
Fully Dynamic Algorithms for Graph Databases with Edge
Differential Privacy
SOFYA RASKHODNIKOVA, Boston University, USA

TERESA ANNA STEINER, University of Southern Denmark, Denmark

We study differentially private algorithms for analyzing graph databases in the challenging setting of continual

release with fully dynamic updates, where edges are inserted and deleted over time, and the algorithm is

required to update the solution at every time step. Previous work has presented differentially private algorithms

for many graph problems that can handle insertions only or deletions only (called partially dynamic algorithms)
and obtained some hardness results for the fully dynamic setting. The only algorithms in the latter setting

were for the edge count, given by Fichtenberger, Henzinger, and Ost (ESA ’21), and for releasing the values of

all graph cuts, given by Fichtenberger, Henzinger, and Upadhyay (ICML ’23). We provide the first differentially

private and fully dynamic graph algorithms for several other fundamental graph statistics (including the

triangle count, the number of connected components, the size of the maximum matching, and the degree

histogram), analyze their error, and show strong lower bounds on the error for all algorithms in this setting.

Previously, only lower bounds for purely differentially private algorithms were known; our lower bounds

give an exponential improvement in terms of the dependence on the number of time steps, while applying to

algorithms satisfying pure as well as approximate differential privacy.
We study two variants of edge differential privacy for fully dynamic graph algorithms: event-level and item-

level. Under the former notion, two graph database update sequences are considered neighboring if, roughly

speaking, they differ in at most one update; under the latter notion, they can differ only in updates pertaining

to one edge. Differential privacy requires that for any two neighboring inputs, the output distributions of the

algorithm are close. We give upper and lower bounds on the error of both—event-level and item-level—fully

dynamic algorithms for several fundamental graph problems. No fully dynamic algorithms that are private at

the item-level (the more stringent of the two notions) were known before. In the case of item-level privacy,

for several problems, our algorithms match our lower bounds.
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1 Introduction
Graph databases provide important tools for understanding networks and relationships. Specifically,

graphs can be used to model complex relational databases, and analyzing those has applications

in recommender systems, analysis of social networks, market analysis, etc. [48]. However, some

graph databases contain sensitive personal information, and it is an ongoing effort within the

database community to develop methods for protecting sensitive data when results of statistical

analyses performed on them are published. Differential privacy [25] has emerged as the standard
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for rigorous privacy guarantees. It has been adapted to graph data and widely investigated in the

static setting, also referred to as the batch setting, where the input graph database does not change

(see [57] for a survey of differentially private analysis of graphs in this setting). An additional

challenge in studying graph databases that capture information about people is that they evolve

over time. Differential privacy was first studied in the setting of continual release (also called

continual observation), where data changes over time and published statistic must be continually

updated, by Dwork et al. [27] and Chan et al. [12]. This difficult setting was adapted to graph data

and investigated by Song et al. [62], Fichtenberger et al. [33], and Jain et al. [43]. In this setting,

the algorithm receives a sequence of database updates, one per time step, where each update is

either an insertion or a deletion of an edge. Fully dynamic algorithms handle both insertions and

deletions, whereas partially dynamic algorithms handle insertions only or deletions only. In this

work, we study fully dynamic graph algorithms in the continual release model.

Differential privacy (DP), intuitively, guarantees that, for any two neighboring databases, the

output distributions of the algorithm are roughly the same. We consider edge DP, introduced in [54],

that uses the notion of edge-neighboring graphs. Two graphs are edge-neighboring if they differ in

one edge. (There is also a stronger notion of node DP, first studied in [4, 13, 47].) Differential privacy

is defined with two parameters, 𝜀 and 𝛿 ; see Definitions A.2 and 2.4. When 𝛿 = 0, it is referred to as

pure DP; the setting when 𝛿 > 0 is called approximate DP.
The continual release model comes with two natural definitions of neighboring sequences and

two corresponding variants of differential privacy: event-level and item-level, and we study both of

them. Update sequences are event-neighboring if they differ in one update; they are item-neighboring
if they differ on an arbitrary number of updates pertaining to one item. For edge DP, we adapt these

definitions as follows. Two graph sequences are considered event-level edge-neighboring if one can
be obtained from the other by replacing either one update with a no-op or two consecutive updates

on the same edge with no-ops.
1
Two graph sequences are item-level edge-neighboring if they are

the same on all updates, except updates on one edge. Event-level privacy is less stringent than

item-level privacy. Note that there is no distinction between event-level and item-level edge DP for

partially dynamic algorithms, because each edge can be updated at most once. But the picture is

more nuanced for fully dynamic algorithms.

Our goal is to investigate the best error achievable by fully dynamic, edge differentially private

(edge-DP) graph algorithms. We call an algorithm (𝛼, 𝛽)-accurate if, with probability at least 1 − 𝛽 ,

it has additive error at most 𝛼 at every time step. For algorithms that output real-valued vectors,

the additive error is measured in terms of 𝐿∞, i.e., as the maximum over all coordinates of the

vector. We express our error bounds in terms of the number of nodes in the graph, denoted by 𝑁 ;

the number of time steps, called the time horizon and denoted by 𝑇 ; and sometimes also in terms of

the bound 𝐷 on the maximum degree.

The systematic investigation by Fichtenberger et al. [33] provided partially dynamic private

algorithms with additive error polylog𝑇 for numerous graph problems. The partially dynamic

setting under node DP was further investigated by Jain et al. [43]. The only fully dynamic graph

algorithms in previous work were for the edge count, given by Fichtenberger et al. [33], and for

releasing the values of all graph cuts, given by Fichtenberger et al. [34]. Both algorithms satisfy

event-level, edge DP; the former algorithm has dependence𝑂 (log3/2𝑇 ) on the time horizon𝑇 in the

1
We consider two updates on the same edge 𝑒 consecutive if the updates between them do not involve 𝑒 . Consecutive

updates on the same edge must be of different types: an insertion and a deletion (in either order). We allow up to two
updates to be replaced, as opposed to one in the classical continual release setting, for a technical reason: since an edge can

be inserted only when it is absent and deleted only when it is present, there exist update sequences for which changing any

one update results in an invalid graph sequence. This happens, for example, if the updates alternate between inserting and

deleting the same edge, ending in an insertion. As a result, our definition is more natural in the dynamic setting.
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Upper bounds Lower bounds

Lower bounds [33]
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3

√
𝑇𝑁, 𝑁 3)) Ω(min(𝑇, 3
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Table 1. Bounds on error 𝛼 for (𝛼, 𝛽)-accurate, event-level (𝜀, 𝛿)-edge-DP fully dynamic graph algorithms
(suppressing factors polynomial in 1
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1
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Table 2. Bounds on error 𝛼 for (𝛼, 𝛽)-accurate, item-level (𝜀, 𝛿)-edge-DP fully dynamic graph algorithms
(suppressing factors polynomial in 1

𝜀 log
1

𝛿𝛽
. We use 𝑂̃ (𝑋 ) and Ω̃(𝑋 ) to hide factors polylogarithmical in 𝑋 ).

The bounds under 𝑓𝐶𝐶 .. hold for 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , 𝑓degHist. Bounds from [33] hold only for sufficiently large 𝑇 .

additive error, whereas the latter algorithm has dependence 𝑂 (𝑁 3/2√︁
log𝑁 log

3/2𝑇 ) on 𝑇 and the

number of nodes 𝑁 . Fichtenberger et al. [33] also obtained Ω(log𝑇 ) lower bounds for many graph

problems in this setting and lower bounds in terms of 𝑁 (that hold for large𝑇 ) in the item-level DP

setting. Their lower bounds are only for pure DP, that is, when 𝛿 = 0. Fichtenberger et al. [34] show

a lower bound on the accuracy of continually releasing the value of the min cut with event-level,

edge DP, but in a different model: they have parallel edges and allow multiple edges to be changed

at every time step, both of which make the problem harder and lead to a lower bound on the error

that is larger than our event-level upper bound for the value of min cut.

1.1 Our results
Our results on event-level and item-level edge-DP are summarized in Tables 1 and 2, respectively.

We give the first fully dynamic, differentially private algorithms for several fundamental graph

statistics, including triangle count (𝑓△), the number of connected components (𝑓𝐶𝐶 ), the size of the

maximum matching (𝑓𝑀𝑀 ), the number of nodes of degree at least 𝜏 (𝑓≥𝜏 ), the degree histogram
(𝑓degHist), and the degree list (𝑓deg) with edge DP at both event level and item level. For the edge count

(𝑓edges), we give the first item-level edge-DP algorithm. (See Definition 2.7 for problem definitions.)

Our event-level algorithm for 𝑓deg has additive error 𝛼 polylogarithmic in 𝑇 and 𝑁 . All other

algorithms have error polynomial in these parameters.
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Event-level.We demonstrate that 𝑓△, 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , and 𝑓degHist are fundamentally different from

EdgeCount and DegreeList by showing that every event-level edge-DP algorithm for these five

problems must have additive error polynomial in 𝑇 and 𝑁 (as opposed to polylogarithmic in these

parameters), thus providing an exponential improvement on the previously known lower bounds

of Ω(log𝑇 ) by [33] in terms of the dependence on the time horizon 𝑇 . Our lower bounds apply

for general 𝛿 ∈ [0, 1), that is, even for approximate DP, whereas the lower bounds in [33] hold

only for pure DP. Specifically, we show that when 𝑁 is sufficiently large, the best additive error

of event-level edge-DP algorithms must be Θ(𝑇 ) for 𝑓△ and between 𝑂 (𝑇 1/3) and Ω(𝑇 1/4) for
𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , 𝑓degHist.
Event-level output-determined.While there remains an intriguing gap between upper and

lower bounds for these problems, we are able to eliminate it for 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , 𝑓degHist for a special
class of algorithms, called output-determined (out-det), first considered in [39], where the authors

showed a lower bound for output-determined algorithms for counting the number of distinct

elements in a stream. Output-determined algorithms have roughly the same output distributions on

inputs with the same output sequences. All known algorithms for these four problems (all of which

come from our work) are output-determined. Our lower bounds for output-determined algorithms

demonstrate that we would need a different approach to improve the error. The proof and details

for output-determined lower bounds are given in the full version [59] of this paper.

Item-level. We also give item-level lower bounds on the additive error for fully dynamic graph

algorithms. For all problems listed in the table, except for the triangle count, our item-level lower

bounds match the error of our algorithms up to polylogarithmic factors. Our bounds for triangle

count under item-level (𝜀, 𝛿)-edge-DP are tight (up to polylogarithmic factors) for 𝑁 ≤ 𝑇 5/6
, and

under item-level 𝜀-edge-DP for 𝑁 ≤ 𝑇 3/4
. Further, we show that when 𝑁 is sufficiently large, the

additive error of item-level (𝜀, 𝛿)-edge-DP algorithms must be between𝑂 (𝑇 4/3) and Ω(𝑇 7/6) for 𝑓△
and Θ̃(𝑇 1/3) for 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , 𝑓degHist, 𝑓edges, and 𝑓deg when 𝛿 > 0. When 𝛿 = 0, it is between 𝑇 3/2

and 𝑇 5/4
for 𝑓△ and Θ(

√
𝑇 ) for the remaining problems.

Discussion and Bounded Degree. Putting our results together with the 𝑂 (log3/2𝑇 ) event-
level upper bound for 𝑓edges by [33], we see that 𝑓edges and 𝑓deg become much more difficult in the

item-level setting: the error grows from polylog𝑇 to 𝑇 1/2
or 𝑇 1/3

(depending whether we consider

pure or approximate DP). For the remaining problems, while 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , 𝑓degHist behave similarly

in terms of the additive error of fully dynamic algorithms, the triangle count stands out. We further

investigate it in the event-level setting by considering error bounds in terms of the maximum degree

𝐷 and time horizon 𝑇 . We prove the upper bound of 𝑂̃ (min(
√
𝑇𝐷,

3

√
𝑇𝐷) and the lower bound of

Ω(min( 3

√
𝑇𝐷2/3, 4

√
𝑇𝐷)) for this problem. We stress that our algorithms are differentially private

even when the degree bound is violated, but the accuracy guarantees expressed in terms of 𝐷 rely

on the input graph being of degree at most 𝐷 at every time step. Subroutines that are differentially

private only when the input graphs have maximum degree at most 𝐷 are called 𝐷-restricted. As
shown by Jain et al. [43], such a subroutine can exhibit blatant failures of differential privacy on

graphs that do not satisfy the promise if they are used as stand-alone algorithms.

1.2 Our Techniques
We prove the first superlogarithmic lower bounds for dynamic differentially private algorithms for

graph problems. Our starting point for proving lower bounds is the sequential embedding technique

proposed by Jain et al. [42] and further developed by Jain et al. [41]. The main idea is to reduce from

a problem in the batch setting that returns multiple outputs about the same individuals and use

different time steps to extract answers that correspond to different outputs. In particular, [42] used

a reduction from the 1-way marginals problem in the batch setting and then applied lower bounds
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of [37] and [11] for releasing all 1-way marginals; [41] used a reduction from the Inner Product

problem in the batch setting and applied the lower bounds for this problem from [17, 20, 26, 51].

Lower bounds via SubmatrixQueries.To prove our event-level lower bound for TriangleCount
(stated in Theorem 3.1), we reduce from the Submatrix Query problem, which has not been used

in the context of continual release before. It was defined by Eden et al. [30] for studying the

local model of differential privacy, where each party holds their own private data and interacts

with the rest of the world using differentially private algorithms. In the submatrix query problem,

the input database is an 𝑛 × 𝑛 matrix 𝑌 of random bits, each belonging to a different individual.

Each submatrix query is specified by two vectors 𝑎, 𝑏 ∈ {0, 1}𝑛 . The answer to the query (𝑎, 𝑏) is
𝑎𝑇𝑌𝑏 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎[𝑖]𝑌 [𝑖, 𝑗]𝑏 [ 𝑗]. A submatrix query is a type of a linear query. The answer to a

linear query is a dot product of the secret database (viewed as a vector; in our case, of length 𝑛2) and

a query vector of the same length (in our case, a vectorization of the outer product of vectors 𝑎 and

𝑏). Dinur and Nissim [20], in the paper that laid foundations for establishing the field of differential

privacy, show that answering many random linear queries too accurately leads to blatant privacy

violations. Eden et al. [30] extended their attack to submatrix queries. Implicitly, they showed

differentially private algorithms for answering Ω(𝑛2) submatix queries on 𝑛 × 𝑛 database must

have additive error Ω(𝑛). We use this lower bound together with our reduction from Submatrix

Queries to triangle counting with event-level edge-DP.

Our reduction transforms a database 𝑌 and a set 𝑄 of submatrix queries into a dynamic graph

sequence S. It ensures that the answers to different submatrix queries in 𝑄 correspond to triangle

counts inS at different time steps. Moreover, the transformations of neighboring databases𝑌 and𝑌 ′

(with the same query set 𝑄) return event-level, edge-neighboring graph sequences. Our reduction

encodes the secret database 𝑌 as edges of a bipartite graph. Then it crucially uses insertions and

deletions by first inserting and then deleting edges that encode each query. The main advantage

of using submatrix queries instead of arbitrary linear queries in our reduction is that they can be

encoded more efficiently, i.e., with fewer edges. This creates shorter dynamic graph sequences,

leading to stronger lower bounds in terms of the time horizon 𝑇 .

General lower bound framework. We provide a general lower bound framework for fully

dynamic graph algorithms, which we employ to prove nearly all of our lower bounds (with the

notable exception of event-level triangle counting, for which we use the submatrix queries method

described above, in order to get a better bound). The framework is based on the existence of a small

graph gadget with two special edges such that the value of the target function (e.g., 𝑓𝑀𝑀 ) remains

the same when only one of the special edges is removed, but changes by a specific amount when

both special edges are removed. We call such a gadget 2-edge distinguishing for 𝑓 (see Figure 2). We

show how to use a 2-edge distinguishing gadget for 𝑓 to obtain a reduction from the Inner Product

problem (see Definition 6.5) in the batch setting to the continual release of 𝑓 in the fully dynamic,

event-level setting. We also show how to use a slightly simpler gadget for 𝑓 to obtain a reduction

from 1-way Marginals (see Definition 3.12) in the batch setting to the continual release of 𝑓 in the

fully dynamic, item-level setting. Finally, 2-edge distinguishing gadgets are used in the general

reduction from 1-way Marginals to get event-level lower bounds in the output-determined setting.

We then apply our general framework to obtain numerous lower bounds for specific problems.

Transformation from𝐷-restricted to general algorithms in the event-level setting.One of
the most common methods for obtaining DP graph algorithms is to start by designing an algorithm

that is tailored to a specific graph family, typically graphs of degree at most 𝐷 . The reason for this is

that some graph statistics have much lower sensitivity on bounded degree graphs. E.g., if one edge in

an 𝑁 -node graph is added or removed, the triangle count can change by 𝑁 − 2; however, in a graph

of degree at most 𝐷 , it can change by at most 𝐷 − 1. In the batch setting, many techniques (notably,
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based on graph projections [4, 16, 47] and Lipschitz extensions [4, 13, 16, 44, 47, 57, 58]) have been

developed for transforming algorithms tailored to bounded-degree graphs to algorithms that are

private on all graphs without noticeably increasing their error on bounded-degree graphs. For

dynamic graph algorithms, 𝐷-restricted algorithms were studied in [33, 62]. For the insertions-only

setting, Jain et al. [43] present a general projection that transforms a 𝐷-restricted algorithm into an

algorithm which is differentially private on the universe of all input graph sequences, with similar

error guarantees depending on the maximum degree of the input sequence (up to log factors).

We obtain a similar result in the fully dynamic setting for event-level edge DP: i.e., if for all 𝐷

there exists an event-level 𝐷-restricted edge-DP algorithm for estimating a function on all dynamic

graph sequences of maximum degree 𝐷 , with an error bound depending on 𝐷 , then there exists an

event-level edge-DP algorithm on all dynamic graph sequences, with an error bound depending on

the maximum degree of the sequence. The error bounds are the same as for the 𝐷-restricted case,

up to factors logarithmic in 𝑇𝑁 and small dependence on the privacy parameters and the failure

probability 𝛽 .

One of the tools in our transformation is our event-level algorithm for degree list, which is

based on the continual histograms algorithm from [34]. We use the degree-list algorithm to keep a

running estimate of the maximum degree. We run the corresponding degree restricted mechanism

until the maximum degree increases significantly. We then re-initialize a new restricted mechanism

with a higher degree bound.

Fully dynamic algorithm for triangle count. Our event-level algorithm for triangle count

uses our transformation from𝐷-restricted to general algorithms. To get a𝐷-restricted algorithm, we

use a binary-tree-based mechanism for counting on the difference sequence for 𝑓△ (i.e., a sequence

that records the change in 𝑓△ between time steps) and then add noise using the Gaussian mechanism.

This strategy is used for other graph problems in [33] with Laplacian noise instead of Gaussian

noise. To bound the error of our mechanism, we give a careful analysis of the 𝐿2-sensitivity of the

counts stored in the binary tree.

1.3 Additional Related Work
Prior work. The two concurrent works [12, 27] that initiated the investigation of the continual

release model, also proposed the binary-tree mechanism for computing sums of bits, a.k.a. continual

counting. The problem of continual counting was further studied in [14, 21, 28, 34, 40]. The binary-

tree mechanism has been extended to work for sums of real values [55], weighted sums [7], counting

distinct elements [7, 32, 35, 39, 41] and, most relevantly, partially dynamic algorithms for graph

statistics [33].

The first lower bound in the continual release model was an Ω(log𝑇 ) bound on the additive

error of continual counting, shown by [27]. The first lower bounds that depended polynomially on

𝑇 were proved by Jain et al. [42] and applied to the problems of releasing the value and index of the

attribute with the highest sum, given a database that stores whether each individual possesses a

given attribute. They pioneered the sequential embedding technique that reduces multiple instances

of a static problem to a dynamic problem. Like in that paper, we also reduce from the 1-waymarginals

problem to obtain some of our lower bounds. However, our lower bound for the triangle count is

proved by a reduction from a different problem, and our reductions use the specific structure of the

graph problems we consider.

First edge-DP algorithms appeared in [54]; they handled the cost of the minimum spanning

tree and triangle count. Since then differentially private graph algorithms have been designed

for a variety of tasks, including estimating subgraph counts [4, 13, 19, 45, 47, 49], degree list [46],

degree and triangle distributions [16, 38, 49, 58], the number of connected components [44], spectral
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properties [2, 64], parameters in stochastic block models [8, 9, 61]; training of graph neural networks

[15]; generating synthetic graphs [46, 68], and manymore [1, 3, 5, 18, 36, 50, 52, 53, 56, 60, 63, 65–67].

Concurrent work. Recently and independently, [31] showed similar lower bounds for fully

dynamic algorithms achieving event-level, 𝜀-edge-DP via a reduction from InnerProduct; however,

the focus of their paper is not on the fully dynamic model, but on obtaining better additive error in

the insertions-only model. In the fully dynamic model, they prove Ω
(
min

(√︃
𝑁
𝜀
, 𝑇

1/4

𝜀3/4
, 𝑁 ,𝑇

))
lower

bounds for 𝑓𝑀𝑀 , 𝑓𝐶𝐶 , and 𝑓△ . Their lower bounds match ours from Corollary 6.8 for 𝑓𝑀𝑀 and 𝑓𝐶𝐶
in terms of the dependence on 𝑁 and 𝑇 , but also have an explicit dependence on 𝜀 in them for the

special case of pure differential privacy (ours are stated for constant 𝜀 and more general (𝜀, 𝛿)-DP).
However, our lower bound for 𝑓△ from Theorem 3.1 is better by a polynomial factor in 𝑇 and 𝑁 .

1.4 Discussion and OpenQuestions
Our transformation from 𝐷-restricted to general edge-DP algorithms works in the event-level

setting. An interesting open question is if one can design such a transformation for the item-level

setting (with a small error blowup).

Our error bounds for 𝑓𝐶𝐶 , 𝑓𝑀𝑀 , 𝑓≥𝜏 , and 𝑓degHist exhibit similar dependence on 𝑇 as the bounds

in [41] on counting the number of distinct elements in turnstile streams in the continual release

model. Unlike in our setting, where an edge can be added only if it is present and deleted only if it is

absent, turnstile streams might have an element added or deleted no matter what the current count

for this element is. Only elements with positive counts are included in the current distinct element

count. Interestingly, [39] show that when elements can only be added when absent and deleted

when present (i.e., in the so-called “likes” model), the additive error drops down to polylogartimic

in 𝑇 . We conjecture that improving the bounds for counting distinct elements in the event-level

setting would lead to better bounds for graph problems as well.

1.5 Organization of Technical Sections
We start by giving basic notation, problem and model definitions in Section 2. In Section 3, we

collect all our results on triangle counting that require specialized techniques. Section 4 presents

the general transformation from degree-restricted to general event-level algorithms. Section 5

presents algorithms based on recomputation at regular intervals. It also applies these tools to get

most upper bounds on the error presented in Tables 1 and 2. Section 6 presents our lower bound

framework and most lower bounds on the error from the tables. Appendix A collects some privacy

background. Appendices B, C, D, and E contain some omitted proofs from Sections 3, 4, 5, and 6,

respectively.

2 Preliminaries
We use log to denote the logarithm base 2 and ln to denote the natural logarithm. Let [𝑇 ] denote
the set {1, 2, . . . ,𝑇 }.

2.1 Graph Sequences
A (simple) graph on a set of nodes𝑉 is a pair (𝑉 , 𝐸), where 𝐸 is a subset of {{𝑖, 𝑗} : 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ≠ 𝑗}.
For a set of nodes 𝑉 , let G(𝑉 ) denote the set of all simple graphs on 𝑉 . The symmetric difference

of two sets 𝑆 and 𝑆 ′, denoted Δ(𝑆, 𝑆 ′), is (𝑆 \ 𝑆 ′) ∪ (𝑆 ′ \ 𝑆).

Definition 2.1 (Edge-neighboring). Graphs 𝐺 = (𝑉 , 𝐸) and 𝐻 = (𝑉 , 𝐸′) are edge-neighboring,
denoted by 𝐺 ∼ 𝐻 , if 𝐸 and 𝐸′

differ in at most one element, i.e., |Δ(𝐸, 𝐸′) | ≤ 1.
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Definition 2.2 (Dynamic graph sequence). Let𝑉 be a set of nodes and𝑇 ∈ N. For all 𝑡 ∈ {0} ∪ [𝑇 ],
let 𝐺𝑡 be a graph (𝑉 , 𝐸𝑡 ) with some edge set 𝐸𝑡 ⊆ 𝑉 × 𝑉 and 𝐸0 = ∅. Then S = (𝐺1, . . . ,𝐺𝑇 )
is a dynamic graph sequence of length 𝑇 if |Δ(𝐸𝑡 , 𝐸𝑡−1) | ≤ 1 for all 𝑡 ∈ [𝑇 ]. That is, every two

consecutive graphs in the sequence differ by at most one edge insertion or deletion. We say S has

maximum degree 𝐷 if 𝐺𝑡 has maximum degree 𝐷 for all 𝑡 ∈ [𝑇 ].
To denote the edge difference sets, for all 𝑡 ∈ [𝑇 ], we use 𝑑𝐸−

𝑡 = 𝐸𝑡−1 \ 𝐸𝑡 and 𝑑𝐸+
𝑡 = 𝐸𝑡 \ 𝐸𝑡−1,

as well as 𝑑𝐸𝑡 = 𝑑𝐸−
𝑡 ∪ 𝑑𝐸+

𝑡 = Δ(𝐸𝑡 , 𝐸𝑡−1).
Continual release graph algorithms. Let𝑉 be a set of nodes and𝑇, 𝑘 ∈ N. A continual release graph

algorithm A : G(𝑉 )𝑇 → (R𝑘 )𝑇 receives as input
2
a dynamic graph sequence S = (𝐺1, . . . ,𝐺𝑇 )

and, at every time step 𝑡 ∈ [𝑇 ], produces an output 𝑎𝑡 = A(𝐺1, . . . ,𝐺𝑡 ) ∈ R𝑘 .
Definition 2.3 (Item-level and event-level neighbors). Let𝑉 be a set of nodes and 𝑇 ∈ N. Let S and

S′
be dynamic graph sequences of length 𝑇 . Let 𝑑𝐸+

𝑡 , 𝑑𝐸
−
𝑡 , and 𝑑𝐸𝑡 be the edge difference sets as

in Definition 2.2, and 𝑑𝐸+𝑡
′
, 𝑑𝐸−

𝑡
′
, and 𝑑𝐸′

𝑡 be the corresponding sets for S′
. We say S and S′

are

item-level, edge-neighboring if they differ in updates pertaining to at most one edge. That is, there

is an edge 𝑒∗ ∈ 𝑉 2
such that 𝑑𝐸+

𝑡 \ {𝑒∗} = 𝑑𝐸+𝑡
′ \ {𝑒∗} and 𝑑𝐸−

𝑡 \ {𝑒∗} = 𝑑𝐸−
𝑡
′ \ {𝑒∗} for all 𝑡 ∈ [𝑇 ].

We say S and S′
are event-level, edge-neighboring if they differ in at most one edge insertion (or

deletion) and the next deletion (or insertion) of the same edge.
1
That is, there exist an edge 𝑒∗ ∈ 𝑉 2

and a time interval [𝑡1, 𝑡2] with 𝑡1 ∈ [1,𝑇 ] and 𝑡2 ∈ [2,𝑇 + 1] such that
3

(1) 𝑑𝐸+𝑡 = 𝑑𝐸+𝑡
′
and 𝑑𝐸−

𝑡 = 𝑑𝐸−
𝑡
′
for all 𝑡 ∈ [𝑇 ] \ {𝑡1, 𝑡2}.

(2) 𝑒∗ ∉ 𝑑𝐸𝑡 for all 𝑡 ∈ (𝑡1, 𝑡2).
(3) a) 𝑑𝐸+

𝑡1
= 𝑑𝐸−

𝑡2
= {𝑒∗} and 𝑑𝐸′

𝑡1
= 𝑑𝐸′

𝑡2
= ∅ or b) 𝑑𝐸−

𝑡1
= 𝑑𝐸+𝑡2 = {𝑒∗} and 𝑑𝐸′

𝑡1
= 𝑑𝐸′

𝑡2
= ∅,

or if the symmetric properties are true with the roles of S and S′
switched.

Note that if S = (𝐺1, . . . ,𝐺𝑇 ) and S′ = (𝐺 ′
1
, . . . ,𝐺 ′

𝑇
) are event-level edge-neighboring, then they

are also item-level edge-neighboring; if they are item-level edge-neighboring, then the graphs 𝐺𝑡

and 𝐺 ′
𝑡 are edge-neighboring for every 𝑡 ∈ [𝑇 ].

Definition 2.4 (Item-level and event-level edge-DP). Let𝑉 be a set of nodes and𝑇, 𝑘 ∈ N. Let A be

a continual release graph algorithm A : G(𝑉 )𝑇 → (R𝑘 )𝑇 . Let 𝜀 > 0 and 𝛿 ≥ 0. The algorithm A is

item-level (respectively, event-level), (𝜀, 𝛿)-edge-DP, if for all item-level (respectively, event-level)

edge-neighboring dynamic graph sequences S ∈ G(𝑉 )𝑇 and S′ ∈ G(𝑉 )𝑇 and all Out ⊆ (R𝑘 )𝑇 :

Pr [(A(𝐺1, . . . ,𝐺𝑡 )𝑡≤𝑇 ∈ Out] ≤ 𝑒𝜀 Pr [(A(𝐺1, . . . ,𝐺𝑡 )𝑡≤𝑇 ∈ Out] + 𝛿. (1)

We use 𝜀-edge-DP as a shorthand for (𝜀, 0)-edge-DP.
In many works on DP graph algorithms, the first step is to design algorithms that require a

promise on the degree of the graph for the privacy guarantee. Jain et al. [43] call such algorithms

𝐷-restricted.

Definition 2.5 (𝐷-restricted differential privacy). Let 𝑉 be a set of nodes and 𝑘, 𝐷,𝑇 ∈ N. Let A
be a continual release graph algorithm G(𝑉 )𝑇 → (R𝑘 )𝑇 . Let 𝜀 > 0 and 𝛿 ≥ 0. The algorithm A is

𝐷-restricted, event-level, (𝜀, 𝛿)-edge differentially private (𝐷-restricted (𝜀, 𝛿)-edge-DP), if for all
event-level edge-neighboring dynamic graph sequences S,S′ ∈ G(𝑉 )𝑇 of maximum degree 𝐷 and

every Out ⊆ (R𝑘 )𝑇 :

Pr [(A(𝐺1, . . . ,𝐺𝑡 )𝑡≤𝑇 ∈ Out] ≤ 𝑒𝜀 Pr [(A(𝐺1, . . . ,𝐺𝑡 )𝑡≤𝑇 ∈ Out] + 𝛿.

2
We assume𝑇 is given to the algorithm. By a standard reduction [12], all our error bounds hold if𝑇 is not known in advance,

up to polylogarithmic factors in𝑇 .
3
To represent the case when 𝑒∗ is not updated after time step 𝑡1, we set 𝑡2 to𝑇 + 1. In that case, the requirements for this

time step in Item 3 should be ignored.
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The definition of 𝐷-restricted item-level is analogous.

(𝛼, 𝛽)-accuracy for graph functions. Let 𝑓 : G(𝑉 ) → R𝑘 . Let S = (𝐺1, . . . ,𝐺𝑇 ) with 𝐺𝑡 ∈ G(𝑉 )
be a dynamic graph sequence. A continual release graph algorithm A is (𝛼, 𝛽)-accurate for 𝑓 on S
if Pr

[
max𝑡 ∈[𝑇 ] ∥A(𝐺1, . . . ,𝐺𝑡 ) − 𝑓 (𝐺𝑡 )∥∞ > 𝛼

]
≤ 𝛽.

Definition 2.6 (Difference sequence). Let 𝑓 : G(𝑉 ) → R𝑘 . Let S = (𝐺1, . . . ,𝐺𝑇 ) be a dynamic

graph sequence on vertex set 𝑉 and 𝐺0 = (𝑉 , ∅). The difference sequence for 𝑓 is (𝑑 𝑓 (S, 𝑡))𝑡 ∈[𝑇 ] ,
where 𝑑 𝑓 (S, 𝑡) = 𝑓 (𝐺𝑡 ) − 𝑓 (𝐺𝑡−1) for 𝑡 ∈ [𝑇 ].

2.2 Problem Definitions
We consider the following functions on (simple) graphs. We use deg(𝑣) to denote the degree of a

node 𝑣 .

Definition 2.7 (Graph functions). Let 𝑁 ∈ N and 𝐺 = (𝑉 , 𝐸) be a graph with |𝑉 | = 𝑁 .

• EdgeCount: The function 𝑓edges maps a graph 𝐺 to the number of edges |𝐸 |.
• TriangleCount: The function 𝑓△ maps a graph 𝐺 to the number of triangles in 𝐺 : i.e.,

𝑓△ ((𝑉 , 𝐸)) = |{{𝑥, 𝑣,𝑢} ∈ 𝑉 3
: (𝑥,𝑢), (𝑢, 𝑣), (𝑣, 𝑥) ∈ 𝐸}|.

• HighDegree(𝜏): For each 𝜏 ∈ N≥0, the function 𝑓≥𝜏 maps a graph 𝐺 to the number of nodes

in 𝐺 of degree at least 𝜏 , i.e., 𝑓≥𝜏 (𝐺) = |{𝑣 ∈ 𝑉 : deg(𝑣) ≥ 𝜏}|.
• DegreeList:The function 𝑓deg maps a graph𝐺 to the list of node degrees: 𝑓deg (𝐺) = (deg(𝑣))𝑣∈𝑉 .
• DegreeHist: The function 𝑓degHist maps a graph𝐺 to the histogram (ℎ0, ℎ1, . . . , ℎ𝑁−1) of node
degrees, where ℎ 𝑗 = |{𝑣 ∈ 𝑉 : deg(𝑣) = 𝑗}| for all 𝑗 = {0, . . . , 𝑁 − 1}.

• MaximumMatching: The function 𝑓𝑀𝑀 maps a graph𝐺 to the size of the maximum matching

in 𝐺 .

• ConnectedComponents: The function 𝑓𝐶𝐶 maps a graph 𝐺 to the number of connected

components in 𝐺 .

We refer to Appendix A for additional privacy background.

3 Fully Dynamic Private Triangle Counting
This section presents algorithms and lower bounds for TriangleCount with event-level privacy and

a lower bound for item-level privacy.

3.1 Lower Bounds for Event-Level TriangleCount via SubmatrixQueries
In this section, we present the following theorem on the lower bounds on the error of fully dynamic,

event-level, edge-DP algorithms for TriangleCount.

Theorem 3.1 (Lower bounds for event-level TriangleCount). Let 𝑇, 𝑁, 𝐷 ∈ N be sufficiently
large. Then every event-level (0.1, 0.02)-edge-DP algorithm which is (𝛼, 1/6)-accurate for Triangle-
Count on all dynamic graph sequences with 𝑁 nodes and length𝑇 satisfies 𝛼 = Ω(min(𝑇, 3

√
𝑇𝑁 2, 𝑁 2)).

If the accuracy condition holds instead for all dynamic graph sequences with maximum degree 𝐷
and length 𝑇 then 𝛼 = Ω

(
min

(
𝑇 1/3𝐷2/3,𝑇 1/4𝐷

) )
.

As discussed in Section 1.2, our reduction relies on submatrix queries, defined next.

Definition 3.2 (Submatrix Query Problem). In the submatrix query problem, the data universe is

U = {0, 1}. A database𝑌 ∈ U𝑀
, where𝑀 = 𝑛2 for some𝑛 ∈ N, can be seen as an𝑛×𝑛 binary matrix,

where one data bit corresponds to one entry in the matrix. A submatrix query onU𝑀
is defined by

two vectors 𝑎, 𝑏 ∈ {0, 1}𝑛 and maps 𝑌 ∈ U𝑀
to 𝑎𝑇𝑌𝑏 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎[𝑖]𝑌 [𝑖, 𝑗]𝑏 [ 𝑗]. Submatrix(𝑛, 𝑘)

is the problem of answering 𝑘 submatrix queries of the form (𝑎, 𝑏), where 𝑎, 𝑏 ∈ {0, 1}𝑛 .
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Example 3.3. Let 𝑌 = (1 0 1 0 0 1 1 1 1). We have𝑀 = 9 and 𝑛 = 3. To answer a submatrix query

𝑎, 𝑏, where 𝑎 =

(
1

0

1

)
and 𝑏 =

(
1

1

0

)
, we compute 𝑎𝑇𝑌𝑏 = ( 1 0 1 )

(
1 0 1

0 0 1

1 1 1

) (
1

1

0

)
= 3.

Definition 3.4 (Accuracy for batch algorithms). Let 𝑘, 𝑛 ∈ N. LetU be a universe and 𝑓 : U𝑛 → R𝑘
a function. A randomized algorithm A is (𝛼, 𝛽)-accurate for 𝑓 , if for all databases 𝑦 ∈ U𝑛

and

𝑧 = 𝑓 (𝑦), it outputs 𝑎1, . . . , 𝑎𝑘 such that Pr[max

𝑖∈[𝑘 ]
|𝑎𝑖 − 𝑧𝑖 | > 𝛼] ≤ 𝛽, where the probability is taken

over the random coin flips of the algorithm.

The following lower bound is implicitly proved in [30] (Claim 3.5, Lemmas 3.8-3.10).

Lemma 3.5 (Submatrix Query lower bound). There exist constants 𝑐1 ≥ 1 and 𝑐2 > 0 such that,
for all large enough 𝑛 ∈ N, every (0.1, 0.02)-differentially private and (𝛼, 1/6)-accurate algorithm for
Submatrix(𝑛, 𝑐1𝑛2) satisfies 𝛼 > 𝑐2𝑛.

Lemma 3.6 (Reduction from submatrix qeries to TriangleCount). Let 𝑘, 𝑛 ∈ N. Let 𝑌 ∈
{0, 1}𝑛×𝑛 be a database and 𝑄 =

(
(𝑎 (𝑚) , 𝑏 (𝑚) )

)
𝑚∈[𝑘 ] , where each 𝑎

(𝑚) , 𝑏 (𝑚) ∈ {0, 1}𝑛 , be a sequence
of 𝑘 submatrix queries. Then for all𝑤 ∈ N, there exists a transformation from (𝑌,𝑄) to a dynamic
graph sequence (𝐺1, . . . ,𝐺𝑇 ) of 𝑁 -node graphs, where 𝑁 = 2𝑛 +𝑤 and 𝑇 = 𝑛2 + 4𝑘𝑛𝑤 , such that:

• For neighboring databases 𝑌,𝑌 ′ ∈ {0, 1}𝑛×𝑛 and a query sequence 𝑄 , the transformations of
(𝑌,𝑄) and (𝑌 ′, 𝑄) give graph sequences which are event-level, edge-neighboring;

• For all𝑚 ∈ [𝑘], the triangle count 𝑓△ (𝐺𝑡𝑚 ) = 𝑤 · (𝑎 (𝑚) )𝑇𝑌𝑏 (𝑚) , where 𝑡𝑚 = 𝑛2 + 2𝑛𝑤 (2𝑚 − 1).

Proof. Given a database𝑌 ∈ {0, 1}𝑛×𝑛 , we construct a graph sequence on 2𝑛+𝑤 nodes 𝑥1, . . . , 𝑥𝑛 ,

𝑣1, . . . , 𝑣𝑛 , and 𝑧1, . . . , 𝑧𝑤 , starting from graph 𝐺0 with no edges. We begin with an initialization

phase of 𝑛2 time steps: For all 𝑖, 𝑗 ∈ [𝑛], we insert the edge (𝑥𝑖 , 𝑣 𝑗 ) at time 𝑛𝑖 + 𝑗 if 𝑌 [𝑖, 𝑗] = 1;

otherwise, we do not perform an update at time 𝑛𝑖 + 𝑗 .

Next, for each 𝑚 ∈ [𝑘], we use 4𝑛𝑤 time steps to process query (𝑎 (𝑚) , 𝑏 (𝑚) ) as follows. Let
𝑠𝑚 = 𝑛2 + 4𝑛𝑤 (𝑚 − 1) be the time step right before we start processing this query. For all 𝑖 ∈ [𝑛], if
𝑎 (𝑚) [𝑖] = 1, then, for all ℓ ∈ [𝑤], we insert the edge (𝑥𝑖 , 𝑧ℓ ) at time 𝑠𝑚 + (𝑖 − 1)𝑤 + ℓ and delete it at
time 𝑠𝑚 + 2𝑛𝑤 + (𝑖 − 1)𝑤 + ℓ . Analogously, for all 𝑗 ∈ [𝑛], if 𝑏 (𝑚) [ 𝑗] = 1, then, for all ℓ ∈ [𝑤], we
insert the edge (𝑣 𝑗 , 𝑧ℓ ) at time 𝑠𝑚 + 𝑛𝑤 + ( 𝑗 − 1)𝑤 + ℓ and delete it at time 𝑠𝑚 + 3𝑛𝑤 + ( 𝑗 − 1)𝑤 + ℓ .

See Figure 1a.

Correctness. If 𝑌 and 𝑌 ′
differ in coordinate (𝑖, 𝑗) ∈ [𝑛] × [𝑛], then the corresponding constructed

graph sequences differ only in the presence or absence of the initial insertion of edge (𝑥𝑖 , 𝑣 𝑗 ) at
time step 𝑖𝑛 + 𝑗 . Thus, they are event-level, edge-neighboring. For each 𝑚 ∈ [𝑘], at time step

𝑡𝑚 = 𝑛2 + 4𝑛𝑤 (𝑚 − 1) + 2𝑛𝑤 = 𝑠𝑚 + 2𝑛𝑤 , the constructed graph has all edges (𝑥𝑖 , 𝑧ℓ ) corresponding
to the 1-entries of 𝑎 (𝑚)

and all edges (𝑣 𝑗 , 𝑧ℓ ) corresponding to the 1-entries of 𝑏 (𝑚)
. Further,

there exists an edge (𝑥𝑖 , 𝑣 𝑗 ) if and only if 𝑌 [𝑖, 𝑗] = 1. Thus, the number of triangles at time 𝑡𝑚

is equal to 𝑤 times the number of pairs (𝑖, 𝑗) satisfying 𝑎 (𝑚) [𝑖] = 𝑌 [𝑖, 𝑗] = 𝑏 (𝑚) [ 𝑗] = 1. That is,

𝑓△ (𝐺𝑡𝑚 ) = 𝑤 · 𝑎 (𝑚)𝑌𝑏 (𝑚)
.

Analysis. The initialization phase uses 𝑛2 time steps. Processing of each query uses 4𝑛𝑤 time

steps. Thus, 𝑇 = 𝑛2 + 4𝑘𝑛𝑤 . □

Lemma 3.7 (Reduction from submatrix qeries to TriangleCount, bounded degree). Let
𝑘, 𝑛 ∈ N. Let𝑌 ∈ {0, 1}𝑛×𝑛 be an input database and𝑄 =

(
(𝑎 (𝑚) , 𝑏 (𝑚) )

)
𝑚∈[𝑘 ] , where each𝑎

(𝑚) , 𝑏 (𝑚) ∈
{0, 1}𝑛 , be a sequence of 𝑘 submatrix queries. Then for all𝑤, 𝐵 ∈ N, where 𝐵 divides 𝑛, there exists a
transformation from (𝑌,𝑄) to a dynamic graph sequence (𝐺1, . . . ,𝐺𝑇 ) of 𝑁 -node graphs of maximum
degree 𝐷 = 2𝐵 +𝑤 , where 𝑁 = 2𝑛2

𝐵
+ 𝑛2𝑤

𝐵2
and 𝑇 = 𝑛2 + 4𝑘𝑤𝑛2

𝐵
, such that:
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(a) Proof of Lemma 3.6.
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(b) Proof of Lemma 3.7.

Fig. 1. An example of the construction in the proofs of Lemma 3.6 and Lemma 3.7 for 𝑛 = 4, 𝐵 = 2 and𝑤 = 5.

The input matrix is 𝑌 =

(
1 0 1 0

1 1 0 0

0 0 0 1

1 1 1 0

)
; the dashed lines show the edges inserted and then deleted for the query

(𝑎, 𝑏) with 𝑎𝑇 = (0 0 1 0) and 𝑏𝑇 = (0 1 0 1).

• For neighboring databases 𝑌,𝑌 ′ ∈ {0, 1}𝑛×𝑛 and a query sequence 𝑄 , the transformations of
(𝑌,𝑄) and (𝑌 ′, 𝑄) give graph sequences which are event-level, edge-neighboring;

• For all𝑚 ∈ [𝑘], the triangle count 𝑓△ (𝐺𝑡𝑚 ) = 𝑤 ·𝑎 (𝑚)𝑌𝑏 (𝑚) , where 𝑡𝑚 = 𝑛2+(𝑚−1) 4𝑛2𝑤
𝐵

+ 2𝑛2𝑤
𝐵

.

The proof of Lemma 3.7 (deferred to Appendix B) is similar to the proof of Lemma 3.6. The main

idea is to split the matrix 𝑌 into submatrices of size 𝐵 × 𝐵, such that the maximum degree of the

graph can be reduced. Figure 1b shows an example of the construction in the proof of Lemma 3.7.

Proof of Theorem 3.1. Let 𝑐1 be as in Lemma 3.5. First, we prove the lower bound in terms of

𝑇 and 𝑁 . Set𝑤 =
⌊
min

(
𝑁
3
, 𝑇−1

4

) ⌋
and 𝑛 =

⌊
min

(
𝑁
3
,
(

𝑇
4𝑤𝑐1+1

)
1/3

)⌋
. For answering 𝑘 = 𝑐1𝑛

2
queries,

the construction in Lemma 3.6 has 2𝑛 +𝑤 ≤ 𝑁 nodes and 𝑛2 + 4𝑐1𝑛
3𝑤 ≤ (4𝑐1𝑤 + 1)𝑛3 ≤ 𝑇 time

steps. We add 𝑁 − (2𝑛 + 𝑤) dummy nodes and 𝑇 − (𝑛2 + 4𝑐1𝑛
3) time steps without updates in

order to get a dynamic graph sequence of 𝑁 nodes and 𝑇 time steps. Let A be an event-level

(0.1, 0.01)-edge DP algorithm for TriangleCount which is (𝛼, 1
6
)-accurate for this graph sequence.

Then Lemma 3.6 gives an algorithm which, with probability at least
5

6
, has additive error at most

𝛼
𝑤

on all submatrix queries. Thus, by Lemma 3.5, we have
𝛼
𝑤
> 𝑐2𝑛 and therefore 𝛼 > 𝑐2𝑛𝑤 , where 𝑐2

is as in Lemma 3.5. Consider three cases:

(1) 𝑇 ≤ 𝑁 : Then𝑤 = Θ(𝑇 ) and 𝑛 = Θ(1), and the lower bound is Ω(𝑛𝑤) = Ω(𝑇 ).
(2) 𝑇 ∈ (𝑁, 𝑁 4

): Then 𝑤 = Θ(𝑁 ) and 𝑛 = Θ
(
𝑇
𝑁

)
1/3

, and the lower bound is Ω(𝑛𝑤) =

Ω(𝑇 1/3𝑁 2/3).
(3) 𝑇 ≥ 𝑁 4

: Then 𝑁 ≤ 𝑇 and 𝑁 ≤
(
𝑇
𝑁

)
1/3

, so 𝑤 = 𝑛 = Θ(𝑁 ), and the lower bound is

Ω(𝑛𝑤) = Ω(𝑁 2).
In all three cases, the lower bound is Ω(𝑛𝑤) = Ω(min(𝑇,𝑇 1/3𝑁 2/3, 𝑁 2)).
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Nowwe prove the lower bound in terms of𝑇 and𝐷 . Set𝑤 = ⌊𝐷/3⌋ and𝑛′ =
⌊
min

(
4

√︃
𝑇
5𝑐1

, 3

√︃
3𝑇

5𝐷𝑐1

)⌋
.

If 𝑛′ ≤ ⌊𝐷/3⌋, let 𝑛 = 𝑛′, else, let 𝑛 be an integer in [𝑛′ − ⌊𝐷/3⌋, 𝑛′] such that ⌊𝐷/3⌋ divides 𝑛.
Let 𝐵 = min(𝑛, ⌊𝐷/3⌋). For answering 𝑘 = 𝑐1𝑛

2
queries, the construction from Lemma 3.7 gives a

graphs sequence of maximum degree 𝐷 and length 𝑛2 + 4𝑐1𝑛
4𝑤

𝐵
≤ 5𝑐1𝑛

4𝑤

𝐵
≤ 𝑇 . We add extra dummy

time steps to get a graph sequence of length𝑇 . LetA be an event-level (0.1, 0.02)-edge DP algorithm
for TriangleCount which is (𝛼, 1/6)-accurate for this graph sequence. Then Lemma 3.7 gives a

(0.1, 0.01)-DP algorithm with additive error at most
𝛼
𝑤
on all submatrix queries. Then Lemma 3.5

implies 𝛼 > 𝑐2𝑤𝑛, where 𝑐2 is as in Lemma 3.5. Thus, 𝛼 = Ω
(
min

(
𝑇 1/4𝐷,𝑇 1/3𝐷2/3) )

. □

3.2 Event-Level Private Algorithm for Triangle Count
In this section, we present our fully dynamic event-level, edge-DP algorithm for triangle counting.

Our algorithmic results on this problem are summarized in the following theorem.

Theorem 3.8 (Upper bound for event-level TriangleCount). For all 𝜀, 𝛿, 𝛽 ∈ (0, 1) and 𝑇, 𝑁 ∈
N, there exists an event-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for TriangleCount on
all dynamic graph sequences with 𝑁 nodes and length 𝑇 , where

𝛼 = 𝑂

(
min

(√
𝑇𝑁

𝜀
(ln 1

𝛿
) log3/2 𝑇

𝛽
, 𝑁

(
𝑇

𝜀2
(ln 1

𝛿
) ln 𝑇

𝛽

)
1/3

, 𝑁 3

))
.

Further, for all dynamic graph sequences with degree at most 𝐷 , for 𝐷 ∈ N and 𝐷 ≤ 𝑁 , the algorithm
satisfies 𝛼 = 𝑂

(
min

(√
𝑇𝐷, 𝐷𝑇 1/3, 𝑁𝐷2

)
· poly

(
1

𝜀
log

𝑇𝑁
𝛽𝛿

))
.

The minimum expressions in the bounds in Theorem 3.8 are the result of selecting the best

algorithm for each setting of parameters. Later (in Corollary 5.3), wewill present item-level (and thus

also event-level) algorithms for triangle counting. The algorithm in this section, whose performance

is summarized in Theorem 3.9, has better error than the item-level edge-DP algorithm for the same

problem in Corollary 5.3 when the number of nodes is large: specifically, 𝑁 ≥ 𝑇 1/3
.

Theorem 3.9 (Event-level DP triangle count). For all 𝜀, 𝛿, 𝛽 ∈ (0, 1) and 𝑇, 𝑁, 𝐷 ∈ N, there
exists an event-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for TriangleCount on all
dynamic graph sequences with 𝑁 nodes, maximum degree 𝐷 and length 𝑇 , where 𝛼 = 𝑂 (

√
𝑇𝐷 ·

poly( 1
𝜀
log

𝑇𝑁
𝛽𝛿

)).

Theorem 3.9 follows from Lemma 3.10 that gives a 𝐷-restricted version of the algorithm and

Theorem 4.1 that gives a transformation from 𝐷-restricted to general algorithms. The 𝐷-restricted

version of the algorithm is based on running a binary tree mechanism on the difference sequence

of 𝑓△ (see Definition 2.6), combined with a careful analysis of the 𝐿2-sensitivity of the partial sums

used by the mechanism. The full proof is given in Appendix B.

Lemma 3.10 (𝐷-restricted private triangle count). Let 𝜀, 𝛿, 𝛽 ∈ (0, 1) and𝑇, 𝐷 ∈ N. There ex-
ists an event-level 𝐷-restricted (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for TriangleCount on

all dynamic graph sequences of maximum degree 𝐷 and length𝑇 , where 𝛼 = 𝑂

(
1

𝜀

√︃
𝑇𝐷 ln

1

𝛿
log

3/2 𝑇
𝛽

)
.

3.3 Lower Bound for Item-Level TriangleCount
In this section, we present the following theorem that gives a lower bound on triangle counting

with item-level edge-DP.
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Theorem 3.11 (Item-level lower bound for triangle count). For all 𝜀 ∈ (0, 1], 𝛿 ∈ [0, 1), and
sufficiently large 𝑇, 𝑁 ∈ N, every item-level, (𝜀, 𝛿)-edge DP algorithm for 𝑓△ which is (𝛼, 1

3
)-accurate

on all dynamic graph sequences with 𝑁 nodes and length 𝑇 satisfies

(1) if 𝛿 > 0 and 𝛿 = 𝑜 ( 1
𝑇
), then 𝛼 = Ω

(
min

(
𝑇 7/6

(𝜀 log𝑇 )1/3 ,
𝑁𝑇 1/3

𝜀2/3 log2/3𝑇
, 𝑁 3

))
.

(2) if 𝛿 = 0, then 𝛼 = Ω

(
min

(
𝑇 5/4

𝜀1/4
, 𝑁

√︃
𝑇
𝜀
, 𝑁 3

))
.

To prove the theorem, we give a reduction from the 1-way marginals problem in the batch model,

defined next.

Definition 3.12 (1-way marginals). Let 𝑑, 𝑛 ∈ N and let U = {0, 1}𝑑 . In the Marginals(𝑛,𝑑)
problem, the input is a database 𝑌 = (𝑌1, . . . , 𝑌𝑛) ∈ U𝑛

, and the goal is to compute the vector

(𝑞1 (𝑌 ), . . . , 𝑞𝑑 (𝑌 )), where 𝑞 𝑗 (𝑌 ) = 1

𝑛

∑𝑛
𝑖=1 𝑌𝑖 [ 𝑗] for all 𝑗 ∈ [𝑑].

A randomized algorithm A is (𝛼, 𝛽)-accurate for Marginals(𝑛,𝑑), if for all databases 𝑌 ∈
{{0, 1}𝑑 }𝑛 , it outputs 𝑎1, . . . , 𝑎𝑘 such that Pr[max𝑗∈[𝑘 ] |𝑎 𝑗 − 𝑞 𝑗 (𝑌 ) | > 𝛼] ≤ 𝛽, where the prob-

ability is taken over the random coin flips of the algorithm.

The following lower bound is taken from [42], which in turn is based on [11, 37].

Lemma 3.13 (Lower bound for Marginals [11, 37, 42]). For all 𝜀 ∈ (0, 1], 𝛿 ∈ [0, 1), 𝛼 ∈ (0, 1),
and 𝑑, 𝑛 ∈ N, every (𝜀, 𝛿)-DP algorithm that is

(
𝛼, 1

3

)
-accurate forMarginals(𝑛,𝑑) satisfies:

• if 𝛿 > 0 and 𝛿 = 𝑜
(
1

𝑛

)
, then 𝛼 = Ω

( √
𝑑

𝑛𝜀 log𝑑

)
.

• if 𝛿 = 0, then 𝛼 = Ω
(
𝑑
𝑛𝜀

)
.

The reduction from the 1-way marginals problem to item-level DP triangle count is given in

Lemma B.1 in the appendix. Due to space constraints and its similarity to the proof of Theorem 6.9,

the complete proof of Theorem 3.11 is deferred to the full version [59].

4 Transformation from Degree-Restricted to Private
In this section, we give our general transformation in the event-level setting from a 𝐷-restricted

edge-DP algorithm with an error bound that depends on 𝐷 to an edge-DP algorithm for all dynamic

graph sequences which has an error bound depending on the maximum degree of the sequence.

The error bounds are the same as for the 𝐷-restricted case, up to polynomial factors in
1

𝜀
log(𝑇𝑁

𝛽𝛿
).

Theorem 4.1. Let 𝑇, 𝑁, 𝑘 ∈ N and 𝑓 be a function G(𝑉 ) → R𝑘 . Let 𝛼 : N × (0, 1) → R+ be a
function of the degree 𝐷 and the error probability 𝛽 , such that 𝛼 (𝐷, 𝛽) is nondecreasing in 𝐷 and
nonincreasing in 𝛽 . If for all 𝛽 ∈ (0, 1), 𝜀 > 0, 𝐷 ∈ N, and 𝛿 ∈ [0, 1), there is an event-level 𝐷-restricted
(𝜀, 𝛿)-edge-DP algorithm A𝐷 which is (𝛼 (𝐷, 𝛽), 𝛽)-accurate for 𝑓 on all dynamic graph sequences
with 𝑁 nodes, maximum degree 𝐷 and length𝑇 , then for all 𝐷 ′ ∈ N, 𝜀′ > 0, 𝛿 ′ ∈ (0, 1) and 𝛽 ′ ∈ (0, 1),
there exists an event-level (𝜀′, 𝛿 ′)-edge DP algorithm for 𝑓 which is

(
𝛼

(
𝐷 ′′,min

(
𝛿 ′

2+2𝑒𝜀′ ,
𝛽 ′

2+log𝑁

))
, 𝛽 ′

)
-

accurate on all dynamic graph sequences with 𝑁 nodes, maximum degree 𝐷 ′, and length 𝑇 , where
𝐷 ′′ = 𝑂 (𝐷 ′ + log𝑇 ·log𝑁

𝜀′ log
𝑇𝑁 log𝑁

𝛽 ′𝛿 ′ ). The value 𝐷 ′ does not need to be given to the algorithm.

As one of the main tools, we first give an algorithm for accurately estimating the degree list of

a dynamic graph sequence. It is based on using a continual counting algorithm on the difference

sequence, similar to strategies in [33]. The proof of the lemma is deferred to the full version [59].

Lemma 4.2 (Algorithm for DegreeList). For all 𝑇, 𝑁, 𝐷 ∈ N, 𝜀 > 0, and 𝛽 ∈ (0, 1), there exists
an event-level 𝜀-edge-DP algorithm for DegreeList which is (𝛼, 𝛽)-accurate on all dynamic 𝑁 -node
graph sequences of length 𝑇 , where 𝛼 = 𝑂

(
log𝑇

𝜀
log

𝑇𝑁
𝛽

)
.
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The main idea in the proof of Theorem 4.1 is to keep a running estimate of the maximum degree,

and run the corresponding degree restricted mechanism, until the maximum degree increases

significantly. We then re-initialize a new restricted mechanism with a higher degree bound. The

full proof is given in Appendix C.

5 Algorithms Based on Recomputing at Regular Intervals
In this section, we collect error bounds which follow from the recomputing strategy, i.e., recomputing

the answer every fixed number of time steps and returning the most recently computed answer

at ever time step. First, we give Theorem 5.1 on item-level algorithms for functions with known

sensitivity. It generalizes Theorems E.2 and E.5 in [42] (stated there for functions of sensitivity

1) to higher-dimensional functions and adapts them for graph functions. The proof is given in

Appendix D.

Theorem 5.1 (Releasing low sensitivity functions). Let 𝑉 be a set of nodes, 𝑟 > 0 be a range
parameter, and 𝑘 ∈ N be the dimension. Let 𝑓 be a function 𝑓 : G(𝑉 ) → [0, 𝑟 ]𝑘 of 𝐿𝑝 -sensitivity
Δ𝑝 (w.r.t. the edge-neighboring metric in static graphs) for all 𝑝 ∈ {1, 2}. For all 𝜀 > 0, 𝛿 ∈ [0, 1),
𝛽 ∈ (0, 1), there exists an item-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for estimating
𝑓 on all dynamic graph sequences of length 𝑇 ∈ N, satisfying the following accuracy guarantee:

(1) if 𝛿 = 0, then 𝛼 = 𝑂

(
min

(
Δ1 ·

√︃
𝑇
𝜀
ln

𝑇𝑘
𝛽
, 𝑟

))
;

(2) if 𝛿 > 0, then 𝛼 = 𝑂

(
min

(
Δ2 · 3

√︃
𝑇
𝜀2
(ln 𝑇𝑘

𝛽
) ln 1

𝛿
, 𝑟

))
.

Theorem 5.1 immediately yields the following corollary for functions with constant sensitiv-

ity, including EdgeCount, HighDegree, MaximumMatching, MinCut, ConnectedComponents,
DegreeHist,DegreeList.

Corollary 5.2 (Item-level algorithms). Let C be the class of functions of constant sensitivity
from graphs to [0, 𝑁 ] (that includes 𝑓≥𝜏∀𝜏 ∈ N, 𝑓𝑀𝑀 , 𝑓𝑀𝐶 , and 𝑓𝐶𝐶 ) and C𝑁 be the class of functions
from graphs to real-valued vectors of length 𝑂 (𝑁 ) with entries in [0, 𝑁 ] (that includes DegreeHist
and DegreeList). For all 𝜀 > 0, 𝛿 ∈ [0, 1), 𝛽 ∈ (0, 1), 𝜏 ∈ N and𝑇 ∈ N and 𝑓 ∈ C ∪ C𝑁 , there exists an
item-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for 𝑓 on all dynamic graph sequences of
length 𝑇 such that 𝛼 = 𝑂 (min(𝛼 ′, 𝑁 2)) for 𝑓edges and 𝛼 = 𝑂 (min(𝛼 ′, 𝑁 )) for all 𝑓 ∈ C ∪ C𝑁 , where

(1) if 𝛿 = 0, then 𝛼 ′ =
√︃

𝑇
𝜀
ln

𝑇
𝛽
for 𝑓edges and all 𝑓 ∈ C, and 𝛼 ′ =

√︃
𝑇
𝜀
ln

𝑇𝑁
𝛽

for all 𝑓 ∈ C𝑁 .

(2) if 𝛿 > 0, then 𝛼 ′ = 3

√︃
𝑇
𝜀2
(ln 𝑇

𝛽
) ln 1

𝛿
for 𝑓edges and all 𝑓 ∈ C, and 𝛼 ′ = 3

√︃
𝑇
𝜀2
(ln 𝑇𝑁

𝛽
) ln 1

𝛿
for all

𝑓 ∈ C𝑁 .

By Theorem 5.1, there exists a 𝐷-restricted item-level (and therefore also event-level), 𝜀-edge-DP

algorithm for fully dynamic triangle count which is (𝛼, 𝛽)-accurate with 𝛼 = 𝑂

(
𝐷
√︃

𝑇
𝜀
ln

𝑇
𝛽

)
, and a

𝐷-restricted, event-level, (𝜀, 𝛿)-edge-DP algorithm for fully dynamic triangle count which is (𝛼, 𝛽)-
accurate with 𝛼 = 𝑂

(
𝐷 · 3

√︃
𝑇
𝜀2
(ln 𝑇

𝛽
) ln 1

𝛿

)
. (Observe that when 𝐷 is set to 𝑁 , every 𝐷-restricted

algorithm becomes edge-DP because the promise on the degree becomes vacuous.) Together with

Theorem 4.1, we get the following corollary.

Corollary 5.3 (Triangle count, recomputing bound). Let 𝜀 > 0 and 𝛿, 𝛽 ∈ (0, 1). Let
𝑇, 𝑁, 𝐷 ∈ N. There exist an event-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-accurate for Trian-
gleCount on all dynamic graph sequences with 𝑁 nodes, maximum degree 𝐷 and length 𝑇 , where
𝛼 = 𝑂

(
𝑇 1/3𝐷 · poly

(
1

𝜀
log

𝑇𝑁
𝛿𝛽

))
. There exist an item-level (𝜀, 𝛿)-edge-DP algorithm which is (𝛼, 𝛽)-

accurate for TriangleCount on all dynamic graph sequences with 𝑁 nodes and length 𝑇 , where
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fMM fCC −f≥1
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Fig. 2. 2-edge distinguishing gadgets for 𝑓𝑀𝑀 , 𝑓𝐶𝐶 and −𝑓≥1 of constant size and weight. Note that for 𝑓𝑀𝑀 ,
we have 𝑒1, 𝑒2 ∉ 𝐸′, and for 𝑓𝐶𝐶 and −𝑓≥1, we have 𝑒1, 𝑒2 ∈ 𝐸′.

(1) if 𝛿 = 0, then 𝛼 = 𝑂

(
min

(
min(𝑇, 𝑁 ) ·

√︃
𝑇
𝜀
ln

𝑇
𝛽
, 𝑁 3

))
.

(2) if 𝛿 > 0, then 𝛼 = 𝑂

(
min

(
min(𝑇, 𝑁 ) · 3

√︃
𝑇
𝜀2
(ln 𝑇

𝛽
) ln 1

𝛿
, 𝑁 3

))
.

6 A Lower Bound Framework for DP Fully Dynamic Algorithms
We start this section by defining terminology and gadgets used in our lower bound framework.

In Section 6.1 (respectively, Section 6.2), we present a general theorem for proving event-level

(respectively, item-level) lower bounds for fully dynamic graph algorithms.

Let G denote the set of all graphs, and let 𝑓 : G → R be a real-valued graph function. Our

framework applies to additive graph functions, which have a distinguishing gadget, defined next.

Definition 6.1 (Additive graph function). A function 𝑓 is additive if for each graph𝐺 consisting of

the connected components 𝐶1, . . . ,𝐶𝑚 , we have 𝑓 (𝐺) =
∑

𝑖∈[𝑚] 𝑓 (𝐶𝑖 ).
Definition 6.2 (Distinguishing gadget). Let 𝐻 = (𝑉 ′, 𝐸′) be a graph and 𝑒1, 𝑒2 ∈ 𝑉 ′ × 𝑉 ′

. Set

𝑛𝑔 = |𝑉 ′ | and𝑚𝑔 = |𝐸′ |. The pair (𝐻, 𝑒1) is called a 1-edge distinguishing gadget for 𝑓 of size (𝑛𝑔,𝑚𝑔)
and weight𝑤 if either

• 𝑒1 ∉ 𝐸′
and 𝑓 ((𝑉 ′, 𝐸′ ∪ {𝑒1})) = 𝑓 (𝐻 ) +𝑤 or

• 𝑒1 ∈ 𝐸′
and 𝑓 ((𝑉 ′, 𝐸′ \ {𝑒1})) = 𝑓 (𝐻 ) +𝑤 .

The triple (𝐻, 𝑒1, 𝑒2) is called a 2-edge distinguishing gadget for 𝑓 of size (𝑛𝑔,𝑚𝑔) and weight𝑤 , if

either

• 𝑒1, 𝑒2 ∉ 𝐸′
and 𝑓 ((𝑉 ′, 𝐸′ ∪ {𝑒1, 𝑒2})) = 𝑓 (𝐻 ) +𝑤 and 𝑓 ((𝑉 ′, 𝐸′ ∪ {𝑒1})) = 𝑓 ((𝑉 ′, 𝐸′ ∪ {𝑒2})) =

𝑓 (𝐻 ) or
• 𝑒1, 𝑒2 ∈ 𝐸′

and 𝑓 ((𝑉 ′, 𝐸′ \ {𝑒1, 𝑒2})) = 𝑓 (𝐻 ) +𝑤 and 𝑓 ((𝑉 ′, 𝐸′ \ {𝑒1})) = 𝑓 ((𝑉 ′, 𝐸′ \ {𝑒2})) =
𝑓 (𝐻 ).

If there exists a distinguishing gadget for 𝑓 , we say that 𝑓 has a distinguishing gadget. Examples of

distinguishing gadgets are illustrated in Figure 2.

Lemma 6.3. If 𝑓 has a 2-edge distinguishing gadget of size (𝑛𝑔,𝑚𝑔) and weight𝑤 , then 𝑓 also has a
1-edge distinguishing gadget of size (𝑛𝑔,𝑚𝑔 + 1) or (𝑛𝑔,𝑚𝑔 − 1) and weight𝑤 .

6.1 Framework for Event-Level Lower Bounds
In this section, we state and prove Theorem 6.4 that encapsulates our lower bound framework

for event-level DP. We also apply our framework to specific problems, stating the resulting lower

bounds in Corollary 6.8.

Theorem 6.4 (Event-level lower bound for 2-edge distinguishing). Let 𝑓 : G(𝑉 ) → R
be an additive function with a 2-edge distinguishing gadget of size (𝑛𝑔,𝑚𝑔) and weight𝑤 for some
𝑛𝑔,𝑚𝑔,𝑤 ∈ N. Then, for all sufficiently large 𝑇, 𝑁 ∈ N, every event-level, (1, 1/3)-edge DP algorithm
which is (𝛼, 0.01)-accurate for 𝑓 on all dynamic graph sequences with 𝑁 nodes and length 𝑇 has error
𝛼 = Ω

(
𝑤 ·min

(
𝑇 1/4,

√︃
𝑇
𝑚𝑔

,
√︃

𝑁
𝑛𝑔

))
.
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We prove Theorem 6.4 via a reduction to the inner product problem, defined next.

Definition 6.5 (Inner product). In the inner product problem, the data universe is U = {0, 1}. An
inner product query onU𝑛

is defined by a vector 𝑞 ∈ {0, 1}𝑛 and maps 𝑦 ∈ U𝑛
to 𝑞 ·𝑦. The problem

InnerProd(𝑛, 𝑘) is the problem of answering 𝑘 inner product queries 𝑞 (1) , . . . , 𝑞 (𝑘 ) ∈ {0, 1}𝑛 .

The following formulation of the lower bound is based on [41], which is in turn based on

[17, 20, 26, 51].

Lemma 6.6 (Inner Product lower bound). There exist constants 𝑐1 ≥ 1 and 𝑐2 > 0 such that,
for all large enough 𝑛 ∈ N, every (1, 1/3)-DP and (𝛼, 0.01)-accurate algorithm for InnerProd(𝑛, 𝑐1𝑛)
satisfies 𝛼 > 𝑐2

√
𝑛.

Lemma 6.7 (Reduction from Inner Product for event-level). Let 𝑛, 𝑘 ∈ N. Let 𝑦 ∈ {0, 1}𝑛
and 𝑄 = (𝑞 (𝑖 ) )𝑖∈[𝑘 ] , where each 𝑞 (𝑖 ) ∈ {0, 1}𝑛 , be a sequence of 𝑘 inner product queries. Then for
all 𝑛𝑔,𝑚𝑔,𝑤 ∈ N and each additive function 𝑓 : G(𝑉 ) → R with a 2-edge distinguishing gadget of
size (𝑛𝑔,𝑚𝑔) and weight 𝑤 , there exists a transformation from (𝑦,𝑄) to a dynamic graph sequence
(𝐺1, . . . ,𝐺𝑇 ) of 𝑁 -node graphs, where 𝑇 = (𝑚𝑔 + 2𝑘)𝑛 and 𝑁 = 𝑛𝑔𝑛, such that

• For neighboring 𝑦,𝑦′ ∈ {0, 1}𝑛 and the same query sequence 𝑄 , the transformations of (𝑦,𝑄)
and (𝑦′, 𝑄) give event-level, edge-neighboring graph sequences;

• Let 𝑡0 = (𝑚𝑔 + 1)𝑛. For all ℓ ∈ [𝑘] and 𝑡ℓ = (𝑚𝑔 + 2ℓ)𝑛, we have 𝑓 (𝐺𝑡ℓ ) − 𝑓 (𝐺𝑡0 ) = 𝑤𝑦 · 𝑞 (ℓ ) .

Proof. Let 𝐻 = (𝑉 ′, 𝐸′) and (𝐻, 𝑒1, 𝑒2) be a 2-edge distinguishing gadget of size (𝑛𝑔,𝑚𝑔) of
weight𝑤 for 𝑓 . W.l.o.g. assume 𝑒1, 𝑒2 ∉ 𝐸′

. We define a graph sequence on 𝑛 · 𝑛𝑔 nodes as follows:
In an initialization phase, we build 𝑛 copies of 𝐻 , denoted 𝐻 (1) , . . . , 𝐻 (𝑛)

, using𝑚𝑔𝑛 time steps. For

a vertex pair 𝑒 in 𝐻 and 𝑗 ∈ [𝑛], let 𝑒 ( 𝑗 ) denote the copy of 𝑒 in 𝐻 ( 𝑗 )
. For every 𝑗 ∈ [𝑛], if 𝑦 [ 𝑗] = 1,

insert edge 𝑒
( 𝑗 )
1

at time step𝑚𝑔𝑛 + 𝑗 (otherwise, do nothing at that time step).

For each query vector 𝑞 (ℓ )
, where ℓ ∈ [𝑘], we first have an insertion phase, where for all 𝑗 ∈ [𝑛],

if 𝑞 (ℓ ) [ 𝑗] = 1, then we insert edge 𝑒
( 𝑗 )
2

into 𝐻 ( 𝑗 )
at time 𝑡0 + 2(ℓ − 1)𝑛 + 𝑗 ; otherwise, we do nothing

at that time step. For all but the last query, the insertion phase is followed by the deletion phase,
where the edges that were inserted in the insertion phase are deleted over 𝑛 time steps.

Correctness. If 𝑦,𝑦′ ∈ {0, 1}𝑛 are neighboring input vectors differing in coordinate 𝑖∗, then the

resulting graph sequences for (𝑦,𝑄) and (𝑦′, 𝑄) differ only in the absence or presence of the initial

insertion of 𝑒
(𝑖∗ )
1

. Thus, they are event-level, edge-neighboring. The insertion phase for the ℓth

query ends at time step 𝑡ℓ = (𝑚𝑔 + 2ℓ)𝑛. At that time step, for all 𝑖 ∈ [𝑛], the copy 𝐻 (𝑖 )
contains

both 𝑒
(𝑖 )
1

and 𝑒
(𝑖 )
2

if and only if 𝑦 [𝑖] = 𝑞 [𝑖] = 1. Thus, 𝑓 (𝐺𝑡ℓ ) = 𝑓 (𝐺𝑡0 ) +𝑤 · 𝑦 · 𝑞.
Analysis. The initialization phase uses (𝑚𝑔 + 1)𝑛 time steps. Each of the 𝑘 insertion phases and

𝑘−1 deletion phases uses 𝑛 time steps. Thus,𝑇 = (𝑚𝑔+2𝑘)𝑛. There are 𝑛 ·𝑛𝑔 nodes in the graph. □

Proof of Theorem 6.4. Let 𝑐1, 𝑐2 be as in Lemma 6.6. Given𝑇 and𝑁 , set𝑛 = min

(√︃
𝑇
4𝑐1

, 𝑇
2𝑚𝑔

, 𝑁
𝑛𝑔

)
.

Then for each 𝑦 ∈ {0, 1}𝑛 and 𝑘-query sequence𝑄 , where 𝑘 = 𝑐1𝑛, the transformation in Lemma 6.7

gives a sequence with at most 2𝑐1𝑛
2 +𝑚𝑔𝑛 ≤ 𝑇 time steps and at most 𝑁 nodes. We can add

dummy nodes and time steps to get a sequence of exactly 𝑇 time steps and 𝑁 nodes. If we can

estimate 𝑓 (𝐺𝑡 ) up to error 𝛼 at all time steps with probability at least 1 − 0.01, then with the

same probability, we can estimate 𝑦 · 𝑞 (𝑚) =
𝑓 (𝐺𝑡𝑤 )−𝑓 (𝐺𝑡

0
)

𝑤
up to error

2𝛼
𝑤

for all𝑚 ∈ [𝑘]. Thus,
𝛼 ≥ 𝑤 ·

√
𝑛 · 𝑐2

2
= Ω

(
𝑤 ·min

(
𝑇 1/4,

√︃
𝑇
𝑚𝑔

,
√︃

𝑁
𝑛𝑔

))
. □

6.1.1 Event-Level Lower Bounds for Specific Problems. Theorem 6.4 yields the following corollary

forMaximumMatching, ConnectedComponents, HighDegree(𝜏), and DegreeHist.
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Corollary 6.8 (Event-level lower bounds). Let 𝜏 ∈ N and 𝑓 ∈ {𝑓𝑀𝑀 , 𝑓𝐶𝐶 , 𝑓≥𝜏 , 𝑓degHist}.
Then, for all sufficiently large 𝑇, 𝑁 ∈ N, every event-level, (1, 1/3)-edge DP algorithm which is
(𝛼, 0.01)-accurate for 𝑓 on all dynamic graph sequences with 𝑁 nodes and length 𝑇 has error 𝛼 =

Ω
(
min

(
𝑇 1/4,

√
𝑁

))
.

Proof. Using the gadgets illustrated in Figure 2 in Theorem 6.4 gives the stated bound for

MaximumMatching,ConnectedComponents, andHighDegree(1). The lower bound forDegreeHist
is inherited from the lower bound on HighDegree(1): one of the entries in the degree histogram of

a graph 𝐺 = (𝑉 , 𝐸) is the number of isolated nodes, which is |𝑉 | − 𝑓≥1 (𝐺).
Finally, the lower bound for 𝑓≥𝜏 for 𝜏 ≥ 2 is inherited from the lower bound for 𝑓≥1. Fix 𝜏 ≥ 2.

We can reduce from fully dynamic 𝑓≥1 to fully dynamic 𝑓≥𝜏 as follows. Let S = (𝐺1, . . . ,𝐺𝑇 ) be a
dynamic graph sequence on vertex set 𝑉 of size 𝑁 ≥ 2. We construct a new graph sequence S𝜏 on

nodes 𝑉 ∪𝑈 , where 𝑈 is disjoint from 𝑉 and |𝑈 | = 𝜏 − 1. We initialize S𝜏 by inserting a complete

bipartite graph on𝑈 ×𝑉 and a complete graph on𝑈 . This takes 𝑡0 = (𝜏 − 1) (𝑁 + 𝜏−2
2
) time steps.

Then we proceed with the same updates on𝑉 as in S. The resulting sequence S𝜏 is on graphs with

𝑁𝜏 = 𝑁 + 𝜏 nodes and has length 𝑇𝜏 = 𝑡0 +𝑇 . Let S𝜏 = (𝐻1, . . . , 𝐻𝑇𝜏 ).
In 𝐻𝑡0 (at the end of initialization), all vertices from 𝑈 have degree 𝜏 + |𝑉 | − 2 ≥ 𝜏 , and all

vertices from 𝑉 have degree 𝜏 − 1. For all 𝑡 ∈ [𝑇 ], we have 𝑓≥1 (𝐺𝑡 ) = 𝑓≥𝜏 (𝐻𝑡0+𝑇 ) − (𝜏 − 1). This
transformation preserves event-level (as well as item-level) edge-neighboring relationship. Since

𝑁𝜏 = Θ(𝑁 ) and 𝑇𝜏 = Θ(𝑇 ), the additive error lower bound for 𝑓≥1 applies to 𝑓≥𝜏 . □

6.2 Framework for Item-Level Lower Bounds
In this section, we state Theorem 6.9 that encapsulates our lower bound framework for item-level

DP. We also apply our framework to specific problems in Section 6.2.1.

Theorem 6.9 (Item-level lower bound for 1-edge distinguishing). Let 𝑓 : G(𝑉 ) → R
be an additive function with a 1-edge distinguishing gadget of size (𝑛𝑔,𝑚𝑔) and weight𝑤 for some
𝑛𝑔,𝑚𝑔,𝑤 ∈ N. Then, for all 𝜀 ∈ (0, 1], 𝛿 ∈ [0, 1), and sufficiently large 𝑇, 𝑁 ∈ N, every item-level,
(𝜀, 𝛿)-edge DP algorithm which is (𝛼, 1

3
)-accurate for 𝑓 on all dynamic graph sequences with 𝑁 nodes

and length 𝑇 satisfies

(1) if 𝛿 > 0 and 𝛿 = 𝑜 ( 1
𝑇
), then 𝛼 = Ω

(
𝑤 ·min

(
𝑇 1/3

𝜀2/3 log2/3𝑇
, 𝑇
𝑚𝑔

, 𝑁
𝑛𝑔

))
.

(2) if 𝛿 = 0, then 𝛼 = Ω

(
𝑤 ·min

(√︃
𝑇
𝜀
, 𝑇
𝑚𝑔

, 𝑁
𝑛𝑔

))
.

We prove Theorem 6.9 by reducing from the Marginals problem (Definition 3.12).

Lemma 6.10 (Reduction from Marginals for item-level). Let 𝑛,𝑑 ∈ N and 𝑌 ∈ {{0, 1}𝑑 }𝑛 .
Then for all 𝑛𝑔,𝑚𝑔,𝑤 ∈ N and each additive function 𝑓 : G(𝑉 ) → R with a 1-edge distinguishing
gadget of size (𝑛𝑔,𝑚𝑔) and weight𝑤 , there exists a transformation from𝑌 to a dynamic graph sequence
(𝐺1, . . . ,𝐺𝑇 ) of 𝑁 -node graphs, where 𝑇 = (𝑚𝑔 + 2𝑑)𝑛 and 𝑁 = 𝑛𝑔𝑛, such that

• The trasformations of neighboring 𝑌,𝑌 ′ ∈ {{0, 1}𝑑 }𝑛 give item-level, edge-neighboring graph
sequences;

• Let 𝑡0 = (𝑚𝑔 + 1)𝑛. For all 𝑗 ∈ [𝑑] and 𝑡 𝑗 = (𝑚𝑔 + 2 𝑗)𝑛, we have 𝑓 (𝐺𝑡 𝑗 ) − 𝑓 (𝐺0) = 𝑤
∑𝑛

𝑖=1 𝑌𝑖 [ 𝑗].
The proofs of Lemma 6.10 and Theorem 6.9 (deferred to Appendix E) are similar to the proofs of

Lemma 6.7 and Theorem 6.4.

6.2.1 Item-Level Lower Bounds for Specific Problems. Using the 2-edge distinguishing gadgets from
Figure 2 together with Lemma 6.3 on converting 2-edge distinguishing gadgets to 1-edge distinguish-

ing, we immediately get the following corollary forMaximumMatching, ConnectedComponents,
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and HighDegree(1) from Theorem 6.9. By the same reasoning as in the proof of Corollary 6.8, this

lower bound also applies to DegreeHist and to HighDegree(𝜏) for 𝜏 ≥ 2.

Corollary 6.11 (Item-level lower bounds). Let 𝜏 ∈ N and 𝑓 ∈ {𝑓𝑀𝑀 , 𝑓𝐶𝐶 , 𝑓≥𝜏 , 𝑓degHist}. Then,
for all 𝜀 ∈ (0, 1], 𝛿 ∈ [0, 1), and sufficiently large 𝑇, 𝑁, 𝐷 ∈ N, every item-level, (𝜀, 𝛿)-edge DP
algorithm which is (𝛼, 1

3
)-accurate for 𝑓 on all dynamic graph sequences with 𝑁 nodes and length 𝑇

satisfies

(1) if 𝛿 > 0 and 𝛿 = 𝑜 ( 1
𝑇
), then 𝛼 = Ω

(
min

(
𝑇 1/3

𝜀2/3 log2/3𝑇
,𝑇 , 𝑁

))
.

(2) if 𝛿 = 0, then 𝛼 = Ω

(
min

(√︃
𝑇
𝜀
,𝑇 , 𝑁

))
.

Next, we prove the item-level lower bound for EdgeCount. It cannot be obtained as a direct

corollary of Theorem 6.9 because the gadgets we use for this problem overlap, but otherwise it

follows a similar proof strategy and yields a similar-looking (albeit not exactly the same) bound.

Theorem 6.12 (Item-level lower bound for edge count). For all 𝜀 ∈ (0, 1], 𝛿 ∈ [0, 1), and
sufficiently large𝑇, 𝑁 ∈ N, every item-level, (𝜀, 𝛿)-edge DP algorithm for 𝑓edges which is (𝛼, 1

3
)-accurate

on all dynamic graph sequences with 𝑁 nodes and length 𝑇 satisfies

(1) if 𝛿 > 0 and 𝛿 = 𝑜 ( 1
𝑇
), then 𝛼 = Ω

(
min

(
𝑇 1/3

𝜀2/3 log2/3𝑇
, 𝑁 2

))
.

(2) if 𝛿 = 0, then 𝛼 = Ω

(
min

(√︃
𝑇
𝜀
, 𝑁 2

))
.

As in the general framework of Theorem 6.9, we reduce from Marginals (recall Definition 3.12).

Lemma 6.13 (Reduction from Marginals to EdgeCount). Let 𝑛,𝑑 ∈ N and 𝑌 ∈ {{0, 1}𝑑 }𝑛 .
Then there exists a transformation from𝑌 to a dynamic graph sequence (𝐺1, . . . ,𝐺𝑇 ) of 𝑁 -node graphs,
where 𝑇 = 2𝑛𝑑 and 𝑁 = ⌈

√
𝑛⌉, such that

• The transformations of neighboring 𝑌,𝑌 ′ ∈ {{0, 1}𝑑 }𝑛 give item-level, edge-neighboring graph
sequences;

• For all 𝑗 ∈ [𝑑], we have 𝑓edges (𝐺𝑡 𝑗 ) =
∑𝑛

𝑖=1 𝑌𝑖 [ 𝑗], where 𝑡 𝑗 = (2 𝑗 − 1)𝑛.

Proof. We define a set 𝑉 of ⌈
√
𝑛⌉ nodes. 𝑉 has at least 𝑛 node pairs. We give them an arbitrary

order 𝑒1, . . . , 𝑒⌈
√
𝑛⌉2 . In particular, there exist the node pairs 𝑒1, . . . , 𝑒𝑛 .

For all 𝑗 ∈ [𝑑] and all 𝑖 ∈ [𝑛], if 𝑌𝑖 [ 𝑗] = 1, then we insert 𝑒𝑖 at time 2( 𝑗 − 1)𝑛 + 𝑖; otherwise, we
do nothing at that time step. For all 𝑗 ∈ [𝑑 − 1] and all 𝑖 ∈ [𝑛], we delete 𝑒𝑖 at time (2 𝑗 − 1)𝑛 + 𝑖 .
Correctness. If 𝑌 and 𝑌 ′

are neighboring input databases differing in row 𝑖∗, then the resulting

graph sequences for 𝑌 and 𝑌 ′
differ only in insertions and deletions related to 𝑒𝑖 . Thus, they are

item-level, edge-neighboring. At time step 𝑡 𝑗 = (2 𝑗 − 1)𝑛, the graph 𝐺𝑡 𝑗 includes an edge 𝑒𝑖 if and

only if 𝑌𝑖 [ 𝑗] = 1. Thus, the total edge count is equal to

∑𝑛
𝑖=1 𝑌𝑖 [ 𝑗]. □

The proof of Theorem 6.12 (deferred to the full version [59]) is similar to the proof of Theorem 6.9.

Remark 1. DegreeList inherits lower bounds from EdgeCount, except that 𝑁 gets replaced with√
𝑁 . This holds both for event-level and item-level edge DP. This is because there is a direct reduction

from fully dynamic 𝑓edges to fully dynamic DegreeList that converts each dynamic graph sequences S
on 𝑁 nodes of length 𝑇 to a dynamic graph sequences S′ on

(
𝑁
2

)
+ 1 nodes of the same length. Given a

vertex set 𝑉 of S, the vertex set 𝑉 ′ of S′ is defined as {𝑢} ∪ {𝑣𝑒 : 𝑒 ∈ 𝑉 ×𝑉 }. Then each update on an
edge 𝑒 in S is replaced with the same time of update on the edge (𝑢, 𝑣𝑒 ) in S′. At every time step, the
degree of 𝑢 in S′ is equal to the edge count in S. Moreover, this reduction preserves event-level and
item-level neighbor relationships.
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A Privacy Background
Let U be a universe of data items and 𝑛 ∈ N. A database over U of size 𝑛 is an 𝑛-tuple of elements

fromU. We use U∗
to denote the set of all databases (of all sizes) over U.

Definition A.1 (Neighboring databases). Two databases 𝑥,𝑦 ∈ U𝑛
are neighboring, denoted 𝑥 ∼ 𝑦,

if there is an 𝑖 ∈ [𝑛] such that 𝑥 [𝑖] ≠ 𝑦 [𝑖], and 𝑥 [ 𝑗] = 𝑦 [ 𝑗] for all 𝑗 ∈ [𝑛] \ {𝑖}.

Definition A.2 (Differential privacy [22, 24]). Let A be an algorithm which takes as input a

database overU. Let 𝜀 > 0 and 𝛿 ∈ [0, 1). Algorithm A is (𝜀, 𝛿)-differentially private ((𝜀, 𝛿)-DP) if
for all neighboring databases 𝑥,𝑦 ∈ U∗

and all Out ⊆ range(A),
Pr[A(𝑥) ∈ Out] ≤ 𝑒𝜀 Pr[A(𝑦) ∈ Out] + 𝛿.

If A is (𝜀, 𝛿)-differentially private for 𝛿 = 0, it is also called 𝜀-differentially private (𝜀-DP).

Definition A.3 (Sensitivity). Let 𝑘 ∈ N, and 𝑓 : U∗ → R𝑘 be a function. Let 𝑝 ∈ {1, 2}. The
𝐿𝑝 -sensitivity of 𝑓 , denoted by Δ𝑝 , is defined as Δ𝑝 = max𝑥∼𝑦 ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥𝑝 .

Definition A.4 (Important probability distributions). The Laplace distribution centered at 0 with

scale 𝑏 is the distribution with probability density function 𝑓Lap(𝑏 ) (𝑥) = 1

2𝑏
exp

(
−|𝑥 |
𝑏

)
. We use

𝑌 ∼ Lap(𝑏) or just Lap(𝑏) to denote a random variable 𝑌 distributed according to 𝑓Lap(𝑏 ) (𝑥). The
normal distribution centered at 0 with variance 𝜎2

is the distribution with the probability density

function 𝑓𝑁 (0,𝜎2 ) (𝑥) = 1

𝜎
√
2𝜋

exp

(
− 𝑥2

2𝜎2

)
. We use 𝑌 ∼ 𝑁 (0, 𝜎2) or sometimes just 𝑁 (0, 𝜎2) to denote

a random variable 𝑌 distributed according to 𝑓𝑁 (0,𝜎2 ) .

Lemma A.5 (Laplace Mechanism [24]). Let 𝑘 ∈ N and 𝜀 > 0 and 𝑓 : U∗ → R𝑘 be a function
with 𝐿1-sensitivity Δ1. The Laplace mechanism is defined as A(𝑥) = 𝑓 (𝑥) + (𝑌1, . . . , 𝑌𝑘 ), where 𝑌𝑖 ∼
Lap(Δ1/𝜀) are independent random variables for all 𝑖 ∈ [𝑘]. The Laplace mechanism is 𝜀-differentially
private. Further, for every 𝑥 ∈ U∗ and every 𝛽 ∈ (0, 1), it satisfies ∥A(𝑥) − 𝑓 (𝑥)∥∞ ≤ Δ1

𝜀
ln

𝑘
𝛽
with

probability at least 1 − 𝛽 .

Lemma A.6 (Gaussian mechanism [6, 10]). Let 𝑘 ∈ N and 𝑓 : U∗ → R𝑘 be a function with 𝐿2-
sensitivity Δ2. Let 𝜀 ∈ (0, 1), 𝛿 ∈ (0, 1), 𝑐2 > 2 ln(1.25/𝛿), and 𝜎 ≥ 𝑐Δ2/𝜀. The Gaussian mechanism
is defined as A(𝑥) = 𝑓 (𝑥) + (𝑌1, . . . , 𝑌𝑘 ), where 𝑌𝑖 ∼ 𝑁 (0, 𝜎2) are independent random variables
for all 𝑖 ∈ [𝑘]. The Gaussian mechanism is (𝜀, 𝛿)-differentially private. Further, for every 𝑥 ∈ U∗,
every 𝛽 ∈ (0, 1), and 𝜎 =

√︁
2 ln(2/𝛿)Δ2/𝜀, it satisfies ∥A(𝑥) − 𝑓 (𝑥)∥∞ ≤ 2Δ2

𝜀

√︁
ln(2/𝛿) ln(2𝑘/𝛽) with

probability at least 1 − 𝛽 .

Lemma A.7 (Gaussian tail bound). Let𝑌 ∼ 𝑁 (𝜇, 𝜎2) and 𝑡 ≥ 0. Then Pr[|𝑌 −𝜇 | ≥ 𝜎𝑡] ≤ 2𝑒−𝑡
2/2.

Lemma A.8 (Simple composition [22, 23, 29]). Let 𝜀1, 𝜀2 > 0 and 𝛿1, 𝛿2 ∈ [0, 1). Let A1 be an
(𝜀1, 𝛿1)-differentially private algorithm U∗ → range(A1) and A2 an (𝜀2, 𝛿2)-differentially private
algorithmU∗ × range(A1) → range(A2). Then A1 ◦ A2 is (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-differentially private.

B Omitted Proofs from Section 3
Proof of Lemma 3.7. Given a database 𝑌 ∈ {0, 1}𝑛×𝑛 and 𝐵,𝑤 ∈ N, we construct a graph

sequence on
𝑛2

𝐵2
× (2𝐵 + 𝑤) nodes, starting from graph 𝐺0 with no edges. At a high level, we

divide the matrix 𝑌 into submatrices of size 𝐵 × 𝐵, and for each submatrix, we build a graph as in

Lemma 3.6. Specifically, for all 𝑝1, 𝑝2 ∈
[
𝑛
𝐵

]
, define 𝑌 (𝑝1,𝑝2 )

as the 𝐵 × 𝐵 matrix with 𝑌 (𝑝1,𝑝2 ) [𝑖, 𝑗] =
𝑌 [(𝑝1 − 1)𝐵 + 𝑖, (𝑝2 − 1)𝐵 + 𝑗] for all 𝑖, 𝑗 ∈ [𝐵]. We create a gadget for each (𝑝1, 𝑝2) ∈

[
𝑛
𝐵

]
2

by

allocating 2𝑛 +𝑤 nodes for it. In the initialization phase, each gadget is updated by running the
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initialization phase from the proof of Lemma 3.6 for 𝑌 (𝑝1,𝑝2 )
and𝑤 . The initialization phase uses(

𝑛
𝐵

)
2

𝐵2 = 𝑛2 time steps.

Then, for each𝑚 ∈ [𝑘], to process query (𝑎 (𝑚) , 𝑏 (𝑚) ), we run the processing procedure from the

proof of Lemma 3.6 for every 𝑝1, 𝑝2 ∈
[
𝑛
𝐵

]
for (𝑎 (𝑚) [(𝑝1 − 1)𝐵 + 1, 𝑝1𝐵], 𝑏 (𝑚) [(𝑝2 − 1)𝐵 + 1, 𝑝2𝐵])

within the gadget for (𝑝1, 𝑝2). That is, for all 𝑝1 ∈
[
𝑛
𝐵

]
, we use 𝐵𝑤 𝑛

𝐵
time steps to insert the edges

corresponding to 𝑎 (𝑚) [(𝑝1 − 1)𝐵 + 1, 𝑝1𝐵] into all gadgets for (𝑝1, 𝑝2) for all 𝑝2 ∈
[
𝑛
𝐵

]
. Similarly,

for all 𝑝2 ∈
[
𝑛
𝐵

]
, we insert the edges corresponding to 𝑏 (𝑚) [(𝑝2 − 1)𝐵 + 1, 𝑝2𝐵]) into all gadgets for

(𝑝1, 𝑝2) for all 𝑝1 ∈
[
𝑛
𝐵

]
. This uses in total 2

𝑛2𝑤
𝐵

time steps. Afterwards, we use 2
𝑛2𝑤
𝐵

time steps to

delete the edges corresponding to the𝑚th query for all gadgets (as in the proof of Lemma 3.6).

Correctness. For every pair (𝑖, 𝑗) ∈ [𝑛]2, there exists exactly one pair (𝑝1, 𝑝2) such that 𝑖 ∈
[(𝑝1 − 1)𝐵 + 1, 𝑝1𝐵] and 𝑗 ∈ [(𝑝2 − 1)𝐵 + 1, 𝑝2𝐵]. Thus, if 𝑌 and 𝑌 ′

differ in entry (𝑖, 𝑗), then
only the gadget for (𝑝1, 𝑝2) will differ in the initial insertion of the corresponding edge. We finish

inserting all edges corresponding to query (𝑎 (𝑚) , 𝑏 (𝑚) ) at time step 𝑡𝑚 = 𝑛2 + (𝑚 − 1) 4𝑛2𝑤
𝐵

+ 2𝑛2𝑤𝐵.

For each pair (𝑝1, 𝑝2) ∈
[
𝑛
𝐵

]
×

[
𝑛
𝐵

]
, the number of triangles in the gadget for (𝑝1, 𝑝2) at time 𝑡𝑚

is 𝑤𝑎 (𝑚) [(𝑝1 − 1)𝐵 + 1, 𝑝1𝐵]𝑌 (𝑝1,𝑝2 )𝑏 (𝑚) [(𝑝2 − 1)𝐵 + 1, 𝑝2𝐵]), and
∑

𝑝1,𝑝2∈ [ 𝑛
𝐵 ] 𝑤𝑎 (𝑚) [(𝑝1 − 1)𝐵 +

1, 𝑝1𝐵]𝑌 (𝑝1,𝑝2 )𝑏 (𝑚) [(𝑝2 − 1)𝐵 + 1, 𝑝2𝐵]) = 𝑤𝑎 (𝑚)𝑌 (𝑝1,𝑝2 )𝑏 (𝑚)
.

Analysis. The total number of nodes is
𝑛2

𝐵2
× (2𝐵 +𝑤) = 2𝑛2

𝐵
+ 𝑛2𝑤

𝐵2
. The degree of each 𝐺𝑡 is at

most 2𝐵 + 𝑤 . Initialization takes 𝑛2 time steps, and each query uses 4 · 𝑛2

𝐵
· 𝑤 time steps. Thus,

𝑇 = 𝑛2 + 4𝑘 · 𝑛2

𝐵
·𝑤 . □

Proof of Lemma 3.10. Let S = (𝐺𝑡 )𝑡 ∈[𝑇 ] be a dynamic graph sequence of degree at most 𝐷 .

Recall that 𝑓△ (𝐺) returns the number of triangles in graph𝐺 . Let (𝑑 𝑓△ (S, 𝑡))𝑡 ∈[𝑇 ] be the difference
sequence for 𝑓△ . (See Definition 2.6).

Our general strategy is to run a counting mechanism similar to the binary tree mechanism by

Dwork et al. [27] to compute a running estimate on 𝑓△ (𝐺𝑡 ) =
∑

𝑡 ′∈[𝑡 ] 𝑑 𝑓△ (S, 𝑡 ′). However, we use
Gaussian noise to compute the noisy counts for nodes in the binary tree. We show that when

building the binary tree over 𝑑 𝑓△ , the 𝐿2-sensitivity of the vector of the counts of the binary tree

nodes is 𝑂 (
√︁
𝑇𝐷 log𝑇 ). We next describe this approach in detail.

Let Iℓ = {[ 𝑗 · 2ℓ + 1, ( 𝑗 + 1)2ℓ ], 0 ≤ 𝑗 ≤ ⌈𝑇 /2ℓ⌉ − 1} for all (integer) levels ℓ ∈ [0, log𝑇 ] and
I =

⋃
0≤ℓ≤⌊log𝑇 ⌋ Iℓ . For an interval [𝑎, 𝑏] inI, define 𝑠 [𝑎,𝑏 ] (S) =

∑
𝑎≤𝑡≤𝑏 𝑑 𝑓△ (S, 𝑡). We first obtain a

private estimate of 𝑠 [𝑎,𝑏 ] for all intervals [𝑎, 𝑏] ∈ I, by computing 𝑠 [𝑎,𝑏 ] = 𝑠 [𝑎,𝑏 ] +𝑌[𝑎,𝑏 ] , where 𝑌[𝑎,𝑏 ]
is independently drawn from 𝑁 (0, 𝜎2) with 𝜎 = 12

√︃
𝑇𝐷

(
ln

2

𝛿

)
log𝑇 . For any interval [1, 𝑡], there

exists a set 𝐼𝑡 ⊆ I such that (i)

⋃
[𝑎,𝑏 ]∈𝐼𝑡 [𝑎, 𝑏] = [1, 𝑡], (ii) ⋂[𝑎,𝑏 ]∈𝐼𝑡 = ∅, and (iii) |𝐼𝑡 | ≤ ⌊log𝑇 ⌋ + 1.

We compute an estimate of 𝑓△ (𝐺𝑡 ) as ˜𝑓Δ (𝐺𝑡 ) =
∑

[𝑎,𝑏 ]∈𝐼𝑡 𝑠 [𝑎,𝑏 ] =
∑

[𝑎,𝑏 ]∈𝐼𝑡 𝑠 [𝑎,𝑏 ] + 𝑌[𝑎,𝑏 ] .

Claim 1. The 𝐿2-sensitivity of (𝑠 [𝑎,𝑏 ])[𝑎,𝑏 ]∈I is at most 6
√︁
𝑇𝐷 log𝑇 .

Proof. Let S = (𝐺𝑡 )𝑡 ∈[𝑇 ] and S′ = (𝐺 ′
1
, . . . ,𝐺 ′

𝑇
) be two event-level, edge-neighboring dynamic

graph sequences of degree at most 𝐷 . Let 𝑡1 be the first time step where S and S′
differ. W.l.o.g.,

suppose an edge 𝑒∗ = (𝑢∗, 𝑣∗) is inserted into 𝐺𝑡1 , but 𝐺
′
𝑡1
= 𝐺 ′

𝑡1−1. Let 𝑡2 be the time step where

𝑒∗ is deleted from S but not S′
(set 𝑡2 = 𝑇 + 1 if 𝑒∗ is not deleted in S after 𝑡1). Then |𝑑 𝑓△ (S, 𝑡1) −

𝑑 𝑓△ (S′, 𝑡1) | ≤ 𝐷 − 1 and, if 𝑡2 ≤ 𝑇 then |𝑑 𝑓△ (S, 𝑡2) − 𝑑 𝑓△ (S′, 𝑡2) | ≤ 𝐷 − 1, since 𝑒∗ can be involved

in at most 𝐷 − 1 triangles. For all 𝑡 ∈ (𝑡1, 𝑡2), if edge 𝑒 = (𝑢, 𝑣) is inserted at step 𝑡 , it can form at

most one triangle with 𝑒∗. Thus, |𝑑 𝑓△ (S, 𝑡) − 𝑑 𝑓△ (S′, 𝑡) | ≤ 1 for all 𝑡 ∉ {𝑡1, 𝑡2}.
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Now, fix a level ℓ ∈ {0, . . . , ⌊log𝑇 ⌋}. For each interval [𝑎, 𝑏] ∈ Iℓ (which has length 2
ℓ
), we

have |𝑠 [𝑎,𝑏 ] (S) − 𝑠 [𝑎,𝑏 ] (S′) | ≤ 𝐷 + 2
ℓ
if 𝑡1 ∈ [𝑎, 𝑏] or 𝑡2 ∈ [𝑎, 𝑏], and |𝑠 [𝑎,𝑏 ] (S) − 𝑠 [𝑎,𝑏 ] (S′) | ≤ 2

ℓ
,

otherwise.

For all 𝑡 ∈ [𝑇 ], the total triangle count can differ by at most 𝐷 − 1 for 𝐺𝑡 and 𝐺 ′
𝑡 , that is,

|𝑓△ (𝐺𝑡 ) − 𝑓△ (𝐺 ′
𝑡 ) | ≤ 𝐷 − 1. For each interval [𝑎, 𝑏] ∈ I, we have 𝑠 [𝑎,𝑏 ] (S) = 𝑓△ (𝐺𝑏) − 𝑓△ (𝐺𝑎) and

|𝑠 [𝑎,𝑏 ] (S) − 𝑠 [𝑎,𝑏 ] (S′) | = |𝑓△ (𝐺𝑏) − 𝑓△ (𝐺𝑎) − 𝑓△ (𝐺 ′
𝑏
) + 𝑓△ (𝐺 ′

𝑎) | ≤ |𝑓△ (𝐺𝑏) − 𝑓△ (𝐺 ′
𝑏
) | + |𝑓△ (𝐺 ′

𝑎) −
𝑓△ (𝐺𝑎) | ≤ 2𝐷 .

There are at most two intervals 𝐼 ∈ Iℓ such that 𝑡1 ∈ 𝐼 or 𝑡2 ∈ 𝐼 . For such an interval 𝐼 , we have

|𝑠𝐼 (S)−𝑠𝐼 (S′) | ≤ 𝐷+min(𝐷, 2ℓ ). For all other intervals [𝑎, 𝑏] ∈ Iℓ , we have |𝑠 [𝑎,𝑏 ] (S)−𝑠 [𝑎,𝑏 ] (S′) | ≤
min(2𝐷, 2ℓ ). Since Iℓ contains at most 𝑇 /2ℓ intervals, the 𝐿2-sensitivity of (𝑠 [𝑎,𝑏 ])[𝑎,𝑏 ]∈Iℓ is at most

2𝐷 +
√︃

𝑇
2
ℓ min(2𝐷, 2ℓ ) ≤ 2𝐷 +

√︃
𝑇

min(2𝐷,2ℓ ) min(2𝐷, 2ℓ ) ≤ 2𝐷 +
√︁
𝑇 ·min(2𝐷, 2ℓ ) ≤ 2𝐷 +

√
2𝑇𝐷,

which is at most 4

√
𝑇𝐷 , since 𝐷 ≤ 𝑇 . Therefore, the 𝐿2-sensitivity of (𝑠 [𝑎,𝑏 ])[𝑎,𝑏 ]∈I is at most√︃∑⌊log𝑇 ⌋

ℓ=0
16𝑇𝐷 ≤ 6

√︁
𝑇𝐷 log𝑇 . □

By Lemma A.6, the algorithm that returns 𝑠 [𝑎,𝑏 ] = 𝑠 [𝑎,𝑏 ] + 𝑌[𝑎,𝑏 ] , where every 𝑌[𝑎,𝑏 ] is indepen-
dently drawn from𝑁 (0, 𝜎2), is (𝜀, 𝛿)-DP. Recall that ˜𝑓Δ (𝐺𝑡 ) =

∑
[𝑎,𝑏 ]∈𝐼𝑡 𝑠 [𝑎,𝑏 ] =

∑
[𝑎,𝑏 ]∈𝐼𝑡 𝑠 [𝑎,𝑏 ]+𝑌[𝑎,𝑏 ]

and note that

∑
[𝑎,𝑏 ]∈𝐼𝑡 𝑠 [𝑎,𝑏 ] = 𝑓△ (𝐺𝑡 ). The random variable 𝑍𝑡 =

∑
[𝑎,𝑏 ]∈𝐼𝑡 𝑌[𝑎,𝑏 ] has distribu-

tion 𝑁 (0, 𝜎̂2), where 𝜎̂2 ≤ (⌊log𝑇 ⌋ + 1)𝜎2
. By Lemma A.7, for all 𝛽 ∈ (0, 1), we have that

Pr[|𝑍𝑡 | ≥ 𝜎̂
√︁
2 ln(𝑇 /𝛽)] ≤ 𝛽/𝑇 . By a union bound over the 𝑇 time steps, with probability at

least 1−𝛽 , estimates returned at all steps have error at most𝑂 (𝜎̂
√︁
log(𝑇 /𝛽)). Thus, the algorithm is

(𝛼, 𝛽)-accurate, for 𝛼 = 𝑂

(
1

𝜀

√︃
𝑇𝐷

(
ln

1

𝛿

)
log𝑇

√︁
log𝑇

√︁
log(𝑇 /𝛽)

)
= 𝑂

(
1

𝜀

√︃
𝑇𝐷 ln

1

𝛿
log

3/2 𝑇
𝛽

)
. □

Lemma B.1 (Reduction from Marginals to TriangleCount). Let 𝑛,𝑑 ∈ N and 𝑌 ∈ {{0, 1}𝑑 }𝑛 .
Then for all𝑤 ∈ N, there exists a transformation from 𝑌 to a dynamic graph sequence (𝐺1, . . . ,𝐺𝑇 ) of
𝑁 -node graphs, where 𝑇 = 2⌈

√
𝑛⌉𝑤 + 2𝑛𝑑 and 𝑁 = 2⌈

√
𝑛⌉ +𝑤 , such that

• The transformations of neighboring 𝑌,𝑌 ′ ∈ {{0, 1}𝑑 }𝑛 give item-level, edge-neighboring graph
sequences;

• Let 𝑡0 = 2⌈
√
𝑛⌉𝑤 . For all 𝑗 ∈ [𝑑] and 𝑡 𝑗 = 𝑡0 + (2 𝑗 − 1)𝑛, we have 𝑓△ (𝐺𝑡 𝑗 ) = 𝑤

∑𝑛
𝑖=1 𝑌𝑖 [ 𝑗].

Proof. We define a set 𝑉 = 𝑉0 ∪𝑉1 ∪𝑊 , where 𝑉0,𝑉1 and𝑊 are pairwise disjoint, |𝑉0 | = |𝑉1 | =
⌈
√
𝑛⌉, and |𝑊 | = 𝑤 . There are at least 𝑛 node pairs (𝑣0, 𝑣1) ∈ 𝑉0 ×𝑉1. We give them an arbitrary

order 𝑒1, . . . , 𝑒⌈
√
𝑛⌉2 . In particular, there exist the node pairs 𝑒1, . . . , 𝑒𝑛 .

In the initialization phase, we insert edge (𝑣,𝑢) for all 𝑣 ∈ 𝑉0 ∪𝑉1 and all 𝑢 ∈ 𝑈 , in an arbitrary

but fixed order. This takes 2⌈
√
𝑛⌉𝑤 time steps. Then, for all 𝑗 ∈ [𝑑] and 𝑖 ∈ [𝑛], if 𝑌𝑖 [ 𝑗] = 1 then we

insert 𝑒𝑖 at time 𝑡0 + 2( 𝑗 − 1)𝑛 + 𝑖 and delete 𝑒𝑖 at time 𝑡0 + (2 𝑗 − 1)𝑛 + 𝑖; otherwise, we do nothing

at these time steps. This takes 2𝑛𝑑 time steps, and 𝑇 = 2⌈
√
𝑛⌉𝑤 + 2𝑛𝑑 for the whole construction.

Correctness. If 𝑌 and 𝑌 ′
are neighboring input databases differing in row 𝑖∗, then the resulting

graph sequences for 𝑌 and 𝑌 ′
differ only in insertions and deletions related to 𝑒𝑖∗ . Thus, they are

item-level, edge-neighboring. The only triangles that can form have to include an edge from𝑊 to

𝑉0, from 𝑉0 to 𝑉1, and from 𝑉1 to𝑊 . Let 𝐺𝑡 = (𝑉 , 𝐸𝑡 ). Since every node in𝑊 is connected to every

node 𝑉0 ∪𝑉1, the number of triangles is exactly𝑤 |{𝑒𝑖 : 𝑒𝑖 ∈ 𝐸𝑡 }|. At time step 𝑡 𝑗 = 𝑡0 + (2 𝑗 − 1)𝑛,
the graph 𝐺𝑡 𝑗 includes an edge 𝑒𝑖 if and only if 𝑌𝑖 [ 𝑗] = 1. Thus, the total triangle count is equal to

𝑤
∑𝑛

𝑖=1 𝑌𝑖 [ 𝑗]. □

C Omitted Proofs from Section 4
To prove Theorem 4.1, we first give Lemma C.1, which is the key lemma of this proof.
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Lemma C.1 (Transformation from degree-restricted privacy). Let 𝑇, 𝑁, 𝑘 ∈ N and let 𝑓 be
a function G(𝑉 ) → R𝑘 . Let 𝛼 : N→ R+ be a nondecreasing function of the degree 𝐷 . Let 𝜀 > 0 and
𝛿 ∈ [0, 1) and 𝛽, 𝛽𝑠 ∈ (0, 1). Assume that for every 𝐷 ∈ N, there is an event-level 𝐷-restricted (𝜀, 𝛿)-
edge-DP algorithmA𝐷 which is (𝛼 (𝐷), 𝛽)-accurate for 𝑓 on all dynamic graph sequences with𝑁 nodes,
maximum degree𝐷 and length𝑇 . Then there exists an event-level (𝜀 (2+log𝑁 ), 𝛿 (1+log𝑁 )+𝛽𝑠 (1+𝑒𝜀))-
edge DP algorithm which is (𝛼 (𝐷 ′), 𝛽 (1 + log𝑁 ) + 𝛽𝑠 )-accurate for 𝑓 on all dynamic graph sequences
with 𝑁 nodes, maximum degree 𝐷 , and length 𝑇 , where 𝐷 ′ = 𝑂 (𝐷 + log𝑇

𝜀
log

𝑇𝑁
𝛽𝑠

) for all 𝐷 ∈ N. The
value 𝐷 does not need to be given to the algorithm.

The proof requires the following definition:

Definition C.2 ((𝜀, 𝛿)-indistinguishability). Let U and Y be two sets. Random variables 𝑌 and 𝑌 ′
,

mappingU toY, are (𝜀, 𝛿)-indistinguishable if for all Out ⊆ Y, we have Pr[𝑌 ∈ Out] ≤ 𝑒𝜀 Pr[𝑌 ′ ∈
Out]+𝛿 and Pr[𝑌 ′ ∈ Out] ≤ 𝑒𝜀 Pr[𝑌 ∈ Out]+𝛿 . We denote that𝑌 and𝑌 ′

are (𝜀, 𝛿)-indistinguishable
by 𝑌 ≈𝜀,𝛿 𝑌

′
.

That is, an algorithm A is (𝜀, 𝛿)-DP if and only if A(𝑥) ≈𝜀,𝛿 A(𝑦) for all neighboring 𝑥 and 𝑦.

Proof of Lemma C.1. We run the event-level 𝜀-edge-DP algorithm for estimating the degree

sequence from Lemma 4.2 with failure probability set to 𝛽𝑠 and keep track of the maximum

(noisy) degree
˜𝑑
(𝑡 )
max

seen up until time 𝑡 . By Lemma 4.2, this algorithm is (𝛾, 𝛽𝑠 )-accurate with
𝛾 = 𝑂 ( log𝑇

𝜀
log

𝑇𝑁
𝛽𝑠

). Let 𝑁̂ = 2
⌈log𝑁 ⌉ < 2𝑁 . Note log 𝑁̂ = ⌈log𝑁 ⌉ < log𝑁 + 1. We set 𝐷 𝑗 = 𝛾 + 2

𝑗

and 𝜏 𝑗 = 2
𝑗
for all 𝑗 ∈ [log 𝑁̂ ]. For all time steps 𝑡 such that 𝜏 𝑗−1 ≤ ˜𝑑

(𝑡 )
max

< 𝜏 𝑗 , we run A𝐷 𝑗
.

Accuracy. Let S = (𝐺1, . . . ,𝐺𝑇 ) and 𝐷̂ (𝑡 )
be the maximum degree of (𝐺1, . . . ,𝐺𝑡 ) for all 𝑡 ∈ [𝑇 ].

With probability at least 1 − 𝛽𝑠 , at all time steps 𝑡 ∈ [𝑇 ], we have that 𝐷̂ (𝑡 ) ∈ [ ˜𝑑 (𝑡 )
max

− 𝛾, ˜𝑑
(𝑡 )
max

+ 𝛾].
Call that event 𝐶 . Conditioning on 𝐶 , then for 𝑗 ∈ [log 𝑁̂ ], at all time steps 𝑡 where we run A𝐷 𝑗

,

we have
˜𝑑
(𝑡 )
max

∈ [𝜏 𝑗−1, 𝜏 𝑗 ), and therefore 𝐷̂ (𝑡 ) ∈ [𝜏 𝑗−1 −𝛾, 𝜏 𝑗 +𝛾) =
[
𝐷 𝑗/2 − 𝛾, 𝐷 𝑗

)
. Conditioning on

𝐶 , with probability at least 1 − 𝛽 , for a fixed 𝑗 ∈ [log 𝑁̂ ], algorithm A(𝐷 𝑗 ) has error at most 𝛼 (𝐷 𝑗 )
for all time steps 𝑡 where we run A(𝐷 𝑗 ). Thus, by a union bound, for all 𝑗 ∈ [log 𝑁̂ ], we have that
with probability at least 1 − 𝛽𝑠 − 𝛽 (1 + log𝑁 ), the error at every time step 𝑡 where we run A(𝐷 𝑗 )
is bounded by 𝛼 (𝐷 𝑗 ) = 𝛼 (𝑂 (𝐷̂ (𝑡 ) + 𝛾)) = 𝛼 (𝑂 (𝐷̂ (𝑇 ) + 𝛾)).
Privacy. The algorithm implicitly partitions [𝑇 ] into intervals 𝐼1, . . . , 𝐼log 𝑁̂ , such that we run

A𝐷 𝑗
on 𝐼 𝑗 for 𝑗 ∈ [log 𝑁̂ ]. Call AInt the algorithm which takes as input a graph sequence S

and outputs the interval partition. Since it is post-processing of the algorithm from Lemma 4.2,

AInt is event-level 𝜀-edge-DP. Let S = (𝐺1, . . . ,𝐺𝑇 ) and S′ = (𝐺 ′
1
, . . . ,𝐺 ′

𝑇
) be two neighboring

input sequences. Let I = (𝐼1, . . . , 𝐼log 𝑁̂ ) be an interval partition such that for all 𝑗 ∈ [log 𝑁̂ ]
and the interval 𝐼 𝑗 = [𝑡 𝑗 , 𝑡 𝑗+1) the maximum degrees of 𝐺𝑡 and 𝐺 ′

𝑡 are bounded by 𝐷 𝑗 for all

𝑡 ∈ 𝐼 𝑗 . We get A𝐷 𝑗
(𝐺𝑡 𝑗 , . . . ,𝐺𝑡 𝑗+1−1) ≈𝜀,𝛿 A𝐷 𝑗

(𝐺 ′
𝑡 𝑗
, . . . ,𝐺 ′

𝑡 𝑗+1−1) for all 𝑗 ∈ [log 𝑁̂ ], by definition

of A𝐷 𝑗
. Thus,

(
A𝐷 𝑗

(𝐺𝑡 𝑗 , . . . ,𝐺𝑡 𝑗+1−1)
)
𝑗∈[log 𝑁̂ ]

≈𝜀′,𝛿 ′

(
A𝐷 𝑗

(𝐺 ′
𝑡 𝑗
, . . . ,𝐺 ′

𝑡 𝑗+1−1)
)
𝑗∈[log 𝑁̂ ]

, where 𝜀′ =

𝜀 (1 + log𝑁 ) and 𝛿 ′ = 𝛿 (1 + log𝑁 ) by Lemma A.8.

Let Aall𝐷 be the algorithm that takes as input a sequence S and an interval partition I =

(𝐼1, . . . , 𝐼log 𝑁̂ ), and runs A𝐷 𝑗
on 𝐺𝑡 𝑗 , . . . ,𝐺𝑡 𝑗+1−1 for each 𝐼 𝑗 = [𝑡 𝑗 , 𝑡 𝑗+1) and 𝑗 ∈ [log 𝑁̂ ]. Our

full algorithm can be seen as A(S) := Aall𝐷 (S,AInt (S)). Let 𝐵 be the set of all interval se-

quences I = (𝐼1, 𝐼2, . . . , 𝐼log 𝑁̂ ), where 𝐼 𝑗 = [𝑡 𝑗 , 𝑡 𝑗+1) for all 𝑗 ∈ [log 𝑁̂ ], such that the maximum

degrees of 𝐺𝑡 𝑗 , . . . ,𝐺𝑡 𝑗+1−1 and 𝐺
′
𝑡 𝑗
, . . . ,𝐺 ′

𝑡 𝑗+1−1 are bounded by 𝐷 𝑗 , for all 𝑗 ∈ [log 𝑁̂ ]. Let 𝐻 be the

set of intervals where the degree bound is violated for S, and 𝐻 ′
be the set of intervals where
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the degree bound is violated for S′
, such that 𝐵 = 𝐻 ∪ 𝐻 ′

. By the properties of AInt, we have

Pr[AInt (S) ∈ 𝐻 ] ≤ 𝛽𝑠 and Pr[AInt (S) ∈ 𝐻 ′] ≤ 𝑒𝜀 Pr[AInt (S′) ∈ 𝐻 ′] ≤ 𝑒𝜀𝛽𝑠 . Thus, by a union

bound, Pr[AInt (S) ∈ 𝐻 ∪𝐻 ′] ≤ 𝛽𝑠 +𝑒𝜀𝛽𝑠 and therefore Pr[AInt (S) ∈ 𝐵] ≥ 1− 𝛽𝑠 −𝑒𝜀𝛽𝑠 . For every
Out ∈ range(A),
Pr[A(S) ∈ Out] = Pr[Aall𝐷 (S,AInt (S)) ∈ Out]

≤ Pr[Aall𝐷 (S,AInt (S)) ∈ Out|AInt (S) ∈ 𝐵] · Pr[AInt (S) ∈ 𝐵] + 𝛽𝑠 (1 + 𝑒𝜀).
We further bound the first summand:

Pr[Aall𝐷 (S,AInt (S)) ∈ Out|AInt (S) ∈ 𝐵] · Pr[AInt (S) ∈ 𝐵]

=
∑︁
I∈𝐵

Pr[Aall𝐷 (S,I) ∈ Out] Pr[AInt (S) = I]

≤
∑︁
I∈𝐵

(
𝑒𝜀 (log𝑁+1)

Pr[Aall𝐷 (S′,I) ∈ Out] + 𝛿 (log𝑁 + 1)
)
Pr[AInt (S) = I]

≤
∑︁
I∈𝐵

𝑒𝜀 (log𝑁+2)
Pr[Aall𝐷 (S′,I) ∈ Out] Pr[AInt (S′) = I] + 𝛿 (log𝑁 + 1)

= 𝑒𝜀 (log𝑁+2)
Pr[Aall𝐷 (S′,AInt (S′)) ∈ Out|AInt (S′) ∈ 𝐵] Pr[AInt (S′) ∈ 𝐵] + 𝛿 (log𝑁 + 1)

≤ 𝑒𝜀 (log𝑁+2)
Pr[A(S′) ∈ Out] + 𝛿 (log𝑁 + 1),

where the first inequality follows since for eachI ∈ 𝐵, we have thatAall𝐷 (S,I) ≈𝜀′,𝛿 ′ Aall𝐷 (S′,I)
with 𝜀′ = 𝜀 (log𝑁 + 1) and 𝛿 ′ = 𝛿 (log𝑁 + 1)), as argued above. The second inequality follows since

AInt is 𝜀-DP. Together, this gives Pr[A(S) ∈ Out] ≤ 𝑒𝜀 (log𝑁+2)
Pr[A(S′) ∈ Out] +𝛿 (log𝑁 + 1)] +

𝛽𝑠 (1 + 𝑒𝜀). □

Proof of Theorem 4.1. Apply Lemma C.1 with 𝜀 = 𝜀′

log𝑁+2 , 𝛿 = 𝛿 ′

2(1+log𝑁 ) , and 𝛽 = 𝛽𝑠 =

min

(
𝛿 ′

2+2𝑒𝜀′ ,
𝛽 ′

2+log𝑁

)
. Note that 𝛿 ′

2+2𝑒𝜀′ ≤ 𝛿 ′

2+2𝑒𝜀 . □

D Omitted Proofs form Section 5
Proof of Theorem 5.1. The second term in the minimum expression (for both items) comes

from the trivial algorithm that always outputs 𝑓 (𝐺0), where 𝐺0 = (𝑉 , ∅), without looking at the
data. It remains to analyze the first term. For all 𝑝 ∈ {1, 2} and every function 𝑓 with 𝐿𝑝 -sensitivity

Δ𝑝 , the rescaled function 𝑓 ′ = 𝑓 /Δ𝑝 has sensitivity 1. Therefore, it suffices to analyze the first term

in the minimum for functions with Δ𝑝 = 1.

The algorithm for the first term uses an edge-DP algorithm to recompute the function value every

𝐵 time steps, and does not update the output in between. That is, we divide the time line into blocks
of the form [1, 𝐵], [𝐵 + 1, 2𝐵], . . . , [(⌈𝑇

𝐵
⌉ − 1)𝐵 + 1,𝑇 ]. Denote 𝑡1, . . . , 𝑡⌈𝑇 /𝐵⌉ the last time step in each

block, i.e., 𝑡𝑖 = 𝑖 · 𝐵 for all 𝑖 ∈ [⌈𝑇 /𝐵⌉ − 1] and 𝑡⌈𝑇 /𝐵⌉ = 𝑇 . Since 𝑓 has 𝐿𝑝-sensitivity 1, and all 𝐺𝑖 ,

𝐺𝑖+1 are edge-neighboring, we have that ∥ 𝑓 (𝐺𝑡𝑖+1 ) − 𝑓 (𝐺𝑡𝑖 )∥∞ ≤ 𝐵 for all 𝑖 ∈ [⌈𝑇 /𝐵⌉ − 2]. We first

set the output to 0. At every time step 𝑡𝑖 , we compute an estimate of 𝑓 (𝐺𝑡𝑖 ) using a differentially
private mechanism, and within a block, we do not update the output. That is, for 𝜀-differential

privacy, we run the Laplace mechanism on ⌈𝑇
𝐵
⌉ inputs 𝐺𝑡1 , . . . ,𝐺𝑡⌈𝑇 /𝐵⌉ , and for every 𝑡𝑖 < 𝑡 < 𝑡𝑖+1,

we output the same value as in the previous time step. Since for each of these inputs and every

item-level edge-neighboring sequence 𝐺 ′
1
, . . . ,𝐺 ′

𝑇
, we have that 𝐺𝑡 𝑗 and 𝐺

′
𝑡 𝑗
are neighboring, the

𝐿1-sensitivity of (𝑓 (𝐺𝑡1 ), . . . , 𝑓 (𝐺𝑡⌈𝑇 /𝐵⌉ )) is ⌈𝑇𝐵 ⌉. The value of 𝛼 follows by balancing 𝐵 with the error

of the Laplace mechanism: By Lemma A.5, the Laplace mechanism has error at most ⌈𝑇
𝐵
⌉ 1
𝜀
ln

𝑘𝑇
𝛽
.

Setting 𝐵 = Θ
(√︃

𝑇
𝜀
ln

𝑇𝑘
𝛽

)
gives the claimed bound 𝛼 . Similarly, for (𝜀, 𝛿)-differential privacy, we
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run the Gaussian mechanism on ⌈𝑇
𝐵
⌉ inputs 𝐺𝑡1 , . . . ,𝐺𝑡⌈𝑇 /𝐵⌉ . Since for each of these inputs and

every item-level neighboring sequence 𝐺 ′
1
, . . . ,𝐺 ′

𝑇
, we have that 𝐺𝑡 𝑗 and 𝐺

′
𝑡 𝑗
are neighboring, the

𝐿2-sensitivity of (𝑓 (𝐺𝑡1 ), . . . , 𝑓 (𝐺𝑡⌈𝑇 /𝐵⌉ )) is
√︁
⌈𝑇 /𝐵⌉. The value of 𝛼 follows by balancing 𝐵 with

the error of the Gaussian mechanism: By Lemma A.6, the Gaussian mechanism has error at most√︁
⌈𝑇 /𝐵⌉ 2

𝜀

√︁
ln(2/𝛿) ln(2𝑇𝑘/𝛽). Setting 𝐵 = Θ( 3

√︃
𝑇
𝜀2
(ln 𝑇𝑘

𝛽
) ln 1

𝛿
) gives the claimed bound 𝛼 . □

E Omitted Proofs from Section 6
Proof of Lemma 6.10. Let 𝐻 = (𝑉 ′, 𝐸′) and (𝐻, 𝑒1) be a 1-edge distinguishing gadget of size

(𝑛𝑔,𝑚𝑔) of weight𝑤 for 𝑓 . W.l.o.g. assume 𝑒1 ∉ 𝐸′
. We define a graph sequence on 𝑛 · 𝑛𝑔 nodes as

follows: In an initialization phase, we build 𝑛 copies of 𝐻 , denoted 𝐻 (1) , . . . , 𝐻 (𝑛)
, using𝑚𝑔𝑛 time

steps. For a vertex pair 𝑒 in 𝐻 and 𝑖 ∈ [𝑛], let 𝑒 (𝑖 ) denote the copy of 𝑒 in 𝐻 (𝑖 )
.

For all 𝑗 ∈ [𝑑], we first have an insertion phase, where for all 𝑖 ∈ [𝑛], if 𝑌𝑖 [ 𝑗] = 1, then we insert

𝑒
(𝑖 )
1

into 𝐻 (𝑖 )
at time𝑚𝑔𝑛 + 2( 𝑗 − 1)𝑛 + 𝑖; otherwise, we do nothing at that time step. For all but the

last phase, the insertion phase is followed by a deletion phase, where the edges that were inserted
in the insertion phase are deleted.

Correctness. If 𝑌 and 𝑌 ′
are neighboring input databases differing in the row 𝑖∗ ∈ [𝑛], then

the resulting graph sequences differ only in insertions and deletions related to 𝑒
(𝑖∗ )
1

. Thus, they

are item-level, edge-neighboring. The insertion phase for the 𝑗th query ends at time step 𝑡 𝑗 =

(𝑚𝑔 + 1)𝑛 + 2( 𝑗 − 1)𝑛 + 𝑛. At that time steps, the 𝐻 (𝑖 )
contains 𝑒

(𝑖 )
1

if and only if 𝑌𝑖 [ 𝑗] = 1. Thus,

𝑓 (𝐺𝑡 𝑗 ) = 𝑓 (𝐺𝑡0 ) +𝑤 · ∑𝑖∈[𝑛] 𝑌𝑖 [ 𝑗].
Analysis. The initialization phase uses (𝑚𝑔 + 1)𝑛 time steps. Each of the 𝑑 insertion phases and

𝑑 − 1 deletion phases uses 𝑛 time steps. Thus, 𝑇 = (𝑚𝑔 + 2𝑑)𝑛. There are 𝑁 = 𝑛 · 𝑛𝑔 nodes in the

graph. □

Proof of Theorem 6.9. Case 𝛿 > 0: Given 𝑇 and 𝑁 , we set 𝑑 =
⌊
(𝑇𝜀 log𝑇𝜀)2/3

⌋
and 𝑛 =

⌊min

( √
𝑑

6𝜀 log𝑑
, 𝑇
2𝑚𝑔

, 𝑁
𝑛𝑔

)
⌋. The reduction from Lemma 6.10 gives a sequence with at most 𝑁 nodes

and 2𝑛𝑑 +𝑇 /2 updates, where 2𝑛𝑑 ≤ 𝑑3/2

3𝜀 log𝑑
≤ 𝑇𝜀 log(𝑇𝜀 )

3𝜀 · 2
3
log(𝑇𝜀 log(𝑇𝜀 ) ) ≤ 𝑇

2
. We can add dummy nodes

and dummy time steps to get a dynamic 𝑁 -node graph sequence of length 𝑇 . If we can estimate

𝑓 (𝐺𝑡 ) with error up to 𝛼 at all time steps with probability at least 2/3, then for all 𝑗 ∈ [𝑑], we can
estimate the 𝑗th marginal given by

1

𝑛

∑
𝑖∈𝑛 𝑌𝑖 [ 𝑗] =

𝑓 (𝐺𝑡 𝑗
)−𝑓 (𝐺𝑡

0
)

𝑛𝑤
up to error

2𝛼
𝑛𝑤

. Lemma 3.13 gives

𝛼 = Ω
(
𝑤𝑛 ·min

( √
𝑑

𝑛𝜀 log𝑑
, 1

))
= Ω

(
𝑤 ·min

(
𝑇 1/3

𝜀2/3 log2/3𝑇
, 𝑇
𝑚𝑔

, 𝑁
𝑛𝑔

))
.

Case 𝛿 = 0: Given 𝑇 and 𝑁 , set 𝑑 = ⌊
√
𝑇𝜀⌋ and 𝑛 = ⌊min

(
𝑇

(𝑚𝑔+1) ,
𝑁
𝑛𝑔
, 𝑑
4𝜀

)
⌋. The reduction from

Lemma 6.10 gives a sequence with at most 𝑁 nodes and at most𝑇 updates, and we can add dummy

nodes and dummy time steps to get a dynamic 𝑁 -node graph sequence of length𝑇 . By Lemma 3.13,

we have 𝛼 = Ω
(
𝑤𝑛 ·min

(
𝑑
𝑛𝜀
, 1

))
= Ω

(
𝑤 ·min

(√︃
𝑇
𝜀
, 𝑇
𝑚𝑔

, 𝑁
𝑛𝑔

))
. □
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