground.

 Smoothness: if many neighbors of 𝑖 are labeled foreground, we 

should be inclined to label 𝑖 as foreground.

 Find partition (A, B) that maximizes:  

  



a i 
i A

 b j
jB

  pij
(i, j)  E

A {i, j} 1


foreground background
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Image Segmentation

Let’s try to formulate as min cut problem. 

Obstacles:

 Maximization.

 No source or sink.

 Undirected graph.

Turn into minimization problem.

 Maximizing

is equivalent to minimizing

 or alternatively

  



a j 
jB

 bi
i A

  pij
(i, j)  E

A {i, j} 1



  



a i 
i A

 b j
jB

  pij
(i, j)  E

A {i, j} 1





a ii  V   b jj  V 
a constant

    a i
i A

   bj
jB

   pij
(i, j)  E

A {i, j} 1


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Image Segmentation

Formulate as min cut problem.

 G' = (V', E').

 Add source to correspond to foreground;

add sink to correspond to background

 Use two anti-parallel edges instead of

undirected edge.

s t

pij

pij

pij

i jpij

aj

G'
bi
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Image Segmentation

Consider a cut (A, B) in G'.

 A = foreground.

 Precisely the quantity we want to minimize.



cap(A, B)  a j 
jB

 bi  
i A

 pij
(i, j)  E
i A, jB



G'

s ti j

A

if i and j on different sides,
pij counted exactly once

pij

bi

aj
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Exercises

1)Write out the reduction as an algorithm (in 

pseudocode) that uses a min-cut subroutine.

2)Prove that the problem of finding a maximum-

weight independent set in bipartite graphs can 

be reduced to minimum cut. 

Doesn’t follow directly from this application, but 

uses a similar idea
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7.11  Project Selection



Project Selection

Projects with prerequisites.

 Set P of possible projects. Project v has associated revenue 𝑝𝑣.

– some projects generate money:  create interactive e-commerce interface, 

redesign web page

– others cost money:  upgrade computers, get site license

 Set of prerequisites E.  If (v, w)  E, can't do project v and unless 

also do project w.

– (P,E) is a DAG

 A subset of projects A  P is feasible if the prerequisite of every 

project in A also belongs to A.

Project selection.  Choose a feasible subset of projects to maximize 

revenue.

can be positive or negative
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Project Selection:  Prerequisite Graph

Prerequisite graph.

 Include an edge from v to w if w is a prerequisite to v.

– 𝑣, 𝑤 ∈ 𝐸 ⇒ 𝑣 requires 𝑤

 {v, w, x} is feasible subset of projects.

 {v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible
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Project Selection:  Min Cut Formulation

Min cut formulation.

 Add source s, sink t

 Assign capacity __ to all prerequisite edges.

 Add edge (s, v) with capacity -__ if ___.

 Add edge (v, t) with capacity __ if ___.
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Project Selection:  Min Cut Formulation

Min cut formulation.

 Assign capacity  to all prerequisite edges.

 Add source s, sink t

 Add edge (s, v) with capacity -pv if pv > 0.

 Add edge (v, t) with capacity -pv if pv < 0.

 For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z



pv -px








py

pu

-pz


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Project Selection:  Min Cut Formulation

Claim.  (A, B) is min cut iff A  { s } is optimal set of projects.

 Infinite capacity edges ensure A  { s } is feasible.

 Max revenue because:

s t

-pw

u

v

w

x

y z

pv -px



cap(A, B)  p v
vB: pv  0

  (p v)
v A: pv  0



 p v
v : pv  0



constant

 p v
v A



py

pu







A
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Exercise

• Write out the reduction as an algorithm in 

pseudocode that uses a min-cut subroutine.
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Application: Open Pit Mining

Open-pit mining.  (studied since early 1960s)

 Blocks of earth are extracted from surface to retrieve ore.

 Each block v has net value pv = value of ore - processing cost.

 Can't remove block v before w or x.

v

xw
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7.7  Circulations



Circulation with Demands

Circulation with demands.

 Directed graph G = (V, E).

 Edge capacities c(e), e  E.

 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:

 For each e  E: 0    f(e)    c(e) (capacity)

 For each v  V: (conservation)

Circulation problem:  given (V, E, c, d), does there exist a circulation?

  



f (e)
e in to v

  f (e)
e out of v

  d(v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0
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Necessary condition:  sum of supplies = sum of demands.

Proof.  Sum conservation constraints for every demand node v.

3

10 6

-7

-8

11

-6

4

9

7

3

10 0

7

4

4

6

6

7

1

4 2

flow

Circulation with Demands

capacity

  



d(v)
v : d (v)  0

   d(v)
v : d (v)  0

 : D

demand

supply
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Circulation with Demands

Max flow formulation.

G:

supply

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand
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Circulation with Demands

Max flow formulation.

 Add new source s and sink t.

 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).

 For each v with d(v) > 0, add edge (v, t) with capacity  d(v).

Claim: G has circulation iff G' has max flow of value D.

G':

supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges

leaving s and entering t

demand
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Circulation with Demands

Integrality theorem.  If all capacities and demands are integers, and 

there exists a circulation, then there exists one that is integer-valued.

Proof.  Follows from max flow formulation and integrality theorem for 

max flow.

Characterization.  Given (V, E, c, d), there does not exist a circulation 

iff there exists a node partition (A, B) such that vB dv > cap(A, B)

Proof idea.  Look at min cut in G'. Effective demand by nodes in B exceeds 

max capacity of edges going from A to B
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Circulation with Demands and Lower Bounds

Feasible circulation.

 Directed graph G = (V, E).  

 Edge capacities c(e) and lower bounds  (e), e  E.

 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:

 For each e  E:  (e)  f(e)    c(e) (capacity)

 For each v  V: (conservation)

Circulation problem with lower bounds.  Given (V, E, , c, d), does there 

exist a circulation?

  



f (e)
e in to v

  f (e)
e out of v

  d(v)
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Circulation with Demands and Lower Bounds

Idea.  Model lower bounds with demands.

 Send (e) units of flow along edge e.

 Update demands of both endpoints.

Theorem.  There exists a circulation in G iff there exists a circulation 

in G'. If all demands, capacities, and lower bounds in G are integers, 

then there is a circulation in G that is integer-valued.

Proof sketch.   f(e) is a circulation in G if and only if f'(e) = f(e) - (e) is 

a circulation in G'.

v w[2, 9]

lower bound upper bound

v w

d(v) d(w) d(v) + 2 d(w) - 2
G G'

7

capacity

25



Census Tabulation  (Exercise 7.39)

Feasible matrix rounding.

 Given a p-by-q matrix D = {dij } of real numbers.

 Row i sum = ai, column j sum bj.

 Round each dij, ai, bj up or down to integer so that sum of rounded 

elements in each row (column) equals row (column) sum.

 Original application:  publishing US Census data.

Goal.  Find a feasible rounding, if one exists.

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

173 7 7

1310 2 1

113 1 7

16 10 15

original matrix feasible rounding
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Census Tabulation

Feasible matrix rounding.

 Given a p-by-q matrix D = {dij } of real numbers.

 Row i sum = ai, column j sum bj.

 Round each dij, ai, bj up or down to integer so that sum of rounded 

elements in each row (column) equals row (column) sum.

 Original application:  publishing US Census data.

Goal.  Find a feasible rounding, if one exists.

Remark.  "Threshold rounding" can fail.

1.050.35 0.35 0.35

1.650.55 0.55 0.55

0.9 0.9 0.9

original matrix feasible rounding

10 0 1

21 1 0

1 1 1

27



Census Tabulation

Theorem.  Feasible matrix rounding always exists.

Proof.  Formulate as a circulation problem with lower bounds.

 Original data provides circulation (all demands = 0).

 Integrality theorem   integral solution   feasible rounding.  ▪

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5 u

1

2

3

1'

2'

3'

v

row column

17, 18

12, 13

11, 12

16, 17

10, 11

14, 15

3, 4

0,


lower bound upper bound

28


