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Abstract Inapproximability. Our main technical contribution is

We define the notion of a transitive-closure spanner of a @iPair of strong inapproximability results. We resolve the ap-
rected graph. Given a directed gragh= (V, E) and an in- proximability of 2-TC-spanners, showing that it &(log n)
tegerk > 1, ak-transitive-closure-spannek¢TC-spanner) UnlessP” = N P. For constant: > 3, we prove that the size
of G is a directed graplil = (V, Ey) that has (1) the same©f tkf sparsest-TC-spanner is hard to approximate within
transitive-closure a&' and (2) diameter at mogt These 2'°¢ ", foranye > 0, unless NPC DTIME (nPelvice™),
spanners were studied implicitly in access control, propefr hardness result helps explain the difficulty in designing
testing, and data structures, and properties of these span@éeféeral efficient solutions for the applications above, and it
have been rediscovered over the span of 20 years. We bfagnot be improved without resolving a long-standing open
these areas under the unifying framework of TC-spannetyestion in complexity theory. It uses an involved applica-
We abstract the common task implicitly tackled in these dion of generalized butterfly and broom graphs, as well as
verse applications as the problem of constructing sparse T@ise-resilient transformations of hard problems, which may
spanners. be of independent interest.

We study the approximability of the size of the spars- Structural bounds. Finally, we study the size of
estk-TC-spanner for a given digraph. Our technical contiipe sparsest TC-spanner fof-minor-free digraphs, which
butions fall into three categories: algorithms for general diclude planar, bounded genus, and bounded tree-width
graphs, inapproximability results, and structural bounds f@i@phs, explicitly investigated in applications above. We
a specific graph family which imply an efficient algorithnghow that everyZ-minor-free digraph has an efficiently con-
with a good approximation ratio for that family. structiblek-TC-spanner of siz&(n). This implies arO(1)-

Algorithms. We present two efficient deterministic alapproximation algorithm for this family. Furthermore, using
gorithms that findk-TC-spanners of near optimal sizeour insight that 2-TC-spanners yield property testers, we ob-
The first algorithm gives ad(n'~1/*)-approximation for tain a monotonicity tester witt(log® n/e) queries for any
k > 2. Our method, based on a combination of convé@set whose transitive reduction is Brminor free digraph.
programming and sampling, vields the first sublinear aphis improves and generalizes the previé\(s/nlogn/¢)-
proximation ratios for (1) IRECTED k-SPANNER, a well- query tester of Fischegt al (STOC, 2002).
studied generalization df-TC-SPANNER, and (2) its vari-
ants QIENT/SERVER DIRECTED k-SPANNER, and thek- 1 Introduction
DIAMETER SPANNING SUBGRAPH. This resolves the mainA spanneican be thought of as a sparse backbone of a graph
open question of Elkin and Peleg (IPCO, 2001). The sehat approximately preserves distances between every pair
ond algorithm, specific to the-TC-spanner problem, givesof vertices. More precisely, a subgragh = (V, Ey) is
anO(n/k?*)-approximation. It shows that for = Q(\/n), a k-spannerof G = (V, E) if for every pair of vertices
our problem has a provably better approximation ratio thanv < V, the shortest path distaneg; (u,v) from u to
DIRECTED k-SPANNERand its variants. This algorithm alsa, in H is at mostk - dg(u,v). Since they were intro-

resolves an open question of Hesse (SODA, 2003). duced by Peleg and Schaffer [36] in the context of distributed
computing, spanners for undirected graphs have been exten-
*All o mitted proofs and details appear in the full version [10]. sively studied. The tradeoff between the paramktealled
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simulating synchronized protocols in unsynchronized netal. [12] study algorithms that might seem relevantito
works [37], parallel and distributed algorithms for approxFC-SPANNER. In [10], we explain why these algorithms do
imating shortest paths [13, 14, 19], and algorithms for diset work fork-TC-SPANNER.

tance oracles [9, 47]. For all constantt > 2 ande € (0,1), it is impossi-

In the directed setting, two notions of spanners habe to approximate DRECTED k-SPANNER within a factor
been considered in the literature: the direct generalizatioropble’ " assuming NEDTIME(nP°¥1°8 ™) [20]. More-
the above definition [36] anaundtrip spanner$l6, 39]. In  over, [23] extend this result t8 < k = O(n'~?) for all
this paper, we introduce a new definition of directed spanngrg (0,1). Thus, according to Arora and Lund’s classifica-
that captures the notion that a spanner should have a smi@H [31] of NP-hard problems, RECTED k-SPANNERIS in
diameter but preserve the connectivity of the original grapblass IlI, for3 < k = O(n'~%). Moreover, [23] show that

, ) proving that DRECTED k-SPANNERIS in class IV, that is, in-
DEFINITION 1.1. (TCSPANNER Given a directed graph approximable withim? for somes € (0, 1), would resolve a

G = (V. E) and an integerk > 1, a k-transitive-closure- 1, standing open question in complexity theory, and cause
spanner (k-TC-spanner) is a directed graphl = (V. E)  ¢jasses Il and IV to collapse into a single class.
with the following properties: (1Fy is a subset of the edges

in the transitive closure of;. (2) For all verticesu,v € V,

: 1.2 Our Contributions In this work we (1) bring several
if dg(u,v) < oo, thendy (u,v) < k.

diverse applications, including property testing, access con-

Notice that a-TC-spanner of5 is just a directed:-spanner tr?:l and data stzructgtre_s, tl)mde(; the l:rr:lfymg fra_mev:)c_i_rk O];
of the transitive-closure ofs. Nevertheless, TC-spanner T—(s:pggners, ( I)DO an o;ns s on the adpprol>l<lrrtlad_l 'g’ 0
are interesting in their own right due to the numerous TC=' -~ ANNER, DIRECTED &-SPANNER and well-studie

riants of these problems, and (3) construct sparse TC-
anners for the family of/-minor free graphs, which in-
|[Jde planar, bounded-treewidth, and bounded genus graphs.
able 1 summarizes our results on the approximabiliti-of
gC-SPANNER.
Algorithms for k-TC-SPANNER and related prob-
s. We present two deterministic polynomial time ap-
proximation algorithms fork-TC-SPANNER. Our first al-
gorithm uses a new combination of convex programming

; ; 1—1/k\_rati _
1.1 Related Work Thorup [42] considered a special cas r(1:d ;implmg, :\i/lnd gives a@i((n IOgh”()j _ Id) rarflo for &
of TC-spanners of graph& that have at most twice as = ANNER. Moreover, our method yields t € same ap-
many edges as7, and conjectured that for all directed?rOXimation ratio for DRECTED k-SPANNER and its well-
graphg= onn nodes there are such TC-spanners with Stret%wglegvanants: gENT/SER\éER DIRECTED k'ZS:AfNNER’f
polylogarithmic inn. He proved his conjecture for planatm_k' 'APFAE_TER FI)ANN'E'G UBGRAPH.(Seef[f. ]d_or e b
graphs [43], but later Hesse [30] gave a counterexampl HBIOHS). IS Teso ves_t ? opﬁn questtl)(l)n 0 ig] mgda Sub-
Thorup’s conjecture for general graphs. TC-spanners w pear appro><“|mat|on rf_mo (_)rt fase;pro ems kor 3, e
also studied for directed trees: implicitly in [5, 8, 11, 17, 4 cribed as a “challenging direction” for research on directed

and explicitly in [44]. For the directed line, [5] (and later, [8] panners t.)y Elkin and Peleg2£§2]. our algorithmlfpt 3_is
showed that the size of the sparsesEC-spanner i@ (n - 2/9uably simpler than the (n"/* polylog n)-approximation
Ae(n)), where A\ (n) is the k*"-row inverse Ackermann algo(r)lthm of [2231' lorithm h 5 /K2 0 for k
function. [5, 11, 44] gave the same bounds for directed tre%% Spur seconThf’:l gdont m has af(n/k") r_atlob or k-
Approximability of directed spanner problems. All -SPANNER. This demonstrates a separation betwien

algorithms for DRECTED k-SPANNER immediately yield TC-SPANNER and DRECTED k-SPANNER for k = +/n,
algorithms fork-TC-SPANNER with the same approxima-'t givesO(log n)-approximation fork-TC-SPANNER while

tion ratio. Kortsarz and Peleg [33] give af(logn)- [213,11he(_)rem 6'6]_ showed that RECTED /n-SPANNERIs
approximation algorithm for IRECTED-2-SPANNER, and 2 "-inapproximable. Moreover, Hesse [30] asks for an
Kortsarz [32] shows that this approximation ratio cannot 90rithm to add)(||) “shortcuts” to a digraph and reduce
improved unless P=NP. Fdr = 3, Elkin and Peleg [20] tS dlameter.to\/ﬁ. Our second algorlthm rgturns\éﬁ-TC-
present ar0(n?/3)-approximation algorithm. Their algo-SPaner of sizeD(|G| +logn), answering his question.
rithm is complicated, and theolylog factor hidden in the ~ Inapproximability of ~%-TC-SPANNER We present

O notation is not analyzed. Fér> 4, sublinear factor ap- WO results on the hardness bfTC-SPANNER. First, we
proximation algorithms are known only in the undirected sdfove fork = 2 that theO(log n) ratio of [33] is optimal
ting [36]. We note that Dodis and Khanna [18] and Chekutnless P=NP. Next, for constaht> 2, we show thak-TC-

spanner-specific applications we present in Section 1.3. va

One of the focuses of this paper is the study of ¥
computational problem of finding the size of the spars
k-TC-spanner for a given digraph, referred to /a9 C-
SPANNER. It is a special case of the problem of finding th
size of the sparsest directed spanner, calle’ERTED k-
SPANNER, that has been previously studied. Both proble
are NP-hard (proofs appear in the full version [10]).
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| Setting ofk | Implied by previous work| This paper | Notes
k=2 O(logn) [33] Q(log n)
constant > 2 Q(2ls’ 1)
k=3 O(n?/? polylogn) [20] O((nlogn)?/3) .
=3 O(n) [orivial] Ol(nTog n)T=17) applies to DRECTED k-SPANNER
k=Q (lolgolgogn) O(n) [trivial] o} (%) separation from DRECTED k-SPANNER

Table 1: Summary of Results on Approximability/ofT C-SPANNER

SPANNERIs inapproximable within a factor a&f°s’ " for of many dipaths, and so we cannot efficiently recurse using
all e € (0,1), unless NEDTIME(nP°V'°8™), This result the sparsé-TC-spanners for the directed line of Alon and
is our main technical contribution. Observe that a strongechieber [5]. We observe that these separators satisfy a
inapproximability result fork > 2 would imply the same stronger property than claimed in [1], effectively allowing us
inaproximability for DRECTED-k-SPANNER, and as shown to encode the direction of edges in a cost function associated
in [23], collapse classes Il and IV in Arora and Lund’s clawith the separators.
sification.

Our2'°e’“n_hardness matches the known hardness b8  Applications of TC-spanners
DIRECTED k-SPANNER. As is the case for IRECTED k- Monotonicity testing. Monotonicity of functions [4,
SPANNER, we start by building a directed graph from a well17, 24, 25, 26, 27, 29] is one of the most studied properties in
known hard problem called MIN-REP, which has the sanpeoperty testing [28, 40]. Fischet al.[26] prove that testing
inapproximability as SMMETRIC LABEL COVER. How- monotonicity is equivalent to several other testing problems.
ever, as illustrated in Section 3, all known hard instances fat V;, be a poset ofi elements ands,, = (V,,, E) be the
DIRECTED k-SPANNER cannot imply anything better thanrelation graph, i.e., the Hasse diagram, ¥ar. A function
2(1)-hardness fok-TC-SPANNER. Intuitively, our lower f : V,, — R is calledmonotoneif f(z) < f(y) for all
bound is much harder to prove than the one f®RECTEDL- (x,y) € E. We sayf is e-far from monotone iff has
SPANNERSince our instance must be transitively-closed, atml be changed o> ¢ fraction of the domain to become
thus, many more “shortcut” routes between pairs of verticemnotone, that isminmonotoney [{ : f(z) # g(z)}| > en.
exist. Our construction uses a novel application of the gel-monotonicity tester or,, is an algorithm that, given an
eralized butterfly and broom graphs, together with seveoahcle for a functiorf : V,, — R, passes iff is monotone
transformations of the MIN-REP problem, which make hut fails with probability> % if f is e-far from monotone.
noise-resilient We call a MIN-REP instance noise-resilienThe optimal monotonicity tester for the directed liig,
to indicate that its structure is preserved under small peonsisting of node$l,2,...,n} andedge$(i,i +1):1 <
turbations. The paths in the generalized butterfly are well< n — 1}, proposed by Dodist al.[17], is based on the
structured, which allows us to analyze the many differesparses2-TC-spanner for that graph. Implicit in the proof
routes possible in the transitive closure. of Proposition 9 in [17] is a lemma relating the complexity

Structural results. Finally, we study the minimunk- of a monotonicity tester fok.,, to the size of &-TC-spanner
TC-spanner size for a specific graph family with spakse for L,,. We generalize this by observing that a spa-SJeC-
TC-spannersH-minor-free graphs. A grapl is aminor spanner for any partial order gragh, implies an efficient
of G if H is a subgraph of a graph obtained fr@gmby a monotonicity tester o,,.
sequence of edge contractions and deletions. For a fixed _ .
graph H (e.g., Ks), the family of H-minor-free graphss LEMMA 11 If a directed acyclic grapf_Gn has a2-TC-_ _
a minor-closed family that excluded. Examples of such spanner withs(n) edges, then there exists a monotonicity
families include planar graphs, bounded treewidth grapkgster onG,, that runs in timeO (S(" )
and bounded genus graphs, explicitly studied in applications
in Section 1.3. ForH-minor-free graphs we efficientlyProof. The tester select%s— edges of the2-TC-spanneil
construct2-TC-spanners of siz&(nlog?n), and k-TC- uniformly at random. It querles functiohon the endpoints
spanners of siz€(n - logn - Ax(n)), where\,(-) is the of all the selected edges and rejects if some selected edge
k'-row inverse Ackermann function. The main idea is t@:, y) is violatedby f, thatis,f () > f(y).
use the path separators for undirectéeminor free graphs If the function f is monotone onG,,, the algorithm
due to Abraham and Gavoille [1]. However, although theways accepts. The crux of the proof is to show that
separators are paths, in our digraph they may be the unfienctions that are--far from monotone are rejected with

934 Copyright © by SIAM.

Unauthorized reproduction of this article is prohibited.



probability at Ieast%. Let f : V,, — R be a function that edges must be from the transitive closurethf The num-

is e-far from monotone. It is enough to demonstrate thatber of edges added corresponds to the space complexity of

violates at least* edges in . Then each selected edge ithe scheme, while the shortest-path distances correspond to

violated with probabilityﬁ, and te lemma follows by the time complexity. Implicit in [8] are TC-spanners for di-

elementary probability theory. rected trees withk = 3 and sizeO(nloglogn) and also
Denote the transitive closure 6f by TC(G). We say Wwith & = O(loglogn) and sizeO(n). Our results forH -

a vertexx € V,, is assigned #dad label by f if 2 has an minor free graphs extend the known posets for which access

incident violated edge it C(G,,); otherwise,» has agood control schemes hav@(n polylog n) storage and (1) key

label. LetV’ be a set of vertices with good labels. Obsererivation time. Our approximation algorithms yield sparse

that f is monotone on the induced subgragh= (V’, E’) k-TC-spanners for general posets.

of TC(G). This implies ([26], Lemma 1) thaf can be Partial products in a semigroup. Yao [49] and Alon

changed into a monotone function by modifying it on at mognd Schieber [5] study space-efficient data structures for the

|V;,, — V| vertices. Since is e-far from monotone, it shows following problem: Preprocess elemerits, . .., s, } of a

that there are at least vertices with bad labels. semigroup(S, o), such agR, min), to be able to compute
Every function that ig-far from monotone has a matchpartial products; os;y10---os; forall 1 <i < j < n with

ing M of at least$* violated edges if'C(G) [17]. We atmostk queries to a small database of pre-computed partial

will establish a map from the set of edges/if to the set products. This problem reduces to finding a sparB€sC-

of violated edges infl, so that each violated edge i is spanner for a directed ling,, ;. Chazelle [11] and Alon

the image of at most edges inM. For each edgér,y) in and Schieber also consider a generalization of the above

the matching, consider the corresponding path froto 3y problem, where the input is an (undirected) tfieevith an

of length at mose® in the 2-TC-spannei. If the path is of elements; of a semigroup associated with each veitekhe

length1, (x,y) is the violated edge i corresponding to goal is to create a space-efficient data structure that allows

the matching edgér, y). Otherwise, le{z, z,y) be a path one to compute the product of elements associated with all

of length 2 inH. At least one of the edgds, z) and(z,y) Vertices on the path fromto j, for all vertex pairs, j in T'.

is violated, and we mafr, y) to that edge. Sincé/ is a The generalized problem reduces to finding a spafsg@<l-

matching, at mos2 edges inM/ can be mapped to one vio-spanner for a directed tré¢ obtained froni’. We describe

lated edge if'C/(G). Thus, the2-TC-spannei/ has> < the reduction in the full version of this paper [10].

violated edges, as required. O Organization. Section 2 contains an overview of our

. . algorithms. In ion 3, we give an overview of our lower
Therefore,aIIth@—TC-spannerconstructlonsdescnbe@gOt S Section 3, we give an overview of our lowe

o k L . . unds and the techniques involved. Section 4 contains an
in this paper yield monotonicity testers for functions define . .

. . overview of our bounds for minor-free graphs. We defer the
on the corresponding posets. Moreover, férminor free

. etails and proofs of our results to [10].
graphs, the resulting tester has much better query compl%x- . o B
ity than the previously known, due to Fiscledral.[26]. In- Notatlon.ThgtranS|t!ve closureof a gra}th =V, ,E)’
) . 2 . denotedl'C/(G), is the directed grapfV, E’), whereE’ =
deed, we achieve testers witl(log” n/e) queries, whereas : .
previous testers requirddi(y/n /e) queries {(u,v) : u ~»¢ v}. Verticesu andv are comparableif
. L either(u,v) € TC(G) or (v,u) € TC(G). Thetransitive
Key management in an access hierarchyin the prob-

. . : reductionof G, denotedl’ R(G), is a digraphG’ with the
lem of key management in an access hierarchy, i.e., ac

: . Yewest edges for whic'C(G’) = TC(G). As shown by
control, there is a partially ordered set (poset) of acce et al. [3], TR(G) can be computed efficiently via a

. X . 0
classes and a key associated with each class. This is modeled . . . :
by a directed graplis whose nodes are classes and Whog(raeedy algorithm. For directed acyclic graphsi(c) is

edges indicate an ordering. A user is entitled to acces§ 11 and is transitively reducedf TR(G) = G. We

S A :
certain class and all classes reachable from it. This pr(():gz-ﬁ ?ﬂgggfﬁgﬂﬁf}%ﬁigg&]i Igeg;r?(;((jGtZytiit(lr] (}t)leQ.j

lem arises in content distribution, operating systems, and ) , ; o AGHLS)

project development (see, e.g., the references in [8]). Q%HLO) = A, 1), A(’Jﬁlﬂfl) = A(’j 2 , _)- The
approach to the access control problem [7, 8, 41] is to as$§€s€ Ac_It<hermar_1n function is(n) = min{i : A((,1) >
ciate public informationP (i, j) with each edgéi,j) € ¢ " andthe-rowinverseis\;(n) = min{j : Ai, j) = n}.
and a secret key; with each node. There is an efficient ) )

algorithm A which takesk; and P(i, j) and generateg;. 2 OVerview of Algorithms for k-TC-SPANNER and
However, for each(i, j) in G, it is computationally hard ~ Related Problems

to generatek; without knowledge ofk;. To obtain a key Our O((nlogn)'~!/*)-approximation fork-TC-SPANNER

k, from a keyk,, algorithm A is run dg(u,v) times. To for arbitrary k& is based on a new combination of con-
speed this up, [8] suggest adding edgesGtdo increase vex programming and sampling.  Our technique also
connectivity. To preserve the access hierarchyzofnew achieves anO((nlogn)!~'/*) ratio for DIRECTED k-
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SPANNER, CLIENT/SERVER DIRECTED k-SPANNER, and spanner must have sinéin(OPT,n—1), one can guarantee
k-DIAMETER SPANNING SUBGRAPH. Here we describe thethat this is an@(nl—l/’“)—approximation. Note that we
result for DRECTED k-SPANNER. To achieve the same re-assume thatF is connected, as otherwise we can run the
sult for k-TC-SPANNER, it suffices to run the algorithm onalgorithm separately on each component. A more careful
the transitive-closure of the input digraph. analysis gives am((nlogn)'~'/*)-approximation, and a

) simple greedy algorithm derandomizes the sampling.
THEOREM2.1. For any (not necessarily constari) > 2,

there is a deterministic polynomial-time algorithm achie\=-EMMA 2.2. |H| = O((nlogn)'~**OPT).
ing an O((n logn)'~'/*)-approximation forDIRECTED k-

SPANNER. The problem with this approach is that the number of vari-

ables and the size of each of the constraints grows exponen-

We start by formulating the problem as an integer progratially with k. We replace the variableg> with min.cp .,
We briefly explain the problems with this approach and theducing the number of variables t(n?). The result-
ideas required to make it work. One can introduce binaing program is convex, and we use the ellipsoid algorithm
edge variables:. for each edge in the transitive closure, with a separation oracle. The oracle, givénjust needs
and binary path variableg for each pathP of length< kin to find one pair of vertice$u, v) for which the constraint
the transitive closure. One enforces the constrajptst z. ., ., min.cp z. > lisviolated. It can do this by sorting
for eache € P, which allow a pathP in the spanner only the coordinates of, and counting the number afv pathsP
if all edges along it are present. The final constraint fiesr which some particulat,. is the minimum edge variable
> pYyp > 1forall edgesu,v) € G, where the sum is overalongP. For this, it iteratively removes edgesrom G for
pathsP of length< k from« to v. Finally, one can relax thewhich z. is smallest, and uses matrix multiplication to count
problem to an LP, and try to round the solution. thewu-v paths that remain in the graph.

The first problem is that the integrality gap is huge, ) .
which may be why an LP approach had not been considekddMA 2.3. For any k, there exists a separation oracle
before. Indeed, if there a®(n) paths of length at mogt Which runs in timepoly ().

(say, for constant) betweenu andv, the LP might assign k-TC-SPANNERalgorithm for large k. OurO(n/k?)-
each of them a value (ﬂ)_(l_/n). However, we observe thatapproximation algorithm, which is specific t&-TC-

if there arer = n'~!/* distinct paths fromu to v of length  gpANNER works by sampling)(n/k) vertices and select-

< k, there must be- !/t~ distinct verticess for which g o, /) edges from the transitive closure adjacent to the
u ~ w ~ v. Let BFS(v) denote a shortest path tree of;pjes. We also include the edge€'d#(G) in the spanner.

edges directed away from, together with a shortest pathy simple greedy algorithm derandomizes the sampling.
tree of edges directed towardsWe sampleD(n /r!/(F=1))

vertices, and growB F'S(w) of 2(n — 1) edges around eachTHEOREM 2.2. For any k, there exists a deterministic ap-
samplew. Then we are likely to sample & for which proximation algorithm for thé-T C-SPANNER problem with
u ~ w ~ v, and the path from to v along the edges in approximation ratioO((n logn)/(k? + klogn)).

BFS(w) has length< k. We let the spanneil be the union

of the outputs of the LP and sampling-based algorithms. 3 Overview of Hardness Results fork-TC-Spanner

This section outlines the proof of Theorem 3.1, which is

1. H+0. our main technical contribution. Missing details appear
2. For each edge € G, if 7. > 1/21 . in [10]. At the end we briefly describe the ideas behind the
~ (nlogn)t=1/ inapproximability result for 2-TC-SANNER.
H — HU/ {e}.
3. Randomly sample = O((nlogn)*~'/*) ver- THEOREM3.1. For any fixede € (0,1), the size of the
ticeszy, 2o, ..., 2 € G. sparsest;-TC-spanner cannot be approximated to within a

log'~¢n C polylogny
4. H — HU (U BFS(=:)). OutputH. factor of2 unlessNP C DTIME(n )

o N ] _ 3.1 The Construction and its Motivation Sincek-TC-
With high probablllty, an ed_geu,v) is covered by either the gpanNER is a special case of RECTED k-SPANNER,
LP relaxation or the sampling. which is ©(log n)-inapproximable fok = 2 and2'°s’ -
LEMMA 2.1. With probability at leastt — 1/n, H is a k- inapproximable fork > 3, it is natural to ask whether the
TC-spanner of. hard instances of [RECTED k-SPANNER from [32, 20, 23]
can be used to prove hardness foiT C-SPANNER. It
The spanner has at mast OPT + T1+;71) edges, where turns out that all these instances have very smallC-
OPT is the optimum of the LP. By observing that angpanners. We demonstrate it for the instance used in the
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proof of Q(logn)-hardness for DRECTED k-SPANNER, & from anyw in strip 1 to anywv in strip k + 1. Moreover,
which works via a reduction fromes-CoVER. any shortcut is on at most' ~2/* such paths because if it
Let G be a bipartite digraph for 8-CovER with n  connects a vertex in stripwith a vertex in strig + ¢ (where
vertices (“sets”) on the leftp vertices (“elements”) on the/ > 2) it fixes all buti — 1 coordinates ofu and all but
right, and edges from left to right. Ldtbe a set of new & + 1 — (i + £) coordinates of. Thus,> n'+2/* shortcuts
independent vertices, for some vaiyand letl be a directed are needed to reduce the diametekto 1.
line onk — 1 new vertices. Call the first vertex éfthe head, Reduction from MIN-REP. To get glog' " n_ inap-
and the last vertex the tail. Include directed edges (1) frggroximability, we reduce from the MIN-REP problem. An
the tail of L to every set inGG, (2) from every vertex of to (n,r,d, m)-MIN-REP instance is a bipartite graph of max-
the head of., and (3) from every vertex af to the sets and imum degreel in which the left part can be partitioned into
the elements of;/. Call the constructed digraph . setsA;, ..., A, and the right part into set§y,...,5,, so
Observe that i/, all directed edges except those frorthat |.A;| = |B;| = n/r for all i € [r]. To describe the
I to G must be included in the directéddspanner, as suchlast parametem, call a vertexisolatedif its degree is0,
edges form the unique path between their endpoints. &id non-isolatedotherwise. Letmn(A;) be the inverse of
this point, the only pairs of vertices at distance larger théme fraction of non-isolated vertices i4;. Thenm is the
k are those from a vertex if to an element of7. Since minimum suchn(A;). Define thesupergrapho have nodes
these vertices are adjacent@, there must be a path ofA4,,..., A, Bi,...,B,, with asuperedgé.A;, 55;) iff there
length at most in the spanner. The only possible path is a node inA4; adjacent to a node i§;. A rep-coveris
from the vertex in/ to a vertex ofG. It is easy to see thata vertex setS in the graph such that wheneved;, B;) is
adding exacthO PT" edges from each vertex ihto the sets an edge in the supergraph, there is an edge between some
of G is necessary and sufficient to obtain a spanner, wherer € S with v € A; andv € B;. A solution to MIN-REP
OPT is the size of the minimum set-cover. By making is a smallest rep-cover, and its size is denoted by OPT. The
sufficiently large, the size of the spanner is easily seeng@blem is2!°¢'  "-inapproximable [20].
be©(i - OPT), and thus one can approximate’SCOVER As a first attempt, we construct a graghof diameter
by approximating DRECTED k-SPANNER, so the problem £ 4 2 as follows. We attach a disjoint copy of a generalized
is Q(log n)-inapproximable. butterfly of diameterk — 1 to each.4; in the MIN-REP
However, there is a triviak-TC-spanner for this in- instance graph; that is, we identify the verticestipwith the
stance! Indeed, by transitivity we can simply connect thgst strip of the butterfly. We call the vertices in the butterfly
head ofL to each of the elements @f. This is ak-TC- at distancer from A; the z-th shadowof .4;. Next, for each
spanner of size proportional to the number of verticeSin  3;, we attach what we calllaroom This is a 3-layer graph,
Thus, the best one could hope for with this instance is ithere the two leftmost layers form a bipartite clique, and the
showQ(1)-hardness fok-TC-SPANNER. For similar rea- right layer consists of degree-1 nodes, caltledomsticks
sons, the instance showirdlPs’ “"-inapproximability for attached to nodes in the middle layer. Each node in the
DIRECTED k-SPANNER also cannot establish anything bemiddle layer has the same number of broomsticks attached
yond€2(1)-hardness fok-TC-SPANNER. to it. EachB; is identified with the left layer of a disjoint
In the example above there are many paths to coveoom. All edges of7 are directed from the shadows of the
(those from! to elements ofY), but a few “shortcut” edges A, towards the broomsticks (left to right).
cover them all. Ideally, we would have many paths to We would like to argue that the minimulaTC-spanner
cover, and each shortcut edge could only cover a single pathof G is formed as follows. Lef be a minimum rep-cover
Hesse’s digraph requiring a large number of shortcuts abthe underlying MIN-REP instance. For eacke S, if s
reduce its diameter [30] satisfies the desired condition. Hisn an.4;, include all shortcuts from th-shadow of4; to
idea was to associate vertices with a subisedf vectors in s which are in the transitive closure 6f. Otherwise § is in
R? such that(u,v) € E iff u — v is an extreme point of thea B;), include all shortcuts from to the broomsticks oB;.
d-dimensional ball of integer points. By the properties of &y balancing the number of broomsticks with the siz&-of
extreme point, a shortcut can cover at most one path froratedows, one can sha has sizéS| f(n, k), wheref (n, k)
large family of shortest paths. is an easily computable function. SinSds a rep-coverHd
However, to achieve an inapproximability result, wis a k-TC-spanner. IfH were optimal, then approximating
need better structured graphs. We geaeralized butterfliesits size within some factor would approximate MIN-REP
defined in [48]. In these digraphs vertices are identifiedthin the same factor.
with coordinategn'/*]* x [k + 1], and an edge connects  Itturns out that// is not optimal, and so our first attempt
u = (ug,...,ug, i) tov = (vq,...,ux,¢ + 1) iff for all does not work. Below, we modif¢F and consider a related
J #i,u; = v;. We say averteXuy, ..., u, ) isinstrips. k-TC-spannef! of the modified5. We show that ang-TC-
It is easy to see that there is a unique shortest path of lengplanner has siz8(| H|/ logn) for constant. Since MIN-
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Generalized Butterfl

REP is2'°¢’ “"_inapproximable, this still givegos' -

hardness. < Generalized Butterfis Noise-
To prove this, we need to argue that most verticés _ Resilient
the k-shadows do not “benefit” from traversing other shor
cuts to reach the broomsticks. This requires a classification ————— e MIN-REP @
of all alternative routes from suehto broomsticks. Sineis < Generalized Butterfi
in a generalized butterfly, these routes are well-understood. piameter k-1 Diameter 1 Diameter 2 A broom
However, for a generic MIN-REP instance, most of these .
routes do indeed lead to a much smalléFC-spanner. Figure 1: TC-spanner instange& an example of a broom.

To rule out the alternative routes, we ensure that OPT
and the four parameters of the MIN-REP instance each lie
in a narrow range. In Theorem 3.2, we prove that MIN-REP — % and x, we obtain that theng, ro, do, mo)-MIN-
with the required parameter restrictions is inapproximable py-p problem is2!°¢’~“"-inapproximable unlessVP C
giving a reduction from an unrestricted MIN-REP instancg)T[ME(npolylogn)_ The conditions on the paramete_rs in
It works by carefully interleaving the following five operatheorem 3.2 are satisfied singe (£,6) andn+2n+¢ < 6.
tions on a "base” MIN-REP instance with unrestricted pa- \ve transformz, to a speciaQIized(n,r, d, m)-MIN-
rameters: (1) disjpin_t copies, (2)dqmmyvert?cesinside ClUSEP instanca with r — ro, d = don'~® andm = my.
ters, (3) blowup inside clusters with matching supergraRiiyaph 7 is bipartite, with nodes partitioned into clusters
(4) blowup inside clusters with complete supergraph, and (j}, ..., A, onthe left, and3i, . .., B, on the right. Eactd;
tensoring. Each operation increases one or several Paraspgis. is a union ofn!~% groupsA; , andB;,, respectively,
ters by a prespecified factor, and together they give us fiygy, ¢ [n!~%]. Each groupd, and B; 5 fori,j € [r],
degrees of freedom to control the range of OPT and the fQug [n1=°], is a copy of A, and,, respecti\/eI)Bj, from the
parameters of MIN-REP. original instanceZ,,. For each edgéu,v) with u € A; and

THEOREM 3.2. (Noise-Resilient MIN-REP is hard) Fix U € B; of 7o, graphT has edges between the c_opywi‘n

A; x, andth ofin B; 1,, forall ki, k 1=91 Th
parametersk € (0,1) and R,D,M,F € (0,1 — r) ik @NGIMECOPy Bk, forall ki, ky € [n"°]. The
satisfyingF’ € (R 27R) and D ’+ }\4 jr F < 1’ Noise- solution value ofZ remainsOP1, because the supergraph
Resilient MIN-REP is a family of (n,r,d,m)-MIN- c0rrespondingtdo andZ are identical.
REP instances withr € [nf,nf%), d € [nD,nD+"] From specialized MIN-REP to k-TC-SPANNER.

m € [nM nM+%), and OPT € [nF,n"+%]. This prob- FromZ, we construct a_g_rgpﬁ of d|ameterk + 2 as fol_—
oloal € m - _ lows. We first attach a disjoint generalized butterfly of diam-
lem is 2'°&" " "-inapproximable for alle € (0,1) unless

NP C DTIM E(npolyiosn eterk—1, denotedBF'(A; ), to each group!; , in Z, for all
= (n ) i € [r], s € [n'79]. Thatis, we identify vertices ial; ; with
The variant of MIN-REP in Theorem 3.2 is calledn® last strip ofBF'(4; ) in the way discussed below. De-

“noise-resilient” because even if many vertices in the ggts note by BF(A;) = U; BF(A;,;) the set of all the vertices

andB; are adversarially deleted in an instance of this pro%t-taChGOI in this manner to the clustdy. Let BFY(4; ;)

lem, the minimum rep-cover does not shrink significantl%;t;e vertices in strip of thej butterfIyBF(zéj;i,s), where
This property helps us rule out many alternative routes it (Aiss) = Ais, and IBBEY (A;) = UsBF7(4;5). We
the TC-spanner, though we will need to change our graf)"ﬂl the vertices in the butterﬂEF(Ai,s_) at distancer from
G. Our reduction from noise-resilient MIN-REP o TC- Ai,s thez-th shadowof 4; ;. Call the in-degree as well as

def

SPANNERfor k > 2 consists of two steps: first we produce @ut-degree of the vertices in the butterfligs= ("T.a)ﬁ-
specializedMIN-REP instancé from an arbitrary instance ~ Next for each B;;, we attach a broom, denoted
7, of noise-resilient MIN-REP, and then we construdt-a BR(Bis)- More specifically, each vertex i; s is
TC-SPANNERInstances by carefully adjoining generalizedconnected to the vertices of a sBtRF?(B; ;) of size
butterflies on the left and broom graphs on the righfof ~ d, and each vertew € BRF2(B; ) is connected to

From noise-resilient MIN-REP to specializedMIN- @ disjoint set of nodes, called broomsticks, of size
REP Set§ = 1’5_;1 n = m, and ¢ = Let BRF3(B; ) be the set of broomsticks adjacent to

s 1 -  BRM2(B,,). Let BR*2(B;) = U,BR**2(B,,) and
1) (m + m)- Let x be a sufficiently small positive BR¥3(B;) = U,BRF3(B;,). Identify layer V; with
constant. We start from afwng, 7o, do, mo)-instanceZ, U; ;BFI(A; ) for j € [k], layer Vi1 with U; sB; s, and
of noise-resilient MIN-REP with optimun® PTy, where layerV; with U; BR?(B;) for j € {k + 2,k + 3}. Direct all
ng = n’,rg € [n%/% n2t%] dy € [n",n"*], mg € the edges fron¥; to V. See Figure 1.

[n?1,n?7%], and OPT, € [n%,nS™"]. By instantiat- Attaching butterflies. Recall that we identify vertices
ing Theorem 3.2 withR = %,D = 1M = 2%, in A; s with the last stripBF* (A, ;) of a disjoint butterfly,
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foralli € [r], s € [n'7°. The mapping fromA;, to from the modifiedk-TC-spanner, one can extract a MIN-
BF*(A; ) is constructed in [10]. Here we explain thREP cover of size(OPT) for Z, the desired contradiction.
requirements we impose on the mapping. Recall that each We call a superedged;, B;), wherei, j € [r], deletable
each groupA; ; has< % non-solated vertices. For ourwith respect toC if at least1/4 of the vertex pairgu,v) €
analysis,eachvertex in BF*~1(4, ,) must be adjacent to BF''(A;) x BR**3(B;) have a path between them ifof
< < nonisolated vertices iM; ,. The isolated verticeslength at mosk and of type other tha(®& (k — 2), 2&(k +
help us control the number of routes with shortcuts from thg). Our first step is to show that such cluster pairs can be
z-shadows to thé¢z — 2)-shadows, for some > 2, since essentially ignored.
connecting vertices in thieshadow to many isolated vertice .
decreases the number of comparable pairs in the first and %'Y'MA 3.3. fath Analy3|s Lemma)_ The number of
layers ofG connected by a path containing such a shortcu e etable superedges with respecktds o(OPT).

A sparse TC-spannerH for the k-TC SPANNER in-

. Proof sketchWe call a pattcanonicalif it contains shortcut
stanceG. LetSy be a smallest rep-cover @f, of size OPT. P

_ s . 16 o . edges of types both&(k — 2) and2&(k + 1); otherwise,
Recall that eact!; andB; is replicatech " times inZ. Let a path isalternative  Observe that every alternative path

i'?’eCtZSasner:eovf{acl)!‘r;?r?;?iﬁ;:??ﬁ;;ﬂi Ofrgrﬁr:ﬁfigge%ontains a shortcut edge from one of the following three
e ! X ategories: (1) edges that connect verticed/imand V;,
in layer Vo to their descendants ifi N V}, and from the 9 (1) edg

. . wherei: < k andj > k + 1; (2) edges of typ8&i where
nodes inS N V1 to their descendants i 5. i <k—3;(3) edjges of typeg&)z' Wr?erez' <yz —3. Let
LEMMA 3.1. (Rep-cover Spanner Lemma)X is a k-TC- ©B be the set of all shortcut edge types included in the
spanner forg, with |H| = O(OPT n1_5(n_5)% ). three cases. We analyze the three cases separately and show

" that for eachS € Sg, the number of superedgéd,, B,),

3.2 Path Analysis and Rerandomization The next (i,j) € [r]?, such that at least Qlésl fraction Of_ pairs
lemma shows that the-TC-spannerH defined above and (u,v) € BF'(A;) x BRF3(B;) have an alternative path

analyzed in Lemma 3.1 is nearly optimal. containing a shortcut of typ&, is o(OPT). Then by a union
bound overS € S, we prove the lemma. The analysis of
LEMMA 3.2. Any k-TC-spannerK of G has |[K| = -case (1) relies onthe factthatthe degree of each non-isolated
s n_a)% vertex of V; is at leastn'~° > d,. For case (2), we need
¢ <OPTn ( r /log n> the facts that the out-degree of each verteXjins at most

don'~? and thatn” = o(d.). For case (3), we use the facts
We introduce a bit of notation. A:-TC-spanner for that every vertex in V,_; is connected to is at mo%
G =V1UVaU:--UVpys is built by adding shortcut edgeshonisolated vertices i, and that” = o(n"). O
(u,v) between comparabteandv, whereu € Vi, v € Vi, Next, form the graphg’ from G by deleting all edges
and/ > 2. For givent, i, we classify such a shortcut edg@f ¢ connecting4; to 5;, for all the deletable superedges
astype(&i. Sinceg has diametek + 2, a k-TC-spanner (4, B;) with respect tokC. Similarly, obtain a grapt’
for G remains &:-TC-spanner when a typizi edge(u, v) - from K as follows: for all deletable supereddes;, ;) with
with £ > 4 is replaced by a typ&:i edge(u, v'), wherev' respect toC, delete all edges of connectingA; to 5;, and
is a predecessor af. Therefore, it is enough to consideg|sg delete all shortcuts i of types other thaR& (k — 2)
k-TC-spanners with shortcut edges only of ty@esi for and2& (k4 1). Note that for any cluster paird;, B;) of ¢/,
1 <i < k+1and3&iforl < i < k. Say a patht eijther there are no edges between verticed;iand’3; or at
from V1 to Vi3 is of type (£&i) if it uses an edge of typejeast? of the pairs inBF' (A;) x BR*+3(B;) are connected
&i (with £ € {2,3}), andr is of type(2&i, 2&) ifituses py a canonical path. Also define a MIN-REP instafiée
edges of type&: and2&j, © < j. Notice that thek- from 7 by deleting all edges i corresponding to all the
TC-spanner constructed in Lemma 3.1 contains only edggS$etable superedges with respeckto
of type2&(k — 2) and2&(k + 1). For ;. € [0,1], we say a subgraph aFC/(G) is a u-
Proof of Lemma 3.2:Given ak-TC-spannerC of G with goodk-TC-spanner fo if for every (i, j) € [r]* such that
o (nllo::i) OPT edges, we show that we can construct 4i andB; arle comparakble ig, at least g fraction of pair_s
(u,v) € BF'(A;)x BR*"3(B;) are connected by canonical

MIN'REP cover forZ of Salzei(OPT)’ ,WhICh 'S a.contr.a- paths in the subgraph. E.g., the grdghis a%—good k-TC-
diction (recall thatd, = (2-)%1). Wewill accomplish this spanner fo.

by a series of transformations which modifyinto ak-TC-

spanner that uses only shortcut edges of the ¥tk —2) LEMMA 3.4. (Rerandomization Lemma) If a %-good k-
and2&(k + 1). The process increases the size of tHEC- TC-spannelk’’ for G’ is given, then there exist$’, a 1-good
spanner only by a logarithmic factor. Finally, we show thatTC-spanner foG’, such thatX”| < O(|K’| - log n).
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Proof sketch: To canstructK” from K, we letK” be the to recursively construdi-TC-spanners of siz€(n log” n).
union of O(log n) random transformations of the edges d¥lore generally, foZ -minor-free graphs, employing an idea
K'. Each transformatiodl, will keep the edges off’ from [45], we use an arbitrary rooted spanning tfeef the
invariant but move the shortcut edges. Thus, when wigraphG to partitionG into edge-disjoint digraphs so that
let K" = Uf:“fg")m(;c'), the edges of” are still a for every partG;, any undirected path from the root @f
subset of the edges iC(G’). The goal of the randomto a leaf is the union of at most two dipaths when restricted
transformations is to ensure thatlih.(K’), with a constant t0 G;. Next, instead of Thorup’s planar separators, we use
probability, each vertex inBF'(A4;) can reach a vertexpath separator®f Abraham and Gavoille [1] for undirected
in V,_, incident to a shortcut edge, and each vertex fi-minor-free graphs.
BR*3(B;) is incident to a shortcut edge frofj,.;. We However, the Abraham-Gavoille separators are not flex-
achieve this by randomly permuting the groups inside tide enough to be applied directly. That is, these separa-
clusters.A; and B; and by randomly permuting the edgetors consist of a sequence of unions of minimum cost paths,
of the butterfly and broom graphs attached4p and B;. Where the cost function on the edges is arbitrary but specified
After these random transformations, any two verticemnd in advance. We, however, need to adaptively change the cost
vin BFY(A;) andBR"’+3(lS’j) are connected by a canonicafunction during the construction of the separator. Indeed, in
path with probability at Ieasp%. Herce, K" has such a paththe outermost level of recursion we need the path separa-
between them with probability— ﬁ(n)' Theunion bound tor to lie onT", as otherwise the path separator may be the
over all possibleu, v) and (i, j) shows that the desireld” union of Q(n) dipaths in the underlying digraph, preventing
with the claimed size exists. 7 us from recursing efficiently. Thus, we specify the cost of
Now that thek-TC-spanner is 1-good, it is easier to rea" €dge inl” to bel, while outside ofl" it is co. However,
son about rep-covers of the underlying MIN-REP instancihen we partitiorz into subgraphs in the recursion, it may
Recall thag’ hasn'— copies of MIN-REP instanc& em- be that two vertices in the same subgraph no longer have a
bedded in it. Moreover, many pairs of vertices in layers path contained iff". Since the cost function_is fi>.<ed and
andVi.5 rely on each instance to connect. We partition t{B& cost of any path between these two vertices is now
shortcut edges of” into n' %42 parts, according to which @ path separator in the recursive step need not be contained
groups of vertex pairs iir; x Vi3 they can help to connect.n 7, and so it may not be the union of a small number of
By averaging, one of the parts ha@ PT) shortcut edges, dipaths. Thus, we again cannot efficiently recurse. If, how-
and can be used to extract a rep-coveF'obf sizeo(OPT). €Ver, we could change the cost function in the recursive step,
By including two vertices for each of the OPT) deleted We could define a new rooted tree in each subgraph and base
superedges, we obtain a rep-cover foof size o(OPT). OUr cost function on that. We observe that the proof of the
This is a contradiction, completing the proof Lemma 3.2. Abraham-Gavoille separators can be used to show that their
path separators satisfy this stronger property.

LEMMA 3.5. (Rep-cover Extraction Lemma) Given K",
a 1-goodk-TC-spanner foig’, of sizeo(OPT - n'~° - d?),
there exists aMIN-REP cover ofZ of sizeo(OPT). O

THEOREMA4.1. If G is an H-minor-free graph, then it has
a 2-TC-spanner of siz&(nlog” n) and, more generally, a
k-TC-spanner of siz&(n - logn - A (n)) where),(-) is the

tho .
Hardness of2-TC-SPANNER. Our result or2(logn)- K-row inverse Ackermann function.
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