
10/4/10
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 27
Computational

Intractability

• Self-reducibility

• Classes P, NP, EXP

• NP-completeness
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Review

• Basic reduction strategies.

– Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.

– Special case to general case:  VERTEX-COVER  P SET-COVER.

– Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

• Transitivity. If X ≤𝑝Y and Y ≤𝑝Z, then X≤𝑝Z.

• Proof idea. Compose the two algorithms.

• Ex:  3-SAT ≤𝑝 INDEPENDENT-SET ≤𝑝VERTEX-COVER ≤𝑝SET-COVER.
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Self-Reducibility

• Decision problem.  Does there exist a vertex cover of size  k?

• Search problem.  Find vertex cover of minimum cardinality.

• Self-reducibility.  Search problem ≤𝑝decision version.

– Applies to all (NP-complete) problems in Chapter 8 of KT.

– Justifies our focus on decision problems.

• Ex:  to find min cardinality vertex cover.

– (Binary) search for cardinality 𝑘∗ of min vertex cover.

– Find a vertex v such that 𝐺  { 𝑣 } has a vertex cover of size ≤ 𝑘∗ −1.

• any vertex in any min vertex cover will have this property

– Include 𝑣 in the vertex cover.

– Recursively find a min vertex cover in 𝐺  {𝑣 }.

delete v and all incident edges
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Definitions of P and NP
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Decision Problems

Decision problem.

 X is a set of strings.

 Instance:  string s.

 Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string s, 

A(s) terminates in at most p(|s|) "steps", where p() is some 

polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s

5



Definition of P

P.  The class of decision problems for which there is a poly-time algorithm.

Examples

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school 

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between 
x and y less than 5?

Dynamic 
programming

niether 

neither

acgggt 

ttttta

LSOLVE
Is there a vector x that 

satisfies Ax = b?
Gauss-Edmonds 

elimination
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NP

Certification algorithm intuition.

 Certifier views things from "managerial" viewpoint.

 Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,  

s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p().

"certificate" or "witness"
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Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 

exists iff s is composite.  Moreover |t|  |s|.

Certifier.  

Instance.  s = 437,669.

Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {

if (t  1 or t  s)

return false

else if (s is a multiple of t)

return true

else 

return false

}
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Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.



x1  x2  x3   x1  x2  x3   x1  x2  x4   x1   x3   x4 



x1 1, x2 1, x3  0, x4 1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 

once, and that there is an edge between each pair of adjacent nodes 

in the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.

EXP.  Decision problems for which there is an exponential-time algorithm.

NP.  Decision problems for which there is a poly-time certifier.

Claim.  P   NP.

Pf.  Consider any problem X in P.

 By definition, there exists a poly-time algorithm A(s) that solves X.

 Certificate: t = , certifier C(s, t) = A(s). ▪

Claim.  NP   EXP.

Pf.  Consider any problem X in NP.

 By definition, there exists a poly-time certifier C(s, t) for X that runs 

in time p(|s|).

 To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

 Return yes, if C(s, t) returns yes for any of these. ▪
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The Big Question: P vs. NP

• Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes:  Efficient algorithms for HamPath, SAT, TSP, factoring

– Cryptography is impossible*

– Creativity is automatable

• If no:  No efficient algorithms possible for these problems.

• Consensus opinion on P = NP? Probably no.
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NP-completeness
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NP-Complete

NP-complete.  A problem Y is NP-complete if

• Y is in NP and

• X  p,Karp Y for every problem X in NP.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 

poly-time iff P = NP.

Proof.   If P = NP then Y can be solved in poly-time since Y is in NP.

 Suppose Y can be solved in poly-time.

 Let X be any problem in NP.  Since X  p,Karp Y, we can solve X in

poly-time. This implies NP   P.

 We already know P   NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete problems?
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Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?
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sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Proof sketch. CIRCUIT-SAT is in NP (certificate: input on which circuit is 1).

Reduction: For all X  NP, A ≤P,Cook CIRCUIT-SAT.

 Any algorithm that takes a fixed number of bits n as input and produces a 

yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 Since X∈ NP, it has a poly-time certifier C(s, t) that runs in time p(|s|).

To determine whether s is in X, need to know if there exists a certificate 

t of length p(|s|) such that C(s, t) = yes.

 View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and 

convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

 Correctness: Circuit K is satisfiable iff C(s, t) = yes.
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Example

Ex.  Construction below creates a circuit K whose inputs can be set so 

that K outputs true iff graph G has an independent set of size 2.
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G = (V, E), n = 3
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Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

 Step 1.  Show that Y is in NP.

 Step 2.  Choose an NP-complete problem X.

 Step 3.  Prove that X  p,Karp Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP 

with the property that X  P,Karp Y then Y is NP-complete.

Proof.  Let W be any problem in NP.  Then W   P,Karp X    P,Karp Y.

 By transitivity, W  P,Karp Y. 

 Hence Y is NP-complete.  ▪ by assumptionby definition of
NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Proof.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

 Let K be any circuit.

 Create a 3-SAT variable xi for each circuit element i.

 Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses:

– x1 = x4  x5    add 3 clauses:

– x0 = x1  x2    add 3 clauses:

 Hard-coded input values and output value.

– x5 = 0   add 1 clause:

– x0 = 1   add 1 clause:

 Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  ▪
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Observation.  All problems below are NP-complete and polynomial 

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

 Packing problems:  SET-PACKING, INDEPENDENT SET.

 Covering problems:  SET-COVER, VERTEX-COVER.

 Constraint satisfaction problems:  SAT, 3-SAT.

 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

 Partitioning problems: 3D-MATCHIN,G 3-COLOR.

 Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 

 Prime intellectual export of CS to other disciplines.

 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"

 Broad applicability and classification power.

 "Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

 1926:  Ising introduces simple model for phase transitions.

 1944:  Onsager solves 2D case in tour de force.

 19xx:  Feynman and other top minds seek 3D solution.

 2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.

Biology:  protein folding.

Chemical engineering:  heat exchanger network synthesis.

Civil engineering:  equilibrium of urban traffic flow.

Economics:  computation of arbitrage in financial markets with friction.

Electrical engineering:  VLSI layout. 

Environmental engineering:  optimal placement of contaminant sensors.

Financial engineering:  find minimum risk portfolio of given return.

Game theory:  find Nash equilibrium that maximizes social welfare.

Genomics:  phylogeny reconstruction.

Mechanical engineering:  structure of turbulence in sheared flows.

Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

Operations research:  optimal resource allocation. 

Physics:  partition function of 3-D Ising model in statistical mechanics.

Politics:  Shapley-Shubik voting power.

Pop culture:  Minesweeper consistency.

Statistics:  optimal experimental design.
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