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• One more NP-complete problem

NP-completeness as 

a Design Guide
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Some NP-Complete Problems
• Six basic genres of NP-complete problems and paradigmatic 

examples.
– Packing problems:  SET-PACKING, INDEPENDENT SET.

– Covering problems:  SET-COVER, VERTEX-COVER.

– Constraint satisfaction problems:  SAT, 3-SAT.

– Sequencing problems:  HAMILTONIAN-CYCLE, Traveling 
Salesman.

– Partitioning problems: 3D-MATCHING 3-COLOR.

– Numerical problems:  SUBSET-SUM, KNAPSACK.

• Practice. Most NP problems are either known to be in P or NP-
complete.
– For most search problems, if the corresponding decision problem is 

in P, the search problem can be solved in polynomial time.

• Notable exceptions: 
– Decision problem: Graph isomorphism.

– Search problems: Factoring, Nash equilibrium
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3D matching

• Input

– Disjoint sets 𝑋, 𝑌, 𝑍 of the same size (call it n)

– Collection T in 𝑋 × 𝑌 × 𝑍 of ordered triples 

• Output

– “yes” if there exists a set of n triples in T that cover 

all of 𝑋 ∪ 𝑌 ∪ 𝑍. 

– “no” otherwise

– Note: Equivalently, we could ask for a set of 𝑛
disjoint triples in T (why?)
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Review

• We wish to prove 3D-matching is NP-complete

– We need to give 2 algorithms: 

• what are their inputs and outputs 

• what guarantees do they need to satisfy?
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Reduction from 3-SAT to 3D matching

• Input: 3-CNF formula 𝜑. Let 𝑚 = #vars and 𝑘 = #clauses

• Output: 3 sets 𝑋, 𝑌, 𝑍 with |𝑋| = |𝑌| = |𝑍| = 2𝑚𝑘 and a set 
of 2𝑚𝑘 + 3𝑘 + 2𝑚 𝑚 − 1 𝑘2 triples 𝑇 ⊆ 𝑋 × 𝑌 × 𝑍

• Variable gadgets: 4𝑘 items for each variable
– Core: ring of 2𝑘 items 𝑎𝑖,1, … , 𝑎𝑖,2𝑘
– 2𝑘 free tips 𝑏𝑖,1, … , 𝑏𝑖,2𝑘
– Triples: (𝑎𝑖,𝑗 , 𝑎𝑖,𝑗+1, 𝑏𝑖,𝑗) for every 𝑗 = 1,… , 2𝑘

• Clause gadgets:
– Pair 𝑝𝑡,1, 𝑝𝑡,2 for 𝑡 = 1,… , 𝑘

– For each literal (say, 𝑥𝑖 or ¬𝑥𝑖), add a triple 𝑝𝑡,1, 𝑝𝑡,2, 𝑏𝑖,𝑗 where 
𝑏𝑖,𝑗 has not yet appeared in a similar triple, and 𝑗 is even for 𝑥𝑖 and 
odd for ¬𝑥𝑖

• Cleanup gadgets: 
– (𝑚 − 1)𝑘 pairs of items 𝑐ℓ,1, 𝑐ℓ,2 , 

– For each ℓ, add all possible triples (𝑐ℓ,1, 𝑐ℓ,2, 𝑏𝑖,𝑗).
– (These allow you to cover unused triples.)

12/5/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L28.5



E.g.
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x1

x2

x3



   x1  x2  x3   x1  x2  x3   x1  x2  x3  x1  x2  x3 

Black petals = true, 
Red petals  = false
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Sets X,Y,Z and T

• On input 𝜙, output:

– 𝑍 = 𝑏𝑖,𝑗:
𝑖 = 1,… ,𝑚
𝑗 = 1,… , 2𝑘

– 𝑋 = 𝑎𝑖,𝑗:
𝑖 = 1,… ,𝑚

𝑗 𝑜𝑑𝑑
∪ 𝑝𝑡,1: 𝑡 = 1,… , 𝑘 ∪

𝑐ℓ,1: ℓ = 1,… , 𝑚 − 1 𝑘

– 𝑌 = 𝑎𝑖,𝑗:
𝑖 = 1,… ,𝑚
𝑗 𝑒𝑣𝑒𝑛

∪ 𝑝𝑡,2: 𝑡 = 1,… , 𝑘 ∪

𝑐ℓ,2: ℓ = 1,… , 𝑚 − 1 𝑘

– Triples 𝑇 as on previous slide
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Proof of correctness outline
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• Useful lemma: For each variable, solution contains 
either 

– all odd triples and no even ones, or 

– all even triples and no odd ones.

1. Reduction runs in polynomial time 𝑂 𝑚𝑘 2

2. If 𝜑 is satisfiable, then 𝑋, 𝑌, 𝑍, 𝑇 have a 3D perfect 
matching

– For each clause, use 1 satisfied literal to find triple

3. If 𝑋, 𝑌, 𝑍 have a 3D matching, then 𝜑 satisfiable.

– Each clause covered by one tripe corresponding to 
satisfied literal.
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Exercise: Decision vs Search

• The Matching fairy has given you a magic box 

that solves 3D matching in unit time.

– How can you use it to find a matching?

– Give an algorithm that uses O(𝑛2) calls to the magic 

box
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Garey and Johnson’s cartoon

“I can't find an efficient algorithm, 

I guess I'm just too dumb.“
12/5/2016
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Garey and Johnson’s cartoon

“I can't find an efficient 

algorithm, because no such 

algorithm is possible! “
12/5/2016
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Garey and Johnson’s cartoon

“I can't find an efficient algorithm, 

but neither can all these famous people.“
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NP-Completeness as a Design Guide

Q.  Suppose I need to solve an NP-complete problem. What should I do?

A.  You are unlikely to find poly-time algorithm that works on all inputs.

Must sacrifice one of three desired features.

 Solve problem in polynomial time  ( e.g., fast exponential algorithms)

 Solve arbitrary instances of the problem

 Solve problem to optimality   ( approximation algorithms)

Today.  Solve some special cases of NP-complete problems that arise in 

practice.
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10.1  Finding Small Vertex Covers

• Suppose vertex cover describes warehouse 
“placement” problem, 
• e.g.: how many warehouses (placed in cities) 

are needed so there is one at an endpoint of 
every designated highway segment?

• Not interested if the answer is larger than 10

• This is vertex cover (of the highway graph) 
with k < 10



Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge (u, v) 
either u  S, or v  S, or both.
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k = 4
S = { 3, 6, 7, 10 }
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Finding Small Vertex Covers

Q.  How fast can we solve Vertex Cover for small k?

First attempt: Brute force. 

 Try all 𝑛
𝑘

= Θ(nk) subsets of size k.

 Takes O(k n) time to check whether a subset is a vertex cover.

 Crude time bound: O(k nk+1).

 Slow even for k=10.

Second attempt.  Limit exponential dependency on k, e.g., to O(2k k n).

Ex.  n = 1,000, k = 10.

Brute. k nk+1  = 1034   infeasible.

Better.  2k k n = 107     feasible.

Remark.  If k is a constant, algorithm is poly-time; if k is a small 

constant, then it's also practical.

Important. The algorithm is still exponential, and hence scales badly 

(e.g., consider k=40). However, it is better than brute force.
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Finding Small Vertex Covers

Idea: Recursive solution similar to self-reducibility argument. 

Claim 1.  Let u-v be an edge of G.  G has a vertex cover of size  k iff

at least one of G  { u } and G  { v } has a vertex cover of size  k-1.

Proof.  

 Suppose G has a vertex cover S of size  k.

 S contains either u or v (or both).  

 Without loss of generality, assume it contains u.

 S  { u } is a vertex cover of G  { u }.

Proof.  

 Suppose S is a vertex cover of G  { u } of size  k-1.

 Then S  { u } is a vertex cover of G.  ▪
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Finding Small Vertex Covers:  Algorithm

Claim 2.  The following algorithm find a vertex cover of size  k in G if 

it exists and runs in O(2k n) time.

Proof.

 Correctness follows from Claim 1.

 There are  2k+1 nodes in the recursion tree; each invocation takes 

O(n) time.  ▪

SmallVC(G, k) {

if k=0

if (G contains no edges) return ;
else return false

let (u, v) be any edge of G

S-u = SmallVC(G - {u}, k-1)

if S-u  false return S-u ∪ { u }

S-v = SmallVC(G - {v}, k-1)

if S-v  false return S-v ∪ { v }
else return false

}
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Finding Small Vertex Covers:  Recursion Tree
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Another algorithm for small VC

As before. Remove or include one vertex u (as in fast exponential 

algorithm)

 If u is in VC, remove adjacent edges

– T(n-1,k-1)

 If u not in VC, remove adjacent edges, add all neighbors of u to VC

– T(n-1-deg(u) , k-deg(u) )

Idea. By choosing vertex u with largest degree (at least |E|/k, 

otherwise no VC of size k exists), get better exponent in k

Exercise: how small an exponent in k can you get while maintaining 

linear scaling in n?
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Summary

Often input size is too crude a measure of complexity

 e.g., VC algorithm linear in n, exponential in k

Parameterized complexity

 General theory of such problems

 Clever algorithms, hardness arguments

Take away message: 

 When facing a seemingly hard problem, look for what “really” makes 

it hard
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