Algorithm Design and Analysis

LECTURE 27 Computational Intractability

- Self-reducibility
- Classes P, NP, EXP
 NP-completeness

Sofya Raskhodnikova

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L27.1

Review

- Basic reduction strategies.
 - Simple equivalence: INDEPENDENT-SET \equiv_P VERTEX-COVER.
 - Special case to general case: vertex-cover \leq_{P} set-cover.
 - Encoding with gadgets: $3-SAT \leq P$ INDEPENDENT-SET.
- **Transitivity**. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.
- Proof idea. Compose the two algorithms.
- Ex: 3-SAT \leq_p independent-set \leq_p vertex-cover \leq_p set-cover.

L27.2

Self-Reducibility

- **Decision problem**. Does there exist a vertex cover of size $\leq k$?
- Search problem. Find vertex cover of minimum cardinality.
- Self-reducibility. Search problem \leq_p decision version.
 - Applies to all (NP-complete) problems in Chapter 8 of KT.
 - Justifies our focus on decision problems.
- Ex: to find min cardinality vertex cover.
 - (Binary) search for cardinality k^* of min vertex cover.
 - Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k^* 1$.
 - any vertex in any min vertex cover will have this property
 - Include v in the vertex cover.
 - Recursively find a min vertex cover in $G \{v\}$.

delete v and all incident edges

Definitions of P and NP

Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: A(s) = yes iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where $p(\cdot)$ is some polynomial.

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, } Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|⁸.

Definition of P

P. The class of decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

Examples

NP

Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

```
Def. Algorithm C(s, t) is a certifier for problem X if for every string s,
s ∈ X iff there exists a string t such that C(s, t) = yes.
"certificate" or "witness"
```

NP. Decision problems for which there exists a poly-time certifier. $\uparrow C(s, t) \text{ is a poly-time algorithm and} \\ |t| \le p(|s|) \text{ for some polynomial } p(\cdot).$

Remark. NP stands for nondeterministic polynomial-time.

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \le |s|$.

Certifier.

```
boolean C(s, t) {
    if (t ≤ 1 or t ≥ s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

Instance. s = 437,669. Certificate. t = 541 or 809. $\leftarrow 437,669 = 541 \times 809$ Conclusion. COMPOSITES is in NP.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ , is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

$$\left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(x_1 \lor \overline{x_2} \lor x_3\right) \land \left(x_1 \lor x_2 \lor x_4\right) \land \left(\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}\right)$$

instance s

$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$

certificate t

Conclusion. SAT is in NP.

Ex.

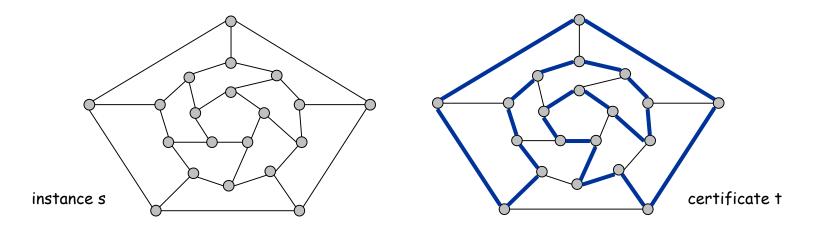
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.



P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

Pf. Consider any problem X in P.

- By definition, there exists a poly-time algorithm A(s) that solves X.
- Certificate: $t = \varepsilon$, certifier C(s, t) = A(s).

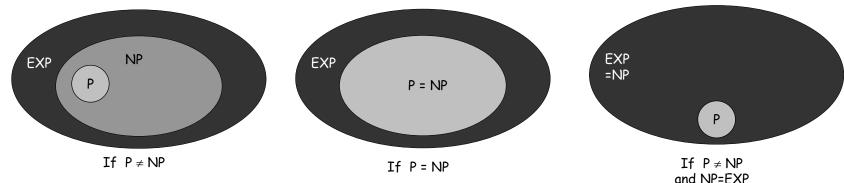
Claim. NP \subseteq EXP.

Pf. Consider any problem X in NP.

- By definition, there exists a poly-time certifier C(s, t) for X that runs in time p(|s|).
- To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- Return yes, if C(s, t) returns yes for any of these.

The Big Question: P vs. NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the verification problem?
 - Clay \$1 million prize.



- If yes: Efficient algorithms for HamPath, SAT, TSP, factoring
 - Cryptography is impossible*
 - Creativity is automatable
- If no: No efficient algorithms possible for these problems.
- Consensus opinion on P = NP? Probably no.

L27.12

NP-completeness

NP-Complete

NP-complete. A problem Y is NP-complete if

- Y is in NP and
- $X \leq_{p,Karp} Y$ for every problem X in NP.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff P = NP.

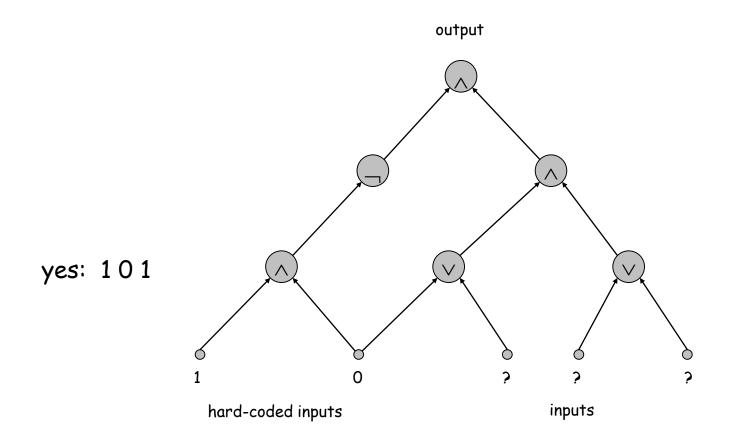
Proof. \leftarrow If P = NP then Y can be solved in poly-time since Y is in NP.

- \Rightarrow Suppose Y can be solved in poly-time.
- Let X be any problem in NP. Since $X \leq_{p,Karp} Y$, we can solve X in poly-time. This implies NP \subseteq P.
- We already know P \subseteq NP. Thus P = NP. •

Fundamental question. Do there exist "natural" NP-complete problems?

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?



The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973] Proof sketch. CIRCUIT-SAT is in NP (certificate: input on which circuit is 1). Reduction: For all $X \in NP$, $A \leq_{P,Cook} CIRCUIT-SAT$.

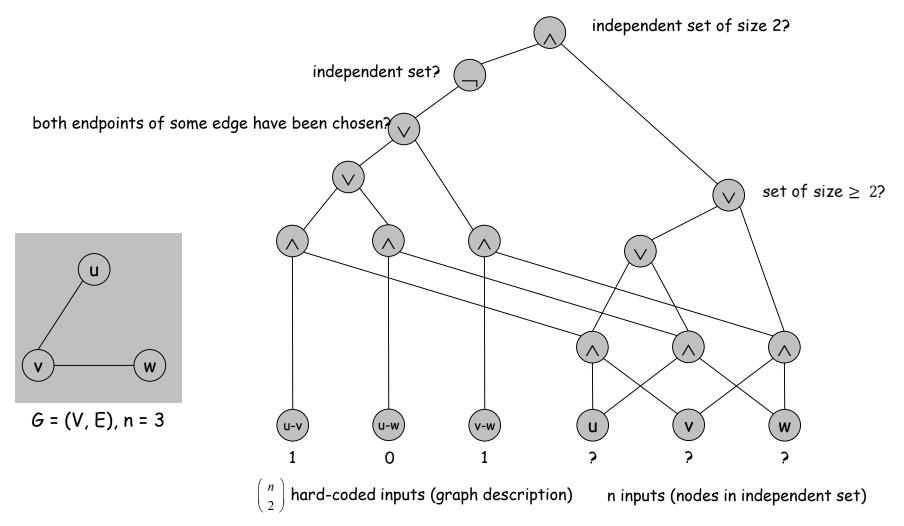
Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit.
 Moreover, if algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof; fixing the number of bits is important, and reflects basic distinction between algorithms and circuits

- Since X∈ NP, it has a poly-time certifier C(s, t) that runs in time p(|s|). To determine whether s is in X, need to know if there exists a certificate t of length p(|s|) such that C(s, t) = yes.
- View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first |s| bits are hard-coded with s
 - remaining p(|s|) bits represent bits of t
- Correctness: Circuit K is satisfiable iff C(s, t) = yes.

Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.



Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p,Karp} Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P,Karp} Y$ then Y is NP-complete.

Proof. Let W be any problem in NP. Then $W \leq_{P,Karp} X \leq_{P,Karp} Y$.

- By transitivity, $W \leq_{P,Karp} Y$.
- Hence Y is NP-complete.

by definition of by assumption NP-complete

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Proof. Suffices to show that CIRCUIT-SAT \leq_{P} 3-SAT since 3-SAT is in NP.

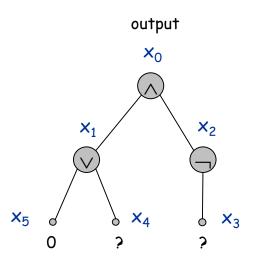
- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:

$$- x_{2} = \neg x_{3} \implies \text{add 2 clauses:} \quad x_{2} \lor x_{3} , \quad \overline{x_{2}} \lor \overline{x_{3}}$$

$$- x_{1} = x_{4} \lor x_{5} \implies \text{add 3 clauses:} \quad x_{1} \lor \overline{x_{4}}, \quad x_{1} \lor \overline{x_{5}}, \quad \overline{x_{1}} \lor x_{4} \lor x_{5}$$

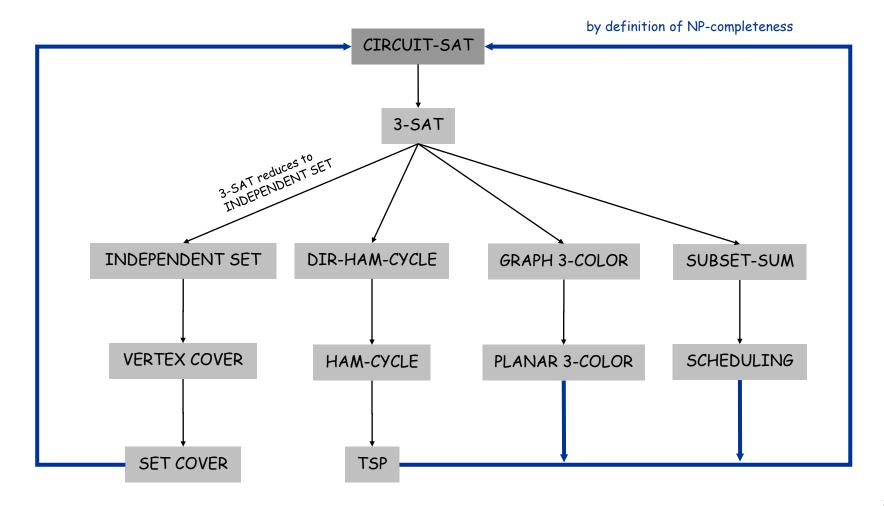
$$- x_{0} = x_{1} \land x_{2} \implies \text{add 3 clauses:} \quad \overline{x_{0}} \lor x_{1}, \quad \overline{x_{0}} \lor x_{2}, \quad x_{0} \lor \overline{x_{1}} \lor \overline{x_{2}}$$

- Hard-coded input values and output value.
 - $x_5 = 0 \Rightarrow add 1 clause: \overline{x_5}$ - $x_0 = 1 \Rightarrow add 1 clause: x_0$
- Final step: turn clauses of length < 3 into clauses of length exactly 3.



NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!



Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHIN, G 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

- . 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- . 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements. Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction. Electrical engineering: VLSI layout.

Environmental engineering: optimal placement of contaminant sensors.

Financial engineering: find minimum risk portfolio of given return.

Game theory: find Nash equilibrium that maximizes social welfare.

Genomics: phylogeny reconstruction.

Mechanical engineering: structure of turbulence in sheared flows.

Medicine: reconstructing 3-D shape from biplane angiocardiogram.

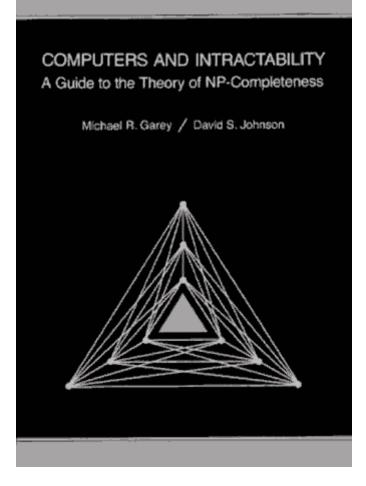
Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.

Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.



S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

L27.25

"I can't find an efficient algorithm, but neither can all these famous people."