
10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 27
Computational

Intractability

• Self-reducibility

• Classes P, NP, EXP

• NP-completeness

L27.1

Review

• Basic reduction strategies.

– Simple equivalence: INDEPENDENT-SET  P VERTEX-COVER.

– Special case to general case: VERTEX-COVER  P SET-COVER.

– Encoding with gadgets: 3-SAT  P INDEPENDENT-SET.

• Transitivity. If X ≤𝑝Y and Y ≤𝑝Z, then X≤𝑝Z.

• Proof idea. Compose the two algorithms.

• Ex: 3-SAT ≤𝑝 INDEPENDENT-SET ≤𝑝VERTEX-COVER ≤𝑝SET-COVER.

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.2

Self-Reducibility

• Decision problem. Does there exist a vertex cover of size  k?

• Search problem. Find vertex cover of minimum cardinality.

• Self-reducibility. Search problem ≤𝑝decision version.

– Applies to all (NP-complete) problems in Chapter 8 of KT.

– Justifies our focus on decision problems.

• Ex: to find min cardinality vertex cover.

– (Binary) search for cardinality 𝑘∗ of min vertex cover.

– Find a vertex v such that 𝐺  { 𝑣 } has a vertex cover of size ≤ 𝑘∗ −1.

• any vertex in any min vertex cover will have this property

– Include 𝑣 in the vertex cover.

– Recursively find a min vertex cover in 𝐺  {𝑣 }.

delete v and all incident edges

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.3

Definitions of P and NP

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.4

Decision Problems

Decision problem.

 X is a set of strings.

 Instance: string s.

 Algorithm A solves problem X: A(s) = yes iff s  X.

Polynomial time. Algorithm A runs in poly-time if for every string s,

A(s) terminates in at most p(|s|) "steps", where p() is some

polynomial.

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s

5

Definition of P

P. The class of decision problems for which there is a poly-time algorithm.

Examples

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between
x and y less than 5?

Dynamic
programming

niether

neither

acgggt

ttttta

LSOLVE
Is there a vector x that

satisfies Ax = b?
Gauss-Edmonds

elimination



0 1 1

2 4 2

0 3 15

















 ,

4

2

36



















1 0 0

1 1 1

0 1 1

















 ,

1

1

1

















6

NP

Certification algorithm intuition.

 Certifier views things from "managerial" viewpoint.

 Certifier doesn't determine whether s  X on its own;

rather, it checks a proposed proof t that s  X.

Def. Algorithm C(s, t) is a certifier for problem X if for every string s,

s  X iff there exists a string t such that C(s, t) = yes.

NP. Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p().

"certificate" or "witness"

7

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate

exists iff s is composite. Moreover |t|  |s|.

Certifier.

Instance. s = 437,669.

Certificate. t = 541 or 809.

Conclusion. COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {

if (t  1 or t  s)

return false

else if (s is a multiple of t)

return true

else

return false

}

8

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in  has at least one true literal.

Ex.

Conclusion. SAT is in NP.



x1  x2  x3   x1  x2  x3   x1  x2  x4   x1  x3  x4 



x1 1, x2 1, x3  0, x4 1

instance s

certificate t

9

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly

once, and that there is an edge between each pair of adjacent nodes

in the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

10

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. P  NP.

Pf. Consider any problem X in P.

 By definition, there exists a poly-time algorithm A(s) that solves X.

 Certificate: t = , certifier C(s, t) = A(s). ▪

Claim. NP  EXP.

Pf. Consider any problem X in NP.

 By definition, there exists a poly-time certifier C(s, t) for X that runs

in time p(|s|).

 To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

 Return yes, if C(s, t) returns yes for any of these. ▪

11

The Big Question: P vs. NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes: Efficient algorithms for HamPath, SAT, TSP, factoring

– Cryptography is impossible*

– Creativity is automatable

• If no: No efficient algorithms possible for these problems.

• Consensus opinion on P = NP? Probably no.

10/4/10

EXP NP

P

If P  NP If P = NP

EXP

P = NP

If P  NP
and NP=EXP

EXP
=NP

P

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.12

NP-completeness

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.13

NP-Complete

NP-complete. A problem Y is NP-complete if

• Y is in NP and

• X  p,Karp Y for every problem X in NP.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in

poly-time iff P = NP.

Proof.  If P = NP then Y can be solved in poly-time since Y is in NP.

 Suppose Y can be solved in poly-time.

 Let X be any problem in NP. Since X  p,Karp Y, we can solve X in

poly-time. This implies NP  P.

 We already know P  NP. Thus P = NP. ▪

Fundamental question. Do there exist "natural" NP-complete problems?

15





 





1 0 ? ? ?

output

inputshard-coded inputs

yes: 1 0 1

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?

16

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Proof sketch. CIRCUIT-SAT is in NP (certificate: input on which circuit is 1).

Reduction: For all X  NP, A ≤P,Cook CIRCUIT-SAT.

 Any algorithm that takes a fixed number of bits n as input and produces a

yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 Since X∈ NP, it has a poly-time certifier C(s, t) that runs in time p(|s|).

To determine whether s is in X, need to know if there exists a certificate

t of length p(|s|) such that C(s, t) = yes.

 View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and

convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

 Correctness: Circuit K is satisfiable iff C(s, t) = yes.

17





u-v



1

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)







u-w

0



v-w

1



u

?



v

?



w

?





both endpoints of some edge have been chosen?

independent set?

Example

Ex. Construction below creates a circuit K whose inputs can be set so

that K outputs true iff graph G has an independent set of size 2.

u

v w



n

2











G = (V, E), n = 3

18

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

 Step 1. Show that Y is in NP.

 Step 2. Choose an NP-complete problem X.

 Step 3. Prove that X  p,Karp Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP

with the property that X  P,Karp Y then Y is NP-complete.

Proof. Let W be any problem in NP. Then W  P,Karp X  P,Karp Y.

 By transitivity, W  P,Karp Y.

 Hence Y is NP-complete. ▪ by assumptionby definition of
NP-complete

19

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Proof. Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

 Let K be any circuit.

 Create a 3-SAT variable xi for each circuit element i.

 Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses:

– x1 = x4  x5  add 3 clauses:

– x0 = x1  x2  add 3 clauses:

 Hard-coded input values and output value.

– x5 = 0  add 1 clause:

– x0 = 1  add 1 clause:

 Final step: turn clauses of length < 3 into

clauses of length exactly 3. ▪







0 ? ?

output

x0

x2x1



x2  x3 , x2  x3



x1 x4 , x1 x5 , x1 x4  x5



x0  x1 , x0  x2 , x0  x1  x2

x3x4x5



x5



x0

20

Observation. All problems below are NP-complete and polynomial

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

21

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

 Packing problems: SET-PACKING, INDEPENDENT SET.

 Covering problems: SET-COVER, VERTEX-COVER.

 Constraint satisfaction problems: SAT, 3-SAT.

 Sequencing problems: HAMILTONIAN-CYCLE, TSP.

 Partitioning problems: 3D-MATCHIN,G 3-COLOR.

 Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

22

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

 Prime intellectual export of CS to other disciplines.

 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"

 Broad applicability and classification power.

 "Captures vast domains of computational, scientific, mathematical

endeavors, and seems to roughly delimit what mathematicians and

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

 1926: Ising introduces simple model for phase transitions.

 1944: Onsager solves 2D case in tour de force.

 19xx: Feynman and other top minds seek 3D solution.

 2000: Istrail proves 3D problem NP-complete.

23

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.

Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction.

Electrical engineering: VLSI layout.

Environmental engineering: optimal placement of contaminant sensors.

Financial engineering: find minimum risk portfolio of given return.

Game theory: find Nash equilibrium that maximizes social welfare.

Genomics: phylogeny reconstruction.

Mechanical engineering: structure of turbulence in sheared flows.

Medicine: reconstructing 3-D shape from biplane angiocardiogram.

Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.

Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.

24

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.25

10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.26

