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Review

• Basic reduction strategies.

– Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.

– Special case to general case:  VERTEX-COVER  P SET-COVER.

– Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

• Transitivity. If X ≤𝑝Y and Y ≤𝑝Z, then X≤𝑝Z.

• Proof idea. Compose the two algorithms.

• Ex:  3-SAT ≤𝑝 INDEPENDENT-SET ≤𝑝VERTEX-COVER ≤𝑝SET-COVER.
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Self-Reducibility

• Decision problem.  Does there exist a vertex cover of size  k?

• Search problem.  Find vertex cover of minimum cardinality.

• Self-reducibility.  Search problem ≤𝑝decision version.

– Applies to all (NP-complete) problems in Chapter 8 of KT.

– Justifies our focus on decision problems.

• Ex:  to find min cardinality vertex cover.

– (Binary) search for cardinality 𝑘∗ of min vertex cover.

– Find a vertex v such that 𝐺  { 𝑣 } has a vertex cover of size ≤ 𝑘∗ −1.

• any vertex in any min vertex cover will have this property

– Include 𝑣 in the vertex cover.

– Recursively find a min vertex cover in 𝐺  {𝑣 }.

delete v and all incident edges
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Definitions of P and NP
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Decision Problems

Decision problem.

 X is a set of strings.

 Instance:  string s.

 Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string s, 

A(s) terminates in at most p(|s|) "steps", where p() is some 

polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s
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Definition of P

P.  The class of decision problems for which there is a poly-time algorithm.

Examples

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school 

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between 
x and y less than 5?

Dynamic 
programming

niether 
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Is there a vector x that 

satisfies Ax = b?
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NP

Certification algorithm intuition.

 Certifier views things from "managerial" viewpoint.

 Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,  

s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p().

"certificate" or "witness"
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Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 

exists iff s is composite.  Moreover |t|  |s|.

Certifier.  

Instance.  s = 437,669.

Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {

if (t  1 or t  s)

return false

else if (s is a multiple of t)

return true

else 

return false

}
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Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.



x1  x2  x3   x1  x2  x3   x1  x2  x4   x1   x3   x4 



x1 1, x2 1, x3  0, x4 1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 

once, and that there is an edge between each pair of adjacent nodes 

in the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.

EXP.  Decision problems for which there is an exponential-time algorithm.

NP.  Decision problems for which there is a poly-time certifier.

Claim.  P   NP.

Pf.  Consider any problem X in P.

 By definition, there exists a poly-time algorithm A(s) that solves X.

 Certificate: t = , certifier C(s, t) = A(s). ▪

Claim.  NP   EXP.

Pf.  Consider any problem X in NP.

 By definition, there exists a poly-time certifier C(s, t) for X that runs 

in time p(|s|).

 To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

 Return yes, if C(s, t) returns yes for any of these. ▪
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The Big Question: P vs. NP

• Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes:  Efficient algorithms for HamPath, SAT, TSP, factoring

– Cryptography is impossible*

– Creativity is automatable

• If no:  No efficient algorithms possible for these problems.

• Consensus opinion on P = NP? Probably no.
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NP-completeness
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NP-Complete

NP-complete.  A problem Y is NP-complete if

• Y is in NP and

• X  p,Karp Y for every problem X in NP.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 

poly-time iff P = NP.

Proof.   If P = NP then Y can be solved in poly-time since Y is in NP.

 Suppose Y can be solved in poly-time.

 Let X be any problem in NP.  Since X  p,Karp Y, we can solve X in

poly-time. This implies NP   P.

 We already know P   NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete problems?
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



 





1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?
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sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Proof sketch. CIRCUIT-SAT is in NP (certificate: input on which circuit is 1).

Reduction: For all X  NP, A ≤P,Cook CIRCUIT-SAT.

 Any algorithm that takes a fixed number of bits n as input and produces a 

yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 Since X∈ NP, it has a poly-time certifier C(s, t) that runs in time p(|s|).

To determine whether s is in X, need to know if there exists a certificate 

t of length p(|s|) such that C(s, t) = yes.

 View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and 

convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

 Correctness: Circuit K is satisfiable iff C(s, t) = yes.
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



u-v



1

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)







u-w

0



v-w

1



u

?



v

?



w

?





both endpoints of some edge have been chosen?

independent set?

Example

Ex.  Construction below creates a circuit K whose inputs can be set so 

that K outputs true iff graph G has an independent set of size 2.

u

v w



n

2











G = (V, E), n = 3
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Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

 Step 1.  Show that Y is in NP.

 Step 2.  Choose an NP-complete problem X.

 Step 3.  Prove that X  p,Karp Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP 

with the property that X  P,Karp Y then Y is NP-complete.

Proof.  Let W be any problem in NP.  Then W   P,Karp X    P,Karp Y.

 By transitivity, W  P,Karp Y. 

 Hence Y is NP-complete.  ▪ by assumptionby definition of
NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Proof.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

 Let K be any circuit.

 Create a 3-SAT variable xi for each circuit element i.

 Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses:

– x1 = x4  x5    add 3 clauses:

– x0 = x1  x2    add 3 clauses:

 Hard-coded input values and output value.

– x5 = 0   add 1 clause:

– x0 = 1   add 1 clause:

 Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  ▪







0 ? ?

output

x0

x2x1

  



x2  x3  , x2  x3



x1 x4 , x1 x5  ,  x1 x4  x5



x0  x1 , x0  x2 , x0  x1  x2

x3x4x5

  



x5

  



x0
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Observation.  All problems below are NP-complete and polynomial 

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

 Packing problems:  SET-PACKING, INDEPENDENT SET.

 Covering problems:  SET-COVER, VERTEX-COVER.

 Constraint satisfaction problems:  SAT, 3-SAT.

 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

 Partitioning problems: 3D-MATCHIN,G 3-COLOR.

 Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 

 Prime intellectual export of CS to other disciplines.

 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"

 Broad applicability and classification power.

 "Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

 1926:  Ising introduces simple model for phase transitions.

 1944:  Onsager solves 2D case in tour de force.

 19xx:  Feynman and other top minds seek 3D solution.

 2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.

Biology:  protein folding.

Chemical engineering:  heat exchanger network synthesis.

Civil engineering:  equilibrium of urban traffic flow.

Economics:  computation of arbitrage in financial markets with friction.

Electrical engineering:  VLSI layout. 

Environmental engineering:  optimal placement of contaminant sensors.

Financial engineering:  find minimum risk portfolio of given return.

Game theory:  find Nash equilibrium that maximizes social welfare.

Genomics:  phylogeny reconstruction.

Mechanical engineering:  structure of turbulence in sheared flows.

Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

Operations research:  optimal resource allocation. 

Physics:  partition function of 3-D Ising model in statistical mechanics.

Politics:  Shapley-Shubik voting power.

Pop culture:  Minesweeper consistency.

Statistics:  optimal experimental design.
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