
A

Approximation Algorithms for Min-Max Generalization Problems1

Piotr Berman, Pennsylvania State University

Sofya Raskhodnikova, Pennsylvania State University

We provide improved approximation algorithms for the min-max generalization problems considered by
Du, Eppstein, Goodrich, and Lueker [Du et al. 2009]. Generalization is widely used in privacy-preserving

data mining and can also be viewed as a natural way of compressing a dataset. In min-max generalization

problems, the input consists of data items with weights and a lower bound wlb, and the goal is to partition
individual items into groups of weight at least wlb, while minimizing the maximum weight of a group. The

rules of legal partitioning are specific to a problem. Du et al. consider several problems in this vein: (1)

partitioning a graph into connected subgraphs, (2) partitioning unstructured data into arbitrary classes and
(3) partitioning a 2-dimensional array into contiguous rectangles (subarrays) that satisfy the above weight

requirements.

We significantly improve approximation ratios for all the problems considered by Du et al., and provide
additional motivation for these problems. Moreover, for the first problem, while Du et al. give approximation

algorithms for specific graph families, namely, 3-connected and 4-connected planar graphs, no approximation
algorithm that works for all graphs was known prior to this work.

Categories and Subject Descriptors: C.2.1 [Discrete Mathematics]: Combinatorial Algorithms; C.2.2

[Discrete Mathematics]: Graph Algorithms

General Terms: Graph Algorithms, Approximation Algorithms

Additional Key Words and Phrases: Generalization problems, k-anonymity, bin covering, rectangle tiling

ACM Reference Format:

Piotr Berman and Sofya Raskhodnikova, 2013.Approximation Algorithms for Min-Max Generalization Prob-
lems. ACM V, N, Article A (January YYYY), 23 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

We provide improved approximation algorithms for the min-max generalization problems
considered by Du, Eppstein, Goodrich, and Lueker [Du et al. 2009]. In min-max general-
ization problems, the input consists of data items with weights and a lower bound wlb, and
the goal is to partition individual items into groups of weight at least wlb, while minimizing
the maximum weight of a group. The rules of legal partitioning are specific to a problem.
Du et al. consider several problems in this vein: (1) partitioning a graph into connected
subgraphs, (2) partitioning unstructured data into arbitrary classes and (3) partitioning
a 2-dimensional array into contiguous rectangles (subarrays) that satisfy the above weight

1A preliminary version of this article appeared in the proceedings of APPROX 2010 [Berman and
Raskhodnikova 2010].

This work is supported by the National Science Foundation, under grant CCF-0729171 and CAREER grant
CCF-0845701.
Authors’ address: Computer Science and Engineering Department, Pennsylvania State University, USA.
Authors’ email: {berman, sofya}@cse.psu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

requirements. We call these problems (1) Min-Max Graph Partition, (2) Min-Max Bin
Covering and (3) Min-Max Rectangle Tiling.

Du et al. motivate the min-max generalization problems by applications to privacy-
preserving data mining. Generalization is widely used in the data mining community as
means for achieving k-anonymity (see [Ciriani et al. 2008] for a survey). Generalization
involves replacing a value with a less specific value. To achieve k-anonymity each record
should be generalized to the same value as at least k − 1 other records. For example, if
the records contain geographic information (such as GPS coordinates), and the plane is
partitioned into axis-parallel rectangles each containing locations of at least k records, to
achieve k-anonymity the coordinates of each record can be replaced with the corresponding
rectangle. Generalization can also be viewed as a natural way of compressing a dataset.

We briefly discuss several other applications of generalization. Geographic Information
Systems contain very large data sets that are organized either according to the (almost)
planar graph of the road network, or according to geographic coordinates (see, e.g., [Garcia
et al. 1998]). These sets have to be partitioned into pages that can be transmitted to a
mobile device or retrieved from secondary storage. Because of the high overhead of a single
transmission/retrieval operation, we want to ensure that each page satisfies the minimum
size requirement, while controlling the maximum size. When the process that is exploring
a graph needs to investigate a node whose information it has not retrieved yet, it has to
request a new page. Therefore, pages are more useful if they contain information about
connected subgraphs. Min-Max Graph Partition captures the problem of distributing
information about the graph among pages.
Min-Max Bin Covering is a variant of the classical Bin Covering problem. In the

classical version, the input is a set of items with positive weights and the goal is to pack
items into bins, so that the number of bins that receive items of total weight at least 1
is maximized (see [Assmann et al. 1984; Csirik et al. 2001; Jansen and Solis-Oba 2003]
and references therein). Both variants are natural. For example, when Grandfather Frost2

partitions presents into bundles for kids, he clearly wants to ensure that each bundle has
items of at least a certain value to make kids happy. Grandfather Frost could try to minimize
the value of the maximum bundle, to avoid jealousy (Min-Max Bin Covering), or to
maximize the number of kids who get presents (classical Bin Covering). Min-Max Bin
Covering can also be viewed as a variant of scheduling on parallel identical machines
where, given n jobs and their processing times, the goal is to schedule them on m identical
parallel machines while minimizing makespan, that is, the maximum time used by any
machine [Graham et al. 1979]. In our variant, the number of machines is not given in
advance, but instead, there is a lower bound on the processing time. This requirement is
natural, for instance, when “machines” represent workers that must be hired for at least a
certain number of hours.

Rectangle tiling problems with various optimization criteria arise in applications ranging
from databases and data mining to video compression and manufacturing, and have been
extensively studied [Manne 1993; Khanna et al. 1998; Sharp 1999; Smith and Suri 2000;
Muthukrishnan et al. 1999; Berman et al. 2001; Berman et al. 2002; 2003]. The min-max
version can be used to design a Geographic Information System, described above. If the
data is a set of coordinates specifying object positions, as opposed to a road network, we
would like to partition it into pages that correspond to rectangles on the plane. As before,
we would like to ensure that pages have at least the minimum size while controlling the
maximum size.

2Grandfather Frost is a secular character that played the role of Santa Claus for Soviet children. The Santa
Claus problem [Bansal and Sviridenko 2006] is not directly related to the Grandfather Frost problem. In the
Santa Claus problem, each kid has an arbitrary value for each present, and the Santa’s goal is to distribute
presents in such a way that the least lucky kid is as happy as possible.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

1.1. Problems

In each of the problems we consider, the input is an item set I, non-negative weights wi for
all i ∈ I and a non-negative bound wlb. For I ′ ⊆ I, we use w(I ′) to denote

∑
i∈I′ wi. Each

problem below specifies a class of allowed subsets of I. A valid solution is a partition P of
I into allowed subsets such that w(I ′) ≥ wlb for each I ′ ∈ P . The goal is to minimize the
cost of P, defined as maxI′∈P w(I ′).

In Min-Max Graph Partition, I is the vertex set V of an (undirected) graph (V,E),
and a subset of V is allowed if it induces a connected subgraph. In Min-Max Bin Cov-
ering, every subset of I is allowed. A partition of I is called a packing, and the parts of a
partition are called bins. In Min-Max Rectangle Tiling, I = {1, . . . ,m} × {1, . . . , n},
and the allowed sets are rectangles, i.e., sets of the form {a, . . . , b}× {c, . . . , d}. A partition
of I is into rectangles is called a tiling.

All three min-max problems above are NP-complete. Moreover, if P6=NP no polynomial
time algorithm can achieve an approximation ratio better than 2 for Min-Max Bin Cov-
ering (and hence for Min-Max Graph Partition) or better than 1.33 for Min-Max
Graph Partition on 3-connected planar graphs and Min-Max Rectangle Tiling [Du
et al. 2009].

1.2. Our Results and Techniques

Our main technical contribution is a 3-approximation algorithm for Min-Max Graph
Partition. The remaining algorithms are very simple, even though the analysis is non-
trivial.

Min-Max Graph Partition. We present the first polynomial time approximation al-
gorithm for Min-Max Graph Partition. Du et al. gave approximation algorithms for
specific graph families, namely, a 4-approximation for 3-connected and a 3-approximation
for 4-connected planar graphs. We design a 3-approximation algorithm for the general case,
simultaneously improving the approximation ratio and applicability of the algorithm. We
also improve the approximation ratio for 4-connected planar graphs from 3 to 2.5.

Our 3-approximation algorithm for Min-Max Graph Partition constructs a 2-tier
partition where nodes are partitioned into groups, and groups are partitioned into super-
groups. Intuitively, supergroups represent parts in a legal partition, while groups represent
(nearly) indivisible subparts. There are three types of supergroups (viewed as graphs on
groups): group-pairs, triangles and stars. The initial 2-tier partition is obtained greedily
and then transformed using 4 carefully designed transformations until all stars with more
than 3 groups are structured: meaning that each of them has a well-defined central node,
and all noncentral groups in those stars are only adjacent to central nodes (possibly of
multiple stars). All other supergroups have weight at most 3 and are used as parts in the
final solution. Structured stars are more tricky to deal with. They are reorganized into

Table I. Approximation Ratios for Min-Max Generalization Problems. See Theorems 2.1
and 2.2 for tighter statements on Min-Max Graph Partition. (Note: Min-Max Graph
Partition generalizes Min-Max Bin Covering, and hence inherits its inapproximability.)

Min-Max Problem
Hardness Ratio in

Our ratio
[Du et al. 2009] [Du et al. 2009]

Graph Partition 2 —
3

on 3-connected planar graphs 1.33 4
on 4-connected planar graphs — 3 2.5

Bin Covering 2
2 + ε in time

2
exp in ε−1

Rectangle Tiling 1.33 5 4
with 0-1 entries — — 3

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

new supergroups: their central groups remain unchanged while the remaining groups are
redistributed using a scheduling algorithm for Generalized Load Balancing (GLB).
Roughly, central nodes play a role of machines and the groups that we need to redistribute
play a role of jobs to be scheduled on these machines. A group can be ”scheduled” on a
certain machine only if it is adjacent to the central node corresponding to the machine. The
fact that noncentral groups are adjacent only to central nodes of structured stars implies
that their nodes have to be distributed among parts containing central nodes in every legal
partition. This allows us to prove that the parts produced by the scheduling algorithm have
weight at most 3 times the optimum, even though we cannot give an absolute bound on
the weight of each part. The factor 3 comes from two sources: the scheduling algorithm we
use gives a 2-approximation for partitioning central nodes and noncentral groups, and we
increase the weight of each part by at most 1 by adding noncentral nodes from the corre-
sponding central group. The final part of the algorithm repairs parts of insufficient weight
to obtain the final partition.

The scheduling algorithm used to repartition high-weight supergroups in the 2-tier par-
tition is a 2-approximation for GLB, presented in [Kleinberg and Tardos 2006] and based
on the algorithm of Lenstra, Shmoys and Tardos [Lenstra et al. 1990] for Scheduling on
Unrelated Parallel Machines. In GLB, the input is the set M of m parallel machines,
the set J of n jobs, and for each job j ∈ J , the processing time tj and the set Mj of ma-
chines on which the job j can be scheduled. The goal is to schedule each job on one of the
machines while minimizing the makespan. Our use of the scheduling algorithm is gray-box
in the following sense: our algorithm runs the scheduling algorithm in a black-box manner.
However, in the analysis, we look inside the black box. Namely, we consider the linear pro-
gramming relaxation of GLB used in the approximation algorithm presented in [Kleinberg
and Tardos 2006], and show that a valid solution of Min-Max Graph Partition corre-
sponds to a feasible solution to that linear program. (Notably, a valid solution of Min-Max
Graph Partition does not necessarily correspond to a solution of GLB.) Then we apply
(a straightforward strengthening of) Theorem 11.33 in [Kleinberg and Tardos 2006] (a spe-
cialization of the Rounding Theorem of Lenstra et al. to the case of GLB) to show that the
LP used by their algorithm yields a good solution for our problem.

For partitioning 4-connected planar graphs, following Du et al., we use the fact that such
graphs have Hamiltonian cycles [Tutte 1956] which can be found in linear time [Chiba and
Nishizeki 1989]. Our algorithm is simple and efficient: It goes around the Hamiltonian cycle
and greedily partitions the nodes, starting from the lightest contiguous part of the cycle
that satisfies the weight lower bound. If the last part is too light, it is combined with the
first part. Thus, the algorithm runs in linear time. Our algorithm and analysis apply to any
graph that contains a Hamiltonian cycle which can be computed efficiently or is given as
part of the input.

Min-Max Bin Covering. We present a simple 2-approximation algorithm that runs in
linear time, assuming that the input items are sorted by weight3. Du et al. gave a schema
with approximation ratio 2 + ε, and time complexity exponential in ε−1. They also showed
that approximation ratio better than 2 cannot be achieved in polynomial time unless P=NP.
Thus, we completely resolve the approximability of this problem.

Our algorithm greedily places items in the bins in the order of decreasing weights, and
then redistributes items either in the last three bins or in the first and last bins.

Min-Max Rectangle Tiling. We improve the approximation ratio for this problem
from 5 to 4. We can get a better ratio of 3 when the entries in the input array, representing
the weights of the items, are restricted to be 0 or 1. This case covers the scenarios where each

3This assumption can be eliminated at the expense of a more complicated argument.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

entry indicates the presence or absence of some object, as in applications with geographic
data, such as GPS coordinate data originally considered by Du et al.

Our algorithm builds on the slicing and dicing method introduced by Berman et al.
[Berman et al. 2002]. The idea is to first partition the rectangle horizontally into slices,
and then partition slices vertically. The straightforward application of slicing and dicing
gives ratio 5. We improve it by doing simple preprocessing. For the case of 0-1 entries, the
preprocessing step is more sophisticated. It splits the rectangle into many subrectangles,
amenable to slicing and dicing.

Summary and Organization. We summarize our results in Table. I. The results on Min-
Max Graph Partition are stated in Theorems 2.1 and 2.2 in Section 2, on Min-Max
Bin Covering, in Theorem 3.1 in Section 3, and on Min-Max Rectangle Tiling, in
Theorems 4.2 and 4.3 in Section 4. Theorems 2.1 and 2.2 give tighter upper bounds on the
solution cost than shown in the table.

Terminology and Notation. Here we describe terminology and notation common to all
technical sections. We use opt to denote the cost of an optimal solution. Recall that wlb is
a lower bound on the weight of each part and is given as part of the input. By definition,
opt ≥ wlb for all min-max generalization problems.

Definition 1.1. An item (or a set of items) is fat if it has weight at least wlb, and lean
otherwise. We apply this terminology to nodes and sets of nodes in an instance of Min-Max
Graph Partition, and to elements and rectangles in Min-Max Rectangle Tiling.

A solution is legal if it obeys the minimum weight constraint, i.e., all parts are fat.

2. MIN-MAX GRAPH PARTITION

We present two approximation algorithms for Min-Max Graph Partition whose perfor-
mance is summarized in Theorems 2.1 and 2.2.

Theorem 2.1. There is a polynomial time algorithm that approximates Min-Max
Graph Partition with ratio 3. Moreover, every partition produced by the algorithm has
parts of weight at most opt + 2wlb.

Theorem 2.2. There is a linear (in the number of nodes) time algorithm that, given a
graph and a Hamiltonian cycle for that graph, approximates Min-Max Graph Partition
on the input graph with ratio 2.5. Moreover, the partition produced by the algorithm has
parts of weight at most opt + 1.5wlb.

Since in 4-connected planar graphs, a Hamiltonian cycle can be found in linear-time (using
the algorithm of Chiba and Nishizeki [Chiba and Nishizeki 1989]), we get the following
corollary immediately from Theorem 2.2.

Corollary 2.3. There is a linear (in the number of nodes) time algorithm that approxi-
mates Min-Max Graph Partition on 4-connected planar graphs with ratio 2.5. Moreover,
every partition produced by the algorithm has parts of weight at most opt + 1.5wlb.

Sections 2.1– 2.5 are devoted to the proof of Theorem 2.1. Theorem 2.2 is proved in Sec-
tion 2.6.

Recall that an input in Min-Max Graph Partition is a graph (V,E) with node weights
w : V → R+ and a weight lower bound wlb. Without loss of generality assume that wlb = 1.
(All weights can be divided by wlb to obtain an equivalent instance with wlb = 1.) For now,
we also assume that all nodes in the graph are lean. (Recall Definition 1.1 of fat and lean.)
We remove this assumption in Section 2.4.

As described in Section 1.2, our algorithm first constructs a 2-tier partition into groups
and supergroups, where each supergroup is a group-pair, a triangle or a star (Section 2.1),

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

star group-pair triangle

central group

Fig. 1. An example of a 2-tier partition. Dark (blue) circles are vertices of the input graph, light (lavender)
circles are groups and white ovals are supergroups.

then transforms it until all stars of large weight have well-defined central nodes, and all
noncentral groups in those stars are only connected to central nodes (Sections 2.2 and 2.3)
and finally solves an instance of Generalized Load Balancing (Section 2.5), interprets
it as a partition and adjusts it to get the final solution.

2.1. A Preliminary 2-Tier Partition

We start by defining a 2-tier partition. (See illustration in Figure 1.) It consists of groups
and supergroups. Intuitively, supergroups are parts in the partition that the algorithm is
working on and groups are nearly indivisible subgraphs.

Definition 2.4 (2-tier partition). A 2-tier partition of a graph (V,E,w) containing only
lean nodes is a partition of V into lean sets, called groups, together with a partition of the
groups into fat sets, called supergroups. The set of nodes in a group, or in a supergroup,
must induce a connected graph. The set of groups contained in a supergroup S is denoted
by G(S).

Since groups are lean and supergroups are fat, each supergroup contains at least two
groups. In Definition 2.5 below we assign names to some types of groups and supergroups.
See Figures 1 and 2 for an illustration. We say that a subset of nodes S (e.g., , a group)
and a node v are adjacent if the input graph contains an edge (u, v) for some u ∈ S. Two
subsets of nodes S1 and S2 are adjacent if S1 is adjacent to some node in S2.

Definition 2.5 (Group-pair, triangle and star supergroups; central group). white space

— A supergroup is a group-pair if it consists of two groups.
— A supergroup is a triangle if it consists of three pairwise adjacent groups.
— A supergroup S with three or more groups is a star if it forms a star graph on groups,

i.e., it contains a group G, called central, such that groups in G(S)−{G} form connected
components of S −G.

Lemma 2.6 (Initial partition). Given a connected graph on lean nodes, a 2-tier par-
tition with the following properties can be computed in polynomial time:

a. each supergroup is a group-pair, a triangle or a star and
b. w(G) + w(H) ≥ 1 for all adjacent groups G and H.

Proof. First, form the groups greedily: Make each node a group. While there are two
groups G and H such that G ∪H is lean and connected, merge G and H.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

m

m

m m m m

central group

star group-pair triangle

Fig. 2. An illustration for Definitions 2.5 and 2.7: types of supergroups and mobile groups. Mobile groups
are indicated with an “m”.

Second, form group-pairs greedily: While there are two adjacent groups G and H that
are not included in a supergroup, form a supergroup G ∪H.

Next, insert remaining groups into supergroups: For each group G still not included in a
supergroup, pick an adjacent group H. Since the second step halted, H is in some group-pair
created in that step. Insert G into H’s supergroup.

Finally, break down large supergroups that are not stars: Consider a group-pair P created
in the second step from groups G and H, and let S be the supergroup that was formed
from P . Suppose S has 4 or more groups, but is not a star. Since groups in S − P are not
connected, and neither G nor H can become the central group of S, there are two different
groups G′ and H ′ in S that are adjacent to G and H, respectively. Let S1 be the union of
G, G′ and all other groups in S that are not adjacent to H. Replace S with S1 and S −S1.

In the resulting 2-tier partition, all supergroups with 4 or more groups are stars, so
item (a) of the lemma holds. Item (b) is guaranteed by the first step of the construction.

2.2. Improving the Initial 2-Tier Partition

In this section, we modify the initial 2-tier partition, while maintaining property (a) and a
weaker version of property (b) of Lemma 2.6. As we are working on our 2-tier partition, we
will rearrange groups and supergroups. A group is called mobile if when it is removed from
its supergroup, the modified supergroup satisfies property (a) of Lemma 2.6: namely, it is a
group-pair or a star. (Observe that one cannot obtain a triangle by removing a group from
a group-pair, a triangle or a star.)

Definition 2.7 (Mobile group). A group is mobile if it is not in a group-pair and it is not
a central group. (See illustration in Figure 2).

The goal of this phase of the algorithm is to separate supergroups into the ones that
will be repartitioned by the scheduling algorithm and the ones that will be used in the final
partition as they are. The latter will include all group-pairs and triangles. Such a supergroup
has at most 3 groups and, consequently, weight at most 3. That is, it is sufficiently light
to form a part in a 3-approximate solution. Some stars will be repartitioned and some will
remain as they are. The scheduling algorithm will repartition only well structured stars:
each such star will have a unique central node in its central group, and mobile groups will
be connected only to central nodes (possibly in multiple stars). Central groups of such stars
will be allocated their own parts in the final partition. Mobile groups will be distributed
among these parts by the scheduling algorithm. To guarantee that the optimal distribution
of central nodes and mobile groups into parts is a (fractional) solution to the scheduling
instance we construct, we require that mobile groups can connect by an edge only to central
nodes of well structured stars. Noncentral nodes of central groups will join the parts of their

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

m

m

m

m

m

m

m

Structured stars

stars with central nodes

Other supergroups

supergroups with ≤ 3 groups

m

m

m

m

m

Fig. 3. The goal of the second phase of our algorithm: structured stars and other supergroups.

central nodes after the scheduling algorithm produces a 2-approximate solution. Since, by
definition, each group is lean, even after adding central groups, we will still be able to
guarantee a 3-approximation. The current phase of the algorithm ensures that each star
that is not well structured has 3 groups, and thus can be a part in the final partition.

We explain this phase of the algorithm by specifying several transformations of a 2-tier
partition (see Figures 4 and 5). The algorithm applies these transformations to the initial
2-tier partition from Lemma 2.6. Each transformation is defined by the trigger and the
action. The algorithm performs the action for the first transformation for which the trigger
condition is satisfied for some group(s) in the current 2-tier partition. This phase terminates
when no transformation can be applied.

The purpose of the first transformation, CombG, is to ensure that w(G) + w(H) ≥ 1
for all adjacent groups G and H, where one of the groups is mobile. Even though an even
stronger condition, property (b) of Lemma 2.6, holds for the initial 2-tier partition, it might
be violated by other transformations. The second transformation, FormP, eliminates edges
between mobile groups. The third transformation, SplitC, ensures that each central group
has a unique central node to which mobile groups connect. To accomplish this, while there
is a central group G that violates this condition, SplitC splits G into two parts, each
containing a node to which mobile groups connect. Later, it rearranges resulting groups
and supergroups to ensure that all previously achieved properties of our 2-tier partition are
preserved (in some cases, relying on CombG and FormP to reinstate these properties).

If the previously described transformations cannot be applied, star supergroups in the
current 2-tier partition are almost well structured, according to the description after Def-
inition 2.7: they have unique central nodes, and all mobile groups connect only to these
central nodes, with one exception—they could still connect to group-pairs.

Definition 2.8 (Structured and unstructured stars). A star is unstructured if it has a mo-
bile group adjacent to a group-pair or (recursively) to an unstructured star. More formally,
a star S1 is unstructured if for some k ≥ 2, the current 2-tier partition contains supergroups

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Fig. 4. Transformations. (Perform the first one that applies.)

• CombG = Combine groups.

Trigger: A mobile group H is adjacent to another group G and G ∪H is lean.

Action: Remove H from its supergroup and merge the two groups.

• FormP = Form a group-pair.

Trigger: Two mobile groups are adjacent, and they belong either to two different super-
groups or, if this is applied at the end of the transformation SplitC, to a supergroup
with more than three groups.

Action: Remove them from their supergroup(s) and combine them into a group-pair.

• SplitC = Split a central group.

Trigger: In a star S, the central group G contains two different nodes u and v adjacent
to different mobile groups Hu and Hv, respectively (not necessarily from G(S)).

Action: Split G into two connected sets, Gu and Gv, containing u and v, respectively.
Split S into Su and Sv, by attaching each mobile group to Gu or Gv. If Hu ∈ G(S)
attach Hu to Gu. Similarly, if Hv ∈ G(S) attach Hv to Gv.

[LeanLean case]: If both Su and Sv are lean, we turn them into groups, and, as a result,
S becomes a group-pair.

[FatFat case]: If both Su and Sv are fat, they become new supergroups.

Now assume that Su is fat and Sv is lean.

[FatLean-IN case]: If Hv ∈ G(S) then change the partition of S by replacing G and Hv

with Gu and Sv. If new S has 4 or more groups, but is not a star, that is, some groups in
G(S)− {Gu} are adjacent, treat these groups as mobile and apply CombG or FormP
while the trigger conditions for these transformations are satisfied.

[FatLean-OUT case]: If Hv 6∈ G(S) then remove Sv from G and S and treat it like a
mobile group adjacent to Hv and apply CombG or FormP.

• ChainR = Chain Reconnect.

Trigger: An unstructured star S has 4 or more groups.
By Definition 2.8, we have a chain of supergroups S = S1, . . . , Sk, where S1, . . . , Sk−1 are
stars, Sk is a group-pair and for i = 1, . . . , k−1 a mobile group of Si is adjacent to Si+1.
More specifically, since CombG and FormP cannot be applied, for i = 1, . . . , k − 2 a
mobile group of Si is adjacent to the central group of Si+1.

Action: For i = 1, . . . , k − 1, move a mobile group from Si to Si+1.

S2, . . . , Sk, where S2, . . . , Sk−1 are stars, Sk is a group-pair and for i = 1, . . . , k−1 a mobile
group of Si is adjacent to Si+1. If a star is not unstructured, it is called structured.

The purpose of ChainR is to ensure that each remaining unstructured star has at most 3
groups. ChainR is triggered if there is an unstructured star S with 4 or more groups. This
can happen only if S is connected by a chain of unstructured stars to a group-pair. The
mobile groups along this chain are reconnected, as explained in Figure 4 and illustrated in
Figure 5. This completes the description of transformations and this phase of the algorithm.

2.3. Analysis of the Phase of the Algorithm That Generates the Improved Partition

We analyze the properties of a 2-tier partition to which our transformations cannot be ap-
plied in Lemma 2.9 and bound the running time of this stage of the algorithm in Lemma 2.10.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

m m m

m m m m

m m m m

m m m m
ChainR

𝑢 𝑣

m m

𝐻𝑢 𝐻𝑣 𝐺𝑢

𝐺𝑣

𝐻𝑢 𝐻𝑣
central group

𝑢 𝑣

m m SplitC

m
𝐺

𝐻
𝐺 𝐻

CombG

m m

FormP

𝐺

𝑆1 𝑆2 𝑆𝑘 … 𝑆1 𝑆2 𝑆𝑘 …

Fig. 5. Transformations. SplitC has four cases: all split a central group G into two parts, Gu and Gv , and
combine them with groups Hu and Hv to form new groups or supergroups (depending on the weight of the
resulting pieces).

Lemma 2.9. When transformations CombG, FormP, SplitC and ChainR cannot be
applied, the resulting 2-tier partition satisfies the following:

a. If G is a center group and H is a mobile group of the same supergroup then w(G) +
w(H) ≥ 1.

b. No edges exist between mobile groups except for groups in the same triangle.
c. Each star S has exactly one node in its central group which is adjacent to mobile groups.

We call it the central node of S and denote it by c(S).
d. Each supergroup with 4 or more groups is a structured star.

Proof. The lemma follows directly from the definition of the transformations. Note that
Lemma 2.6(a) holds as an invariant under all transformations. This fact makes it easier to
verify the following claims. If (a) does not hold, we can apply CombG. If (b) does not hold,
we can apply CombG or FormP. If (c) does not hold, we can apply CombG, FormP or
SplitC. If (d) does not hold, we can apply ChainR.

Lemma 2.10. The algorithm performing transformations defined in Figure 4 on an input
2-tier partition until no transformations are applicable runs in polynomial time.

Proof. It is easy to see that performing each transformation and verifying the trigger
conditions takes polynomial time. It remains to show that this stage of the algorithm ter-
minates after a polynomial number of transformations. We define two measures of progress,
which can be improved only a polynomial number of times, and show that each transforma-
tion improves at least one of the two measures. The first measure, excess, captures excess

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

of groups in supergroups. The smallest number of groups in a supergroup is 2. For the first
extra group, excess of the supergroup is set to 1. Each additional group incurs additional
excess 2.

Definition 2.11 (Excess). For a supergroup S with k groups in G(S), excess(S) =
max(2k − 5, 0). Total excess is the sum of excesses of supergroups.

The second measure of progress is the number of nodes in central groups. Each transforma-
tion is classified as one of two types, reducing one of the two measures:

Definition 2.12 (Transformation types). A transformation is of type (A) if it decreases
total excess, and of type (B) if it decreases the number of nodes in central groups without
increasing the total excess.

We can perform at most 2|V | transformations of type (A) because total excess is always in
the interval [0, 2|V |]. Transformations of type (A) can increase the number of nodes in central
groups. However, without making a transformation of type (A), we can perform at most
|V | transformations of type (B). Therefore, an algorithm that applies transformations of
types (A) and (B) terminates after at most 2|V |2 transformations. Claim 2.13 demonstrates
that each transformation is of types (A) or (B). Thus, this phase of the algorithm runs in
polynomial time.

Claim 2.13. Each transformation in Figure 4 is of types (A) or (B), specified in Defi-
nition 2.12.

Proof. CombG and FormP remove mobile groups, thus decreasing total excess.
FormP also forms a new supergroup, but with zero excess. These transformations are
of type (A).

When ChainR is performed on a chain S1, . . . , Sk, supergroup S1 must have 4 or more
groups. Since we pay 1 in excess for the third group and 2 for every additional group in a
supergroup, excess(S1) drops by 2 when ChainR removes one of the groups in S1. Since
Sk has two groups, its excess increases by 1 when ChainR adds a group to it. In the
intermediate supergroups touched by ChainR, the number of groups remains unchanged.
Therefore, their excess does not change, and the overall excess drops by 1. Thus, ChainR
is also a transformation of type (A).

It remains to analyze the type of SplitC. In the LeanLean case, SplitC changes a su-
pergroup with positive excess into a group-pair (with excess 0). In the FatFat case, SplitC
splits a supergroup into two, so even though the number of groups may increase by one,
the total excess has to decrease.

In the FatLean-IN case, Hv ⊂ Sv. If Gu becomes the new central group then we decrease
the number of nodes in the central group, and the transformation has type (B). If not,
and S has 3 groups, we create a triangle and eliminate the central group, making this a
transformation of type (B). Otherwise, the new group Sv is connected to another mobile
group of S and we perform transformation CombG or FormP, of type (A).

Finally, in the FatLean-OUT case, we remove Sv from S, decreasing the number of nodes
in the central group of S. Next we perform a transformation, CombG or FormP, on Sv

and Hv. If this transformation is CombG, the total excess remains the same, so the overall
transformation has type (B). If it is FormP, the overall transformation has type (A).

2.4. A 2-Tier Partition on Graphs with Arbitrary Weights

In this section, we remove the assumption that all nodes in our input graph are lean. To
obtain a 2-tier partition P of a graph (V,E,w) with arbitrary node weights, first allocate
a separate supergroup for each fat node. Let Vlean be the set of lean nodes. Form isolated
groups from lean connected components of Vlean. For fat connected components of Vlean,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

compute the 2-tier partition using the method from Sections 2.1 and 2.2. The next lemma
states the main property of the resulting partition P . It follows directly from Lemma 2.9.

Lemma 2.14 (Main). Consider the 2-tier partition P of a graph (V,E,w), obtained as
described above. Let C be the set consisting of fat nodes and central nodes of structured stars
in that 2-tier partition. Then mobile groups of structured stars are connected components of
V − C.

Proof. By definition, each group is connected. It remains to show that a node in a
mobile group of a structured star cannot be adjacent to nodes of V − C which are in
different groups. By definition of Vlean and C, a node of V − C can be adjacent only to
nodes in its connected component of Vlean. Recall that each group in a star is either central
or mobile. A node in a mobile group cannot be adjacent to a node in a different mobile
group by Lemma 2.9(b). It cannot be adjacent to a noncentral node in a central group
by Lemma 2.9(c). Finally, in a structured star, it cannot be adjacent to a node in an
unstructured star or a group-pair, by Definition 2.8.

2.5. Reduction to Scheduling and the Final Partition

We reduce Min-Max Graph Partition to Generalized Load Balancing (GLB), and use
a 2-approximation algorithm presented in [Kleinberg and Tardos 2006] for GLB (which is
based on the 2-approximation algorithm of Lenstra et al. for Scheduling on Unrelated
Parallel Machines) to get a 3-approximation for Min-Max Graph Partition.

The number of parts in the final partition will be equal to the number of fat nodes plus the
number of supergroups in the 2-tier partition of Section 2.4. We use all group-pairs, triangles
and unstructured stars as parts in the final partition. By Definition 2.5 and Lemma 2.9(d),
each such supergroup has weight less than 3. We use central nodes of structured stars and
fat nodes as seeds of the remaining parts: namely, in the final partition, we create a part
for each central node and each fat node, and partition the remaining groups among these
parts using a reduction to GLB.

Now we explain our reduction. Recall that in GLB, the input is the set M of m parallel
machines, the set J of n jobs, and for each job j ∈ J , the processing time tj and the set Mj

of machines on which the job j can be scheduled. The starting point of the reduction is the
2-tier partition from Section 2.4. We create a machine for every node in C, where C is the
set consisting of fat nodes and central nodes of structured stars, as defined in Lemma 2.14;
that is, we set M = C. We create a job in J for every node in C, every isolated group and
every mobile group of a structured star. To simplify the notation, we identify the names
of the machines and jobs with the names of the corresponding nodes and groups. A job
corresponding to a node i in C can be scheduled only on machine i, that is, Mi = {i}. A job
corresponding to a mobile or an isolated group j can be scheduled on machine i iff group j
is connected to a node i ∈ C. This defines M(j). We set tj = w(j) for all j ∈ J .

We run the algorithm described in Chapter 11.7 of [Kleinberg and Tardos 2006] for GLB
(which is based on the algorithm of [Lenstra et al. 1990] for Scheduling on Unrelated
Parallel Machines) on the instance defined above. The solution returned by the algo-
rithm is interpreted as a partition of the nodes of the original graph as follows. If job j is
scheduled on machine i then node (or group) j is assigned to part i of the partition. Each
central group is assigned to the same part as the central node of the group.

The final part of the algorithm repairs lean parts in the resulting partition. One subtle
point here is that parts are produced using the scheduling algorithm. However, to repair
them we rely on the 2-tier partition that was produced before running the scheduling algo-
rithm. So, when we refer to supergroups and groups, they are from this 2-tier partition.

While there is a lean part P in the partition, reassign a group as follows. Let S be the
star in the 2-tier partition whose center was a seed for P . (A lean part cannot have a fat
node as a seed.) Let C be the central group of S. Then, by construction, P contains C.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Remove a mobile group of S, say H, from its current part and insert it into P . Now, by
Lemma 2.9(a), w(P) ≥ w(C) + w(H) ≥ 1 because P contains C and H.

This repair process terminates because each part is repaired at most once. Since we repair
P using a mobile group from the supergroup corresponding to P (that is, the supergroup
from the 2-tier partition whose center is C), the subsequent repairs of other parts do not
remove H from part P . Later, even if P looses a mobile group when we repair some other
part P ′, the weight of P still satisfies: w(P) ≥ w(C) + w(H) ≥ 1. Thus, after a number of
steps which is at most the number of parts, all parts become fat.

Lemma 2.15. The final partition returned by the algorithm above has parts of weight at
most opt + 2.

Proof. To analyze our algorithm, we consider the linear program (LP) used in Chap-
ter 11.7 of [Kleinberg and Tardos 2006] to solve GLB. This program has a variable xji for
each job j ∈ J and each machine i ∈ Mj . Setting xji = tj indicates that job j is assigned
to machine i, while setting xji = 0 indicates the opposite. We relax xji ∈ {0, tj} to xji ≥ 0
to get an LP. Let Ji be the set of jobs that can be assigned to machine i. The algorithm
for GLB solves the following LP, where the first set of constraints ensures that each job is
assigned to 1 machine, and the second set, that the makespan is at most L.

Minimize L subject to
∑
i∈Mj

xji = tj ∀j ∈ J ;

∑
j∈Ji

xji ≤ L ∀i ∈M ;

xji ≥ 0 ∀j ∈ J and i ∈Mj .

Then the solution of this LP is rounded to obtain xji’s with values in {0, tj}, forming
the output of the algorithm for GLB. The following theorem is a strengthening of (11.33)
in [Kleinberg and Tardos 2006], which follows directly from the analysis presented there.
(It is also an easy strengthening of the Rounding Theorem of Lenstra et al. [Lenstra et al.
1990] for the special case of GLB.)

Theorem 2.16 (Strengthening of (11.33) in [Kleinberg and Tardos 2006]).
Let L∗ be the value of the objective function returned by the LP above. Let U be the set

of jobs with unique machines, i.e., U = {j : |Mj | = 1}, and let t be the maximum job
processing time among the jobs not in U , i.e., t = maxj∈J\U tj. In polynomial time, the
algorithm in [Kleinberg and Tardos 2006] outputs a solution to GLB with the maximum
machine load at most L∗ + t.

For completeness, we present the proof, closely following [Kleinberg and Tardos 2006].

Proof. Given a solution (x, L) to the LP above, consider the following bipartite graph
B(x) = (V (x), E(x)). The nodes are the set of machines and the set of jobs, that is,
V (x) = M ∪ J . There is an edge (i, j) ∈ E(x) if and only if xji > 0.

The algorithm in [Kleinberg and Tardos 2006] (pp. 641–643) first solves the LP and then
efficiently converts an arbitrary solution of the LP to a solution with the same load L and
no cycles in the graph B(x). After that, each connected component of B(x) is a tree (with
nodes corresponding to jobs and machines). The algorithm roots each connected component
at an arbitrary node. Each job that corresponds to a leaf is assigned to the machine that
corresponds to its parent. Each job that corresponds to an internal node is assigned to an
arbitrary child of that node.

It remains show that each machine has load at most L∗ + t. Let Si ⊆ Ji be the set of
jobs assigned to machine i. Then Si contains those neighbors of node i that have degree
1 in B(x), plus possibly one neighbor ` of larger degree: namely, the parent of i. Since `

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

has degree larger than 2, it does not belong to the set U of jobs with unique machines.
Therefore, t` ≤ t. For all jobs j in Si that correspond to nodes of degree 1, machine i is
the only machine that is assigned any part of job j by the solution x. That is, xji = tj .
Consequently, ∑

j∈Si,j 6=`

tj ≤
∑
j∈Ji

xji ≤ L∗.

We conclude that, for all i, the load on machine i is at most L∗ + t.

Note that jobs with non-unique machines in our instance of GLB correspond to groups in
our 2-tier partition. Since groups are lean by definition, t < 1. By Theorem 2.16, we get a
solution for our instance of GLB with maximum machine load less than L∗ + 1.

Next, we argue that every legal partition of nodes in C, in mobile groups of structured
stars and in isolated groups (namely, all nodes for which we created corresponding jobs in
our GLB instance) has cost at least L∗. This will imply that opt ≥ L∗. Consider a group G
that is either mobile or isolated. By Lemma 2.14, this group is a connected component of
V −C. Let c1, . . . , ck be the nodes of C that are adjacent to G. Consider a node v ∈ G. In a
legal partition of the graph, v must be in the same part as one of ci’s: if v belongs to a part
P of that partition, P must contain a path that starts at v and ends outside of G (because
G is lean), and this path must contain one of the nodes ci. Therefore, in a legal solution, the
weight w(G) is distributed in some manner between the parts that contain ci’s. Thus, there
is at most one part per ci. If two nodes from C are in the same part, splitting it into two
parts can only decrease the cost. Setting xGi to the fraction of G’s weight that ended up in
the same part as node i for all groups G and i ∈ C, results in a valid fractional solution to
the LP. Thus, opt ≥ L∗.

We argued that the solution to our instance of GLB output by the algorithm in [Kleinberg
and Tardos 2006] has cost at most L∗ + 1 ≤ opt + 1. Adding the nodes from the central
groups to each part increased the cost by at most 1. The repairing phase that enforced the
lower bound, raised the weight of each repaired part to at most 2, and could only decreased
the weight of remaining parts. Thus, the cost of the partition returned by our algorithm is
at most opt + 2.

Theorem 2.1 follows from Lemma 2.15. This completes the analysis of our approximation
algorithm for Min-Max Graph Partition.

2.6. Min-Max Graph Partition on graphs with given Hamiltonian cycles

Here we prove Theorem 2.2 that states that Min-Max Graph Partition problem on a
graph with an explicitly given Hamiltonian cycle can be approximated with ratio 2.5 in
linear time. As before, we assume without loss of generality that wlb = 1.

Proof of Theorem 2.2. Our algorithm partitions the nodes using only the edges from
the Hamiltonian cycle. Let P0 be the minimum-weight contiguous part of the cycle which
satisfies the weight constraint, namely, w(P0) ≥ 1. We rename the nodes, so that the cycle
is (0, 1, . . . , n − 1) and P0 = {0, . . . , i0}. We pack nodes greedily into parts P0, . . . , Pm so
that

Pk = {ik−1 + 1, . . . , ik},
w(Pk)− wik < 1,

and (except for k = m) w(Pk) ≥ 1. If w(Pm) < 1 we combine parts P0 and Pm. This
completes the description of the algorithm.

Let w denote the maximum weight of a node. For k ∈ [1,m], we can bound the weight
of Pk from above as follows:

w(Pk) < 1 + wik ≤ 1 + w ≤ 1 + opt.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Thus, if w(Pm) ≥ 1, our partition is a 2-approximation of the optimum.
It remains to bound w(P0) + w(Pm), assuming w(Pm) < 1. If w ≥ 1 then, by definition

of P0, we have w(P0) ≤ w ≤ opt, and thus w(P0) + w(Pm) < opt + 1. A similarly easy case
occurs when w(P0) ≤ 1.5: namely, w(P0) + w(Pm) ≤ 2.5.

For the rest of the proof, assume w < 1 and w(P0) > 1.5, that is, every contiguous part
of the cycle has weight strictly below 1 or strictly above 1.5.

Definition 2.17 (Heavy node). A node i is heavy if wi ≥ 0.5 and light otherwise.

Lemma 2.18. Let i be a heavy node and Qi be the maximal part of the cycle that contains
i and no other heavy node. Then w(Qi) < 1.

Proof. We use the assumption that every contiguous part of the cycle has weight either
less than 1 or more than 1.5. Suppose for the sake of contradiction that w(Qi) ≥ 1. Then
we can keep decreasing Qi by removing light nodes while Qi remains a contiguous part of
the cycle of weight at least 1. When we cannot continue, the final result is a contiguous part
of the cycle of weight between 1 and 1.5. This is a contradiction. Thus, w(Qi) < 1.

Since Lemma 2.18 holds for all heavy nodes,
∑n−1

i=0 wi is smaller than the number of heavy
nodes in the graph. In every legal solution, the number of parts is smaller then the number
of heavy nodes in the graph because each part must have weight at least 1. Therefore, by
Pigeonhole Principle, every solution must have a part with two heavy nodes. Let m be the
minimum weight of a heavy node. Then opt ≥ 2m, and consequently,

m + 1 ≤ opt−m + 1. (1)

Now suppose that i and j are consecutive heavy nodes and wi = m. Then {i} ∪Qj is a
contiguous part of the cycle, and it has weight at least 1 and at most m + 1. By definition
of P0, its weight is also bounded above by m + 1. By (1), w(P0) ≤ opt −m + 1. Thus,
w(P0) + w(Pm) < opt−m + 2 ≤ opt + 1.5.

3. MIN-MAX BIN COVERING

In this section, we present our algorithm for Min-Max Bin Covering.

Theorem 3.1. Min-Max Bin Covering can be approximated with ratio 2 in time
linear in the number of items, assuming that the items are sorted by weight.

Proof. Without loss of generality assume that wlb = 1, I = {1, . . . , n} and w1 ≥ w2 ≥
. . . ≥ wn.

If w(I) < 1, there is no legal packing. If 1 ≤ w(I) < 3, a legal packing consists of at
most 2 bins. Therefore, opt ≥ w(I)/2. Thus, w(I) ≤ 2opt, and we get a 2-approximation
by returning one bin B1 = I.

Theorem 3.1 follows from Lemma 3.2, dealing with instances with w(I) ≥ 3.

Lemma 3.2. Given a Min-Max Bin Covering instance I with n items and weight
w(I) ≥ 3, a solution with cost at most opt + 1 can be found in time O (n).

Proof. We compute a preliminary packing greedily, filling successive bins with items
in order of decreasing weights, and moving to a new bin when the weight of the current bin
reaches or exceeds 1. Let B1, . . . , Bk be the resulting bins. All bins Bi in the preliminary
packing satisfy w(Bi) < w1 + 1 ≤ opt+ 1. In addition, w(Bi) ≥ 1 for all bins, excluding Bk.

If w(Bk) ≥ 1, the preliminary packing is legal and has cost at most opt+ 1. Otherwise, if
w1 ≥ 1 then B1 = {1}, and we can combine B1 and Bk into a bin of weight below opt + 1.
Also, if w(Bk−1)+w(Bk) ≤ 2, we obtain a legal packing of cost at most opt+1 by combining
Bk−1 and Bk. In the remainder of the proof, we show how to rearrange items in Bk when

w1 < 1; (2)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

w(Bk) < 1; (3)

w(Bk−1) + w(Bk) > 2 (4)

to obtain a legal packing with cost at most opt + 1.

Definition 3.3. A bin B is good if w(B) ∈ [1, 2]. A packing where all bins are good is
called good.

Equation (2) implies that all bins in the preliminary packing, excluding Bk, are good.

Observation 3.4. If i ∈ Bj then w(Bj) < 1 + wi. Thus, w(Bj)− wi < 1.

Definition 3.5. An item i is called small if wi ≤ 1/2, and large otherwise.

Since w(Bk) < 1, w(Bk−1) < 2 and w(I) ≥ 3, the number of bins, k, is at least 3. The re-
maining proof is broken down into cases, depending on exactly where in bins Bk−2, Bk−1 and
Bk the first small item appears. Depending on the case, we repack either bins Bk−2, Bk−1, Bk

or bins B1 and Bk to ensure that all the resulting bins satisfy the weight lower bound. (Note
that if k = 3 then B1 = Bk−2.)

Case 1: Bk−1 contains a small item, say i. If w(Bk−2) + wi ≤ 2, we move i to Bk−2, and
combine Bk−1 with Bk. The weight of the combined Bk−1 and Bk is at least 2 (by (4))
minus 0.5 (because we removed a small item). On the other hand, w(Bk−1 \ {i}) < 1 and
w(Bk) < 1, by Observation 3.4 and (3), respectively. Therefore, the weight of the new bin
is below 2. That is, the resulting packing is good.

Now assume w(Bk−2)+wi > 2, and let j be the lightest item in Bk−2. By Observation 3.4
and the assumption, wj + wi > 1. Since item i is small, item j must be large. While there
exists g ∈ Bk, such that w(Bk−2) + wg ≤ 2, we move g from Bk to Bk−2. Afterwards, we
replace Bk−1 and Bk with their union C. If w(C) ≤ 2, we got a good packing. Otherwise,
Bk had an item left, call it g, that did not fit in Bk−2. We remove i and g from C, replace
j with g in Bk−2, and form a new bin {i, j}.

To see that the resulting packing is good, consider the three bins we created. Bin {i, j} is
good—we already observed that wi + wj > 1, and two items cannot exceed weight 2. The
weight of the new Bk−2 cannot be too large because we replaced a large item, j, with a
small item, g. Since g did not fit into Bk−2 without violating the weight upper bound of
2, the weight of new Bk−2 is (w(Bk−2) + wg) − wj ≥ 2 − 1 = 1. Finally, the weight of C
cannot be too small because it exceeded 2 before we removed two small items, i and g; it
cannot be too large because w(Bk−1)− wi < 1 and w(Bk) < 1.

Case 2: Bk contains a large item, say i. Then I contains 2k − 1 large items and, conse-
quently, any legal packing has a bin with an odd number of large items, say a. In an optimal
packing, a must be 1 or 3 because more than 3 large items can always be partitioned into
two bins of weight at least 1 each.

If there is an optimal packing with a = 3 then we can merge the last two bins. The
resulting bin contains the three smallest large items plus the small items of Bk. The three
smallest large items weigh at most opt because some bin in the optimal solution contains 3
large items. The small items of Bk weigh less than 1/2 because Bk contains a large item and
its total weight w(Bk) < 1 by (3). Therefore, the weight of the new bin is below opt + 1/2.

Now suppose a = 1 in some optimal packing. Since Bk contains a large item, each
preceding bin must contain two large items. In particular, B1 = {1, 2}, where w1 ≥ w2. The
weight of a bin with one large item is at most the weight of the heaviest large item plus the
weight of all small items, i.e., w1 + (w(Bk) − wi). Since there is such a bin in an optimal
solution, w1 + (w(Bk) − wi) ≥ 1. Thus, we can swap items 1 and i in bins B1 and Bk to
obtain a good packing.

Our algorithm for Case 2 checks if swapping items 1 and i in bins B1 and Bk results in
a good packing. If yes, it proceeds with the swap. Otherwise, it merges the last two bins.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Case 3: (the remaining case) Bk consists of small items, and all other bins, of two large
items. If the optimal packing has two large items in a bin then opt ≥ w(Bk−1), and it
suffices to combine the last two bins. We cannot verify the above condition on the optimal
packing, but we will show how to construct a good packing when this condition is violated.
Our algorithm will follow the steps of the construction, and resort to combining the last
two bins if it does not obtain a good packing.

Now assume that in the optimal packing no bin contains two large items, and conse-
quently, for i = 1, 2, 3, 4 item i belongs to a bin {i}∪Ci where Ci ⊂ Bk. Let D be a maximal
subset of Bk such that w1 +w(D) < 1. Let j be any item in Bk−D and D′ = Bk−D−{j}.
We repack B1 and Bk as B′1 = {1, j} ∪D and B′k = {2} ∪D′.

One can see that 1 ≤ w(B′1) < 1+wj . (The first inequality follows from the maximality of
D). Clearly, w(B′k) ≤ w(B1)+w(Bk)−1 < 2+1−1. It remains to show that w(B′k) ≥ 1. Note
that Bk contains 3 disjoint sets, C2, C3, C4, each of weight at least 1 − w2. Consequently,
Bk − {j} contains at least two such sets, and w(D) + w(D′) ≥ 2(1− w2). Thus,

w(D′) ≥ 2(1− w2)− (1− w1) ≥ 1− w2.

4. MIN-MAX RECTANGLE TILING

We present two approximation algorithms for Min-Max Rectangle Tiling whose per-
formance is summarized in Theorems 4.2 and 4.3, presented in Sections 4.1 and 4.2, respec-
tively. Recall that an input in Min-Max Rectangle Tiling consists of the side lengths
of the rectangle, m and n, the weights w : I → R+ for I = {1, . . . ,m} × {1, . . . , n} and a
weight lower bound wlb. We represent the weights by an m× n array.

Definition 4.1. A tile is a subrectangle of weight at least wlb.

4.1. Min-Max Rectangle Tiling with Arbitrary Weights

Our first algorithm works for the general version of Min-Max Rectangle Tiling.

Theorem 4.2. Min-Max Rectangle Tiling can be approximated with ratio 4 in
time O(mn).

Proof. Our algorithm first preprocesses the input array to ensure that the last row is fat.
(Recall that fat and lean were defined in Definition 1.1.) Then it greedily slices the rectangle,
that is, partitions it using horizontal lines. The resulting groups of consecutive rows are
called slices. Finally, each slice is greedily diced using vertical lines into subrectangles, which
form the final tiles.

Preprocessing. W.l.o.g., assume that the weight of the input rectangle is at least wlb.
(Otherwise, there is no legal tiling.) Let Ri denote the ith row of the input array. While
Rm is thin, we perform a step of preprocessing that replaces the last two rows, Rm−1 and
Rm, with row Rm−1 +Rm (and decrements m by 1). When Rm is thin, every subset of Rm

is thin, and cannot be a valid tile. Thus, every element of Rm has to be in the same tile
as the element directly above it. Therefore, a preprocessing step does not change the set of
valid tilings of the input rectangle.

Slicing. In a step of slicing, we start at the top (that is, go through the rows in the
increasing order of indices). Let j be the smallest index such that remaining (not yet sliced)
top rows up to row Rj form a fat rectangle. Then we cut horizontally between rows Rj and
Rj+1, and call the top set of rows a slice. We continue on the subrectangle formed by the
bottom rows. Since the preprocessing ensured that the last row is fat, all resulting slices are
fat.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

 w1 . . . wi-1 wi wi+1 . . . wt

chunks

slice

lean lean lean

lean

𝑅𝑗

 C1 . . . Ci-1 Ci+1 . . . Ct

Fig. 6. Anatomy of a slice in the proof of Theorem 4.2.

Dicing. In a step of dicing, analogously to the slicing step, we cut up a slice vertically,
dicing away minimal fat sets of leftmost columns, unless the remaining columns form a lean
rectangle. The resulting subrectangles are fat, by definition. They form the tiles in the final
partition.

Analysis. Consider a tile produced by our algorithm. The rectangle formed by all rows
of the tile, excluding the bottom row, is lean because it is obtained by partitioning a valid
slice. Thus, the weight of this rectangle is less than wlb, and consequently, less than opt. Let
C1, . . . , Ct be the columns of the tile (partial columns of the input array), and w1, . . . , wt be
the entries in the bottom row of the slice. Let i be the smallest index such that C1, . . . , Ci

form a fat rectangle. (If this tile is the last one in its slice, then i might be less than t.) By
the choice of i, the rectangle formed by C1, . . . , Ci−1 is lean, and so is the rectangle formed
by Ci+1, . . . , Ct. In addition, Ci without wi is also lean, because it is a subset of the lean
part of the slice. Finally, since wi has to participate in a tile, wi ≤ opt. Consequently, the
weight of the tile is smaller than opt + 3wlb ≤ 4opt.

It is easy to implement the algorithm so that each step performs a constant number of
operations per array entry. Thus, it can be executed in time O(mn).

4.2. Min-Max Rectangle Tiling with 0-1 Weights

We can get a better approximation ratio when the entries in the input array are restricted to
be 0 or 1. This case covers the scenarios where each entry indicates the presence or absence
of some object.

Theorem 4.3. Min-Max Rectangle Tiling with 0-1 entries can be approximated
with ratio 3 in time O(mn).

Proof. W.l.o.g., assume that the weight of the input rectangle is at least wlb. (Other-
wise, there is no legal tiling.) Our algorithm first computes a preliminary partition of the
input rectangle, where each part has weight at most 3opt or is a sliceable subrectangle, ac-
cording to Definition 4.4. We explain how to partition a sliceable subrectangle in the proof
of Lemma 4.5.

Definition 4.4 (Sliceable rectangle). We call a rectangle sliceable if one of the following
holds:

(a) it has a fat row (or column) on the boundary;
(b) it is fat but has only lean rows (or columns).

Lemma 4.5. A sliceable rectangle with 0-1 entries of size a × b can be partitioned into
tiles of weight at most 3wlb − 2 in time O(ab).

Proof. Suppose a rectangle satisfies (a) and, without loss of generality, consider the
case when the bottom row is fat. We apply slicing and dicing from the proof of Theorem 4.2
to partition the rectangle into tiles. (Note that we do not perform the preprocessing step,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

since it might create non-Boolean entries.) The analysis is the same, but now we also use
the facts that wi ≤ 1 and that each lean piece has weight at most wlb − 1. It implies that
the weight of each tile is at most 3(wlb − 1) + 1 = 3wlb − 2, as required.

Now suppose a rectangle satisfies (b) and, without loss of generality, consider the case
when it has only lean rows. We apply slicing from the proof of Theorem 4.2 while the total
weight of the remaining rows Rj+1, . . . , Ra is at least wlb and then make each slice into a
tile. For all slices, besides the last one, the last row added to the slice increases its weight
from at most wlb − 1 and by at most wlb − 1 because, without this row, we would have a
lean slice and because the row itself is lean. For the last slice, even when we obtain a fat
collection of rows, we might need to add the remaining rows because their total weight is at
most wlb−1. However, the weight of the last slice is still at most 3(wlb−1), as required.

It remains to explain how to compute a preliminary partition into sliceable subrectangles
and parts of weight at most 3opt. First, we preprocess the input rectangle by partitioning
it into groups of consecutive rows L0, F1, L1, . . . , Fk, Lk, where each group Fi consists of a
single fat row and each group Li is either empty or comprised of lean rows. We consider
groups of rows called sandwiches, defined next and illustrated in Figure 7.

sandwich

𝑆2

lean rows 𝐿0

fat row 𝐹1

fat row 𝐹2

fat row 𝐹3

lean rows 𝐿1

lean rows 𝐿2

lean rows 𝐿3

Fig. 7. An illustration for Definition 4.6: a sandwich.

𝐿𝑖−1 crossing point

 𝐹𝑖

𝐿𝑖

𝐿′𝑖0 𝐹′𝑖1 𝐿′𝑖1

Fig. 8. An illustration for Definition 4.8:
a crossing point.

Definition 4.6 (Sandwich). The sandwich Si is the union of groups Li−1 ∪ Fi ∪ Li.

Claim 4.7. Let Si = Li−1 ∪ Fi ∪ Li be a sandwich, where both Li−1 and Li are lean.
Then Si has either

— at most one fat column or
— two fat columns, each of weight exactly wlb.

Proof. If Si has k fat columns, the sum of their entries in Fi is at most k, and the sum
of their entries in the rest of Si is at most w(Li−1) + w(Li) ≤ 2(wlb − 1). Therefore, all k
fat columns together weigh at most 2wlb + k − 2.

If k = 2, the total weight of the two fat columns is at most 2wlb. Since, by definition,
each fat column has weight at least wlb, both fat columns must have weight exactly wlb. If
k > 2, one of the fat columns has weight at most 1 + 2

k (wlb − 1) < wlb, a contradiction.

If at least one of the groups Li is empty or fat, we obtain sliceable subrectangles by
splitting the input rectangle into Li and the two parts above and below Li. (One or more
of these parts may be empty.)

Otherwise, if at least one of the sandwiches Si has zero or two fat columns, we split the
input rectangle into Si and the two sliceable subrectangles above and below Si. If Si has no

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

fat columns, then Si itself is sliceable. If Si has two fat columns, consider the partition of
Si into groups of consecutive columns L′i0, F

′
i1, L

′
i1, F

′
i2, L

′
i2, where each group F ′ij consists

of a single fat column and each group L′ij is comprised of lean columns. If at least one of
L′ij ’s is fat, we obtain sliceable subrectangles by splitting Si into L′ij and the two parts to
the left and to the right of it. Otherwise, we split Si into L′i0 ∪F ′i1 and L′i1 ∪F ′i2 ∪L′i2, both
of weight below 3wlb, since, by Claim 4.7, w(F ′i1) = w(F ′i2) = wlb.

Similarly, if at least one of the sandwiches Si has exactly one fat column F ′i1 which splits
it into L′i0, F

′
i1, L

′
i1, where at least one of L′ij ’s is fat, we obtain sliceable subrectangles by

splitting Si into L′ij and the remaining part to the left or to the right of it.
Finally, we perform the same steps with the roles of rows and columns switched.
By previous steps and Claim 4.7, in the remaining case, each group Li is nonempty and

lean, and each sandwich Si has exactly one fat column, F ′i1, which splits it into L′i0, F
′
i1, L

′
i1,

where both L′i0 and L′i1 are lean. Recall that each sandwich has exactly one fat row, Fi.
The next definition is illustrated in Figure 8.

Definition 4.8 (Crossing point). We call the common entry of Fi and F ′i1 the crossing
point of Si.

Observation 4.9. Every fat subrectangle of Si contains its crossing point.

Proof. This holds because each of Li−1, Li, L
′
i0 and L′i1 is lean.

Observation 4.10. Each row and column of the input rectangle has weight less than
2wlb.

Proof. Consider any row. In its sandwich Si, both column groups L′i0 and L′i1 are
lean, and its entry in the fat column F ′i1 is at most 1. Thus, each row has weight at most
2(wlb − 1) + 1 = 2wlb − 1. Since we applied all the steps with roles of rows and columns
switched, each column also has weight at most 2wlb − 1.

Claim 4.11. There are less than m crossing points.

Proof. If some column Ci contains more than two crossing points, then at least two of
them are from disjoint sandwiches or, more precisely, two disjoint fat columns of sandwiches.
But then w(Ci) ≥ 2wlb, contrary to Observation 4.10.

We already showed how to partition into sliceable subrectangles when C1 or Cm are fat
or when two consecutive columns are both fat. Thus, in the current case, there are less than
m/2 fat columns and less than 2m/2 = m crossing points.

Our preliminary partition for this case depends on whether the input rectangle has a fat
subrectangle that contains no crossing points.

Lemma 4.12. There is an algorithm that, given an m×n rectangle with 0-1 entries and
its crossing points, in time O(mn) either determines that there is no fat subrectangle that
contains no crossing points or finds a maximal such subrectangle.

Proof. We start by computing the crossing points, sorted by their row. To do that,
we go through the sandwiches and apply Definition 4.8. This can be done in O(mn) time.
Next, we describe how to find all maximal subrectangles that do not contain crossing points.
Later, we will compute their weights.

Consider a maximal rectangle that does not contain crossing points. Because it cannot
expand up, it contains either some point in the top row or some point directly below a
crossing point. This motivates the following definition. A point is called a seed if it is in the
top row of the input rectangle or if it is directly below a crossing point. Since there are m
points in the top row, by Claim 4.11, there are less than 2m seeds.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

sliceable

sliceable

sliceable maximal fat rectangle with no

crossing points

Fig. 9. A maximal fat rectangle and the resulting preliminary partition.

For each seed, we will find, in time O(n), all maximal subrectangles that contain no
crossing points and have the given seed on its upper boundary. We initialize our subrectangle
to contain the row with the seed. This row is lean because the top row is lean, and there is
at least one lean row between each pair of fat rows, so the row below a crossing point is also
lean. (See Figures 7 and 8.) By Definition 4.8, the initial subrectangle contains no crossing
points.

We expand the current subrectangle downwards, by adding rows until run out of rows
or we encounter a row with a crossing point. We output the current subrectangle, then,
in the former case, we stop, and in the latter case, we add the next row with the crossing
point. Suppose the crossing point is in column c. If the seed is in the column c as well, we
have already returned all maximal rectangles that contain no crossing points and have the
given seed on its upper boundary. If the seed is in a column to the left (respectively, right)
of c, we remove all columns with index c or higher (respectively, lower) from the current
subrectangle, and continue the process described in this paragraph.

Since there are O(m) seeds, and for each seed, the procedure above runs in O(n) time,
we find all maximal subrectangles with no crossing points in O(mn) time. It remains to
show how to find the weight of each reported subrectangle. Let W [r, c] be the weight of the
subrectangle that spans the first r rows and the first c columns. Array W can be computed
in time O(mn). Let [a, b] denote {a, a+ 1, . . . , b}. Then the weight of the array [a, b]× [c, d]
is

w([a, b]× [c, d]) = W [c, d] + W [a− 1, b− 1]−W [a− 1, d]−W [b, c− 1].

Thus, we can compute the weight of the reported subrectangles, and determine if any of
them are fat in O(mn) time.

Suppose the algorithm in Lemma 4.12 outputs a rectangle, call it A. Recall that A is a
maximal fat subrectangle that contains no crossing points. Since A cannot expand further,
on each side it is either on the rectangle boundary or has a crossing point immediately next
to it. (See Figure 9.) By definition, each crossing point is contained in a fat row. Thus,
if there are any rows above (below) A, they form a sliceable subrectangle. Let R be the
subrectangle consisting of rows of A. We partition the input rectangle into R and the two
sliceable rectangles above and below R. Since the rows immediately above and below R
are fat (if they exist), R is a union of sandwiches. Consequently, by Definition 4.8, if A
does not lie on the left (respectively, right) boundary, the subrectangle of R to the left
(respectively, right) of A is sliceable. Thus, we can further partition R into A and the two

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

sliceable subrectangles to the left and to the right of A. By Observation 4.9, A itself is also
sliceable because all its rows are lean.

Finally, if the input rectangle does not have a fat subrectangle that contains no crossing
points, in a legal partition each entry must be in the same tile as one of the crossing points.
That is, the number of tiles in a legal partition is at most the number of crossing points,
which is equal to k, the number of fat rows Fi. Let i be such that w(Fi ∪Li) is minimized.
Then the total weight of the input rectangle is at least k · w(Fi ∪ Li), so the optimal tiling
must have a tile of weight at least w(Fi ∪ Li). That is, opt ≥ w(Fi ∪ Li), and therefore

w(Si) = w(Li−1) + w(Fi ∪ Li) < wlb + opt ≤ 2opt.

Thus, we can partition the rectangle into Si and the sliceable parts above and below Si.
We explained how to obtain, in O(mn) time, a preliminary partition of the input rectangle,

where each part has weight at most 3opt or is a sliceable subrectangle. Now the theorem
follows from Lemma 4.5.

REFERENCES

S. F. Assmann, David S. Johnson, Daniel J. Kleitman, and Joseph Y.-T. Leung. 1984. On a Dual Version
of the One-Dimensional Bin Packing Problem. J. Algorithms 5, 4 (1984), 502–525.

Nikhil Bansal and Maxim Sviridenko. 2006. The Santa Claus problem. In STOC ’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing. ACM, New York, NY, USA, 31–40.
DOI:http://dx.doi.org/10.1145/1132516.1132522

Piotr Berman, Bhaskar DasGupta, and S. Muthukrishnan. 2002. Slice and dice: a simple, improved approx-
imate tiling recipe. In SODA, David Eppstein (Ed.). ACM/SIAM, 455–464.

Piotr Berman, Bhaskar DasGupta, and S. Muthukrishnan. 2003. Approximation algorithms for MAX-MIN
tiling. J. Algorithms 47, 2 (2003), 122–134.

Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. 2001. Improved approxi-
mation algorithms for rectangle tiling and packing. In SODA. 427–436.

Piotr Berman and Sofya Raskhodnikova. 2010. Approximation Algorithms for Min-Max Generalization
Problems. In APPROX-RANDOM (Lecture Notes in Computer Science), Maria J. Serna, Ronen
Shaltiel, Klaus Jansen, and José D. P. Rolim (Eds.), Vol. 6302. Springer, 53–66.

N. Chiba and T. Nishizeki. 1989. The Hamiltonian cycle problem is linear-time solvable for 4-connected pla-
nar graphs. J. Algorithms 10, 2 (1989), 187–211. DOI:http://dx.doi.org/10.1016/0196-6774(89)90012-6

V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. 2008. k-Anonymous Data Mining: A
Survey. In Privacy-Preserving Data Mining: Models and Algorithms, Charu C. Aggarwal and Philip S.
Yu (Eds.). Springer, Chapter 5.

János Csirik, David S. Johnson, and Claire Kenyon. 2001. Better approximation algorithms for bin covering.
In SODA, S. Rao Kosaraju (Ed.). ACM/SIAM, 557–566.

Wenliang Du, David Eppstein, Michael T. Goodrich, and George S. Lueker. 2009. On the Approximability of
Geometric and Geographic Generalization and the Min-Max Bin Covering Problem. In WADS. 242–253.
DOI:http://dx.doi.org/10.1007/978-3-642-03367-4 22

Y. J. Garcia, M. A. Lopez, and S. T. Leutenegger. 1998. A greedy algorithm for bulk loading R-trees. In
GIS ’98: Proceedings of the 1998 ACM Int. Symp. on Advances in Geographic Information Systems.
ACM, 163–164.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan. 1979. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5 (1979), 287–
326.

Klaus Jansen and Roberto Solis-Oba. 2003. An asymptotic fully polynomial time approximation scheme for
bin covering. Theor. Comput. Sci. 306, 1-3 (2003), 543–551.

Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. 1998. On Approximating Rectangle Tiling and
Packing. In SODA, Howard J. Karloff (Ed.). ACM/SIAM, 384–393.

Jon M. Kleinberg and Éva Tardos. 2006. Algorithm design. Addison-Wesley. I–XXIII, 1–838 pages.

J. K. Lenstra, D. B. Shmoys, and É. Tardos. 1990. Approximation algorithms for scheduling unrelated
parallel machines. Math. Program. 46, 3 (1990), 259–271. DOI:http://dx.doi.org/10.1007/BF01585745

F. Manne. 1993. Load Balancing in Parallel Sparse Matrix Computation. Ph.D. Dissertation. University of
Bergen, Norway.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. 1999. On Rectangular Partitionings in Two Di-
mensions: Algorithms, Complexity, and Applications. In ICDT. 236–256.

Jonathan P. Sharp. 1999. Tiling Multi-dimensional Arrays. In FCT (Lecture Notes in Computer Science),
Gabriel Ciobanu and Gheorghe Păun (Eds.), Vol. 1684. Springer, 500–511.

Adam Smith and Subhash Suri. 2000. Rectangular Tiling in Multidimensional Arrays. J. Algorithms 37, 2
(2000), 451–467.

W. T. Tutte. 1956. A theorem on planar graphs. Trans. Amer. Math. Soc. 82 (1956), 99–116.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

