
12/5/2016

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 28
Computational Intractability

• One more NP-complete problem

NP-completeness as

a Design Guide

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.1

Some NP-Complete Problems
• Six basic genres of NP-complete problems and paradigmatic

examples.
– Packing problems: SET-PACKING, INDEPENDENT SET.

– Covering problems: SET-COVER, VERTEX-COVER.

– Constraint satisfaction problems: SAT, 3-SAT.

– Sequencing problems: HAMILTONIAN-CYCLE, Traveling
Salesman.

– Partitioning problems: 3D-MATCHING 3-COLOR.

– Numerical problems: SUBSET-SUM, KNAPSACK.

• Practice. Most NP problems are either known to be in P or NP-
complete.
– For most search problems, if the corresponding decision problem is

in P, the search problem can be solved in polynomial time.

• Notable exceptions:
– Decision problem: Graph isomorphism.

– Search problems: Factoring, Nash equilibrium

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.2

3D matching

• Input

– Disjoint sets 𝑋, 𝑌, 𝑍 of the same size (call it n)

– Collection T in 𝑋 × 𝑌 × 𝑍 of ordered triples

• Output

– “yes” if there exists a set of n triples in T that cover

all of 𝑋 ∪ 𝑌 ∪ 𝑍.

– “no” otherwise

– Note: Equivalently, we could ask for a set of 𝑛
disjoint triples in T (why?)

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.3

Review

• We wish to prove 3D-matching is NP-complete

– We need to give 2 algorithms:

• what are their inputs and outputs

• what guarantees do they need to satisfy?

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.4

Reduction from 3-SAT to 3D matching

• Input: 3-CNF formula 𝜑. Let 𝑚 = #vars and 𝑘 = #clauses

• Output: 3 sets 𝑋, 𝑌, 𝑍 with |𝑋| = |𝑌| = |𝑍| = 2𝑚𝑘 and a set
of 2𝑚𝑘 + 3𝑘 + 2𝑚 𝑚 − 1 𝑘2 triples 𝑇 ⊆ 𝑋 × 𝑌 × 𝑍

• Variable gadgets: 4𝑘 items for each variable
– Core: ring of 2𝑘 items 𝑎𝑖,1, … , 𝑎𝑖,2𝑘
– 2𝑘 free tips 𝑏𝑖,1, … , 𝑏𝑖,2𝑘
– Triples: (𝑎𝑖,𝑗 , 𝑎𝑖,𝑗+1, 𝑏𝑖,𝑗) for every 𝑗 = 1,… , 2𝑘

• Clause gadgets:
– Pair 𝑝𝑡,1, 𝑝𝑡,2 for 𝑡 = 1,… , 𝑘

– For each literal (say, 𝑥𝑖 or ¬𝑥𝑖), add a triple 𝑝𝑡,1, 𝑝𝑡,2, 𝑏𝑖,𝑗 where
𝑏𝑖,𝑗 has not yet appeared in a similar triple, and 𝑗 is even for 𝑥𝑖 and
odd for ¬𝑥𝑖

• Cleanup gadgets:
– (𝑚 − 1)𝑘 pairs of items 𝑐ℓ,1, 𝑐ℓ,2 ,

– For each ℓ, add all possible triples (𝑐ℓ,1, 𝑐ℓ,2, 𝑏𝑖,𝑗).
– (These allow you to cover unused triples.)

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.5

E.g.

12/5/2016

x1

x2

x3



  x1  x2  x3   x1  x2  x3   x1  x2  x3  x1  x2  x3 

Black petals = true,
Red petals = false

L28.6

Sets X,Y,Z and T

• On input 𝜙, output:

– 𝑍 = 𝑏𝑖,𝑗:
𝑖 = 1,… ,𝑚
𝑗 = 1,… , 2𝑘

– 𝑋 = 𝑎𝑖,𝑗:
𝑖 = 1,… ,𝑚

𝑗 𝑜𝑑𝑑
∪ 𝑝𝑡,1: 𝑡 = 1,… , 𝑘 ∪

𝑐ℓ,1: ℓ = 1,… , 𝑚 − 1 𝑘

– 𝑌 = 𝑎𝑖,𝑗:
𝑖 = 1,… ,𝑚
𝑗 𝑒𝑣𝑒𝑛

∪ 𝑝𝑡,2: 𝑡 = 1,… , 𝑘 ∪

𝑐ℓ,2: ℓ = 1,… , 𝑚 − 1 𝑘

– Triples 𝑇 as on previous slide

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.7

Proof of correctness outline

12/5/2016

• Useful lemma: For each variable, solution contains
either

– all odd triples and no even ones, or

– all even triples and no odd ones.

1. Reduction runs in polynomial time 𝑂 𝑚𝑘 2

2. If 𝜑 is satisfiable, then 𝑋, 𝑌, 𝑍, 𝑇 have a 3D perfect
matching

– For each clause, use 1 satisfied literal to find triple

3. If 𝑋, 𝑌, 𝑍 have a 3D matching, then 𝜑 satisfiable.

– Each clause covered by one tripe corresponding to
satisfied literal.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.8

Exercise: Decision vs Search

• The Matching fairy has given you a magic box

that solves 3D matching in unit time.

– How can you use it to find a matching?

– Give an algorithm that uses O(𝑛2) calls to the magic

box

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.9

Garey and Johnson’s cartoon

“I can't find an efficient algorithm,

I guess I'm just too dumb.“
12/5/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.11

Garey and Johnson’s cartoon

“I can't find an efficient

algorithm, because no such

algorithm is possible! “
12/5/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.12

Garey and Johnson’s cartoon

“I can't find an efficient algorithm,

but neither can all these famous people.“
12/5/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.13

NP-Completeness as a Design Guide

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. You are unlikely to find poly-time algorithm that works on all inputs.

Must sacrifice one of three desired features.

 Solve problem in polynomial time ( e.g., fast exponential algorithms)

 Solve arbitrary instances of the problem

 Solve problem to optimality ( approximation algorithms)

Today. Solve some special cases of NP-complete problems that arise in

practice.

14

10.1 Finding Small Vertex Covers

• Suppose vertex cover describes warehouse
“placement” problem,
• e.g.: how many warehouses (placed in cities)

are needed so there is one at an endpoint of
every designated highway segment?

• Not interested if the answer is larger than 10

• This is vertex cover (of the highway graph)
with k < 10

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S  V such that |S|  k, and for each edge (u, v)
either u  S, or v  S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

16

Finding Small Vertex Covers

Q. How fast can we solve Vertex Cover for small k?

First attempt: Brute force.

 Try all 𝑛
𝑘

= Θ(nk) subsets of size k.

 Takes O(k n) time to check whether a subset is a vertex cover.

 Crude time bound: O(k nk+1).

 Slow even for k=10.

Second attempt. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.

Brute. k nk+1 = 1034  infeasible.

Better. 2k k n = 107  feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small

constant, then it's also practical.

Important. The algorithm is still exponential, and hence scales badly

(e.g., consider k=40). However, it is better than brute force.

17

Finding Small Vertex Covers

Idea: Recursive solution similar to self-reducibility argument.

Claim 1. Let u-v be an edge of G. G has a vertex cover of size  k iff

at least one of G  { u } and G  { v } has a vertex cover of size  k-1.

Proof. 

 Suppose G has a vertex cover S of size  k.

 S contains either u or v (or both).

 Without loss of generality, assume it contains u.

 S  { u } is a vertex cover of G  { u }.

Proof. 

 Suppose S is a vertex cover of G  { u } of size  k-1.

 Then S  { u } is a vertex cover of G. ▪

18

Finding Small Vertex Covers: Algorithm

Claim 2. The following algorithm find a vertex cover of size  k in G if

it exists and runs in O(2k n) time.

Proof.

 Correctness follows from Claim 1.

 There are  2k+1 nodes in the recursion tree; each invocation takes

O(n) time. ▪

SmallVC(G, k) {

if k=0

if (G contains no edges) return ;
else return false

let (u, v) be any edge of G

S-u = SmallVC(G - {u}, k-1)

if S-u  false return S-u ∪ { u }

S-v = SmallVC(G - {v}, k-1)

if S-v  false return S-v ∪ { v }
else return false

}

19

Finding Small Vertex Covers: Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

2i nodes with k - i

ncknT
kcnknT

kcn
knT k 12),(

 1if)1,(2

 0if
),(










20

Another algorithm for small VC

As before. Remove or include one vertex u (as in fast exponential

algorithm)

 If u is in VC, remove adjacent edges

– T(n-1,k-1)

 If u not in VC, remove adjacent edges, add all neighbors of u to VC

– T(n-1-deg(u) , k-deg(u))

Idea. By choosing vertex u with largest degree (at least |E|/k,

otherwise no VC of size k exists), get better exponent in k

Exercise: how small an exponent in k can you get while maintaining

linear scaling in n?

12/5/201621

Summary

Often input size is too crude a measure of complexity

 e.g., VC algorithm linear in n, exponential in k

Parameterized complexity

 General theory of such problems

 Clever algorithms, hardness arguments

Take away message:

 When facing a seemingly hard problem, look for what “really” makes

it hard

12/5/201622

