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Abstract

We define the notion of a transitive-closure spanner of a di-
rected graph. Given a directed graphG = (V, E) and an in-
tegerk ≥ 1, ak-transitive-closure-spanner (k-TC-spanner)
of G is a directed graphH = (V, EH) that has (1) the same
transitive-closure asG and (2) diameter at mostk. These
spanners were studied implicitly in access control, property
testing, and data structures, and properties of these spanners
have been rediscovered over the span of 20 years. We bring
these areas under the unifying framework of TC-spanners.
We abstract the common task implicitly tackled in these di-
verse applications as the problem of constructing sparse TC-
spanners.

We study the approximability of the size of the spars-
estk-TC-spanner for a given digraph. Our technical contri-
butions fall into three categories: algorithms for general di-
graphs, inapproximability results, and structural bounds for
a specific graph family which imply an efficient algorithm
with a good approximation ratio for that family.

Algorithms. We present two efficient deterministic al-
gorithms that findk-TC-spanners of near optimal size.
The first algorithm gives añO(n1−1/k)-approximation for
k > 2. Our method, based on a combination of convex
programming and sampling, yields the first sublinear ap-
proximation ratios for (1) DIRECTED k-SPANNER, a well-
studied generalization ofk-TC-SPANNER, and (2) its vari-
ants CLIENT /SERVER DIRECTED k-SPANNER, and thek-
DIAMETER SPANNING SUBGRAPH. This resolves the main
open question of Elkin and Peleg (IPCO, 2001). The sec-
ond algorithm, specific to thek-TC-spanner problem, gives
an Õ(n/k2)-approximation. It shows that fork = Ω(

√
n),

our problem has a provably better approximation ratio than
DIRECTEDk-SPANNERand its variants. This algorithm also
resolves an open question of Hesse (SODA, 2003).
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Inapproximability. Our main technical contribution is
a pair of strong inapproximability results. We resolve the ap-
proximability of2-TC-spanners, showing that it isΘ(log n)
unlessP = NP . For constantk ≥ 3, we prove that the size
of the sparsestk-TC-spanner is hard to approximate within
2log1−ǫ n, for any ǫ > 0, unless NP⊆ DTIME(npolylogn).
Our hardness result helps explain the difficulty in designing
general efficient solutions for the applications above, and it
cannot be improved without resolving a long-standing open
question in complexity theory. It uses an involved applica-
tion of generalized butterfly and broom graphs, as well as
noise-resilient transformations of hard problems, which may
be of independent interest.

Structural bounds. Finally, we study the size of
the sparsest TC-spanner forH-minor-free digraphs, which
include planar, bounded genus, and bounded tree-width
graphs, explicitly investigated in applications above. We
show that everyH-minor-free digraph has an efficiently con-
structiblek-TC-spanner of sizẽO(n). This implies anÕ(1)-
approximation algorithm for this family. Furthermore, using
our insight that 2-TC-spanners yield property testers, we ob-
tain a monotonicity tester withO(log2 n/ǫ) queries for any
poset whose transitive reduction is anH-minor free digraph.
This improves and generalizes the previousΘ(

√
n log n/ǫ)-

query tester of Fischeret al (STOC, 2002).

1 Introduction

A spannercan be thought of as a sparse backbone of a graph
that approximately preserves distances between every pair
of vertices. More precisely, a subgraphH = (V, EH) is
a k-spannerof G = (V, E) if for every pair of vertices
u, v ∈ V , the shortest path distancedH(u, v) from u to
v in H is at mostk · dG(u, v). Since they were intro-
duced by Peleg and Schäffer [36] in the context of distributed
computing, spanners for undirected graphs have been exten-
sively studied. The tradeoff between the parameterk, called
the stretch, and the number of edges in a spanner is rela-
tively well understood: for everyk ≥ 1, any undirected
graph onn vertices has a(2k − 1)-spanner withO(n1+1/k)
edges [6, 35, 47]. This is known to be tight fork = 1, 2, 3, 5
and is conjectured to be tight for allk (see, for example a
survey by Zwick [50]). Undirected spanners have numerous
applications, such as efficient routing [15, 16, 38, 39, 46],
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simulating synchronized protocols in unsynchronized net-
works [37], parallel and distributed algorithms for approx-
imating shortest paths [13, 14, 19], and algorithms for dis-
tance oracles [9, 47].

In the directed setting, two notions of spanners have
been considered in the literature: the direct generalization of
the above definition [36] androundtrip spanners[16, 39]. In
this paper, we introduce a new definition of directed spanners
that captures the notion that a spanner should have a small
diameter but preserve the connectivity of the original graph.

DEFINITION 1.1. (TC-SPANNER) Given a directed graph
G = (V, E) and an integerk ≥ 1, a k-transitive-closure-
spanner (k-TC-spanner) is a directed graphH = (V, EH)
with the following properties: (1)EH is a subset of the edges
in the transitive closure ofG. (2) For all verticesu, v ∈ V ,
if dG(u, v) <∞, thendH(u, v) ≤ k.

Notice that ak-TC-spanner ofG is just a directedk-spanner
of the transitive-closure ofG. Nevertheless, TC-spanners
are interesting in their own right due to the numerous TC-
spanner-specific applications we present in Section 1.3.

One of the focuses of this paper is the study of the
computational problem of finding the size of the sparsest
k-TC-spanner for a given digraph, referred to ask-TC-
SPANNER. It is a special case of the problem of finding the
size of the sparsest directed spanner, called DIRECTED k-
SPANNER, that has been previously studied. Both problems
are NP-hard (proofs appear in the full version [10]).

1.1 Related Work Thorup [42] considered a special case
of TC-spanners of graphsG that have at most twice as
many edges asG, and conjectured that for all directed
graphsG onn nodes there are such TC-spanners with stretch
polylogarithmic inn. He proved his conjecture for planar
graphs [43], but later Hesse [30] gave a counterexample to
Thorup’s conjecture for general graphs. TC-spanners were
also studied for directed trees: implicitly in [5, 8, 11, 17, 49]
and explicitly in [44]. For the directed line, [5] (and later, [8])
showed that the size of the sparsestk-TC-spanner isΘ(n ·
λk(n)), where λk(n) is the kth-row inverse Ackermann
function. [5, 11, 44] gave the same bounds for directed trees.

Approximability of directed spanner problems. All
algorithms for DIRECTED k-SPANNER immediately yield
algorithms fork-TC-SPANNER with the same approxima-
tion ratio. Kortsarz and Peleg [33] give anO(log n)-
approximation algorithm for DIRECTED-2-SPANNER, and
Kortsarz [32] shows that this approximation ratio cannot be
improved unless P=NP. Fork = 3, Elkin and Peleg [20]
present anÕ(n2/3)-approximation algorithm. Their algo-
rithm is complicated, and thepolylog factor hidden in the
Õ notation is not analyzed. Fork ≥ 4, sublinear factor ap-
proximation algorithms are known only in the undirected set-
ting [36]. We note that Dodis and Khanna [18] and Chekuri

et al. [12] study algorithms that might seem relevant tok-
TC-SPANNER. In [10], we explain why these algorithms do
not work fork-TC-SPANNER.

For all constantk > 2 and ǫ ∈ (0, 1), it is impossi-
ble to approximate DIRECTED k-SPANNER within a factor
of 2log1−ǫ n, assuming NP6⊆DTIME(npoly log n) [20]. More-
over, [23] extend this result to3 ≤ k = O(n1−δ) for all
δ ∈ (0, 1). Thus, according to Arora and Lund’s classifica-
tion [31] of NP-hard problems, DIRECTEDk-SPANNER is in
class III, for3 ≤ k = O(n1−δ). Moreover, [23] show that
proving that DIRECTEDk-SPANNER is in class IV, that is, in-
approximable withinnδ for someδ ∈ (0, 1), would resolve a
long standing open question in complexity theory, and cause
classes III and IV to collapse into a single class.

1.2 Our Contributions In this work we (1) bring several
diverse applications, including property testing, access con-
trol and data structures, under the unifying framework of
TC-spanners, (2) obtain bounds on the approximability of
k-TC-SPANNER, DIRECTED k-SPANNER and well-studied
variants of these problems, and (3) construct sparse TC-
spanners for the family ofH-minor free graphs, which in-
clude planar, bounded-treewidth, and bounded genus graphs.
Table 1 summarizes our results on the approximability ofk-
TC-SPANNER.

Algorithms for k-TC-SPANNER and related prob-
lems. We present two deterministic polynomial time ap-
proximation algorithms fork-TC-SPANNER. Our first al-
gorithm uses a new combination of convex programming
and sampling, and gives anO((n log n)1−1/k)-ratio for k-
TC-SPANNER. Moreover, our method yields the same ap-
proximation ratio for DIRECTED k-SPANNER and its well-
studied variants: CLIENT /SERVER DIRECTED k-SPANNER,
andk-DIAMETER SPANNING SUBGRAPH (see [21] for def-
initions). This resolves the open question of finding a sub-
linear approximation ratio for these problems fork > 3, de-
scribed as a “challenging direction” for research on directed
spanners by Elkin and Peleg [22]. Our algorithm fork = 3 is
arguably simpler than theO(n2/3 polylogn)-approximation
algorithm of [22].

Our second algorithm has añO(n/k2) ratio for k-
TC-SPANNER. This demonstrates a separation betweenk-
TC-SPANNER and DIRECTED k-SPANNER: for k =

√
n,

it givesO(log n)-approximation fork-TC-SPANNER while
[23, Theorem 6.6] showed that DIRECTED

√
n-SPANNER is

2log1−ǫ n-inapproximable. Moreover, Hesse [30] asks for an
algorithm to addO(|G|) “shortcuts” to a digraph and reduce
its diameter to

√
n. Our second algorithm returns a

√
n-TC-

spanner of sizeO(|G| + log n), answering his question.
Inapproximability of k-TC-SPANNER. We present

two results on the hardness ofk-TC-SPANNER. First, we
prove fork = 2 that theO(log n) ratio of [33] is optimal
unless P=NP. Next, for constantk > 2, we show thatk-TC-

933 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Setting ofk Implied by previous work This paper Notes

k = 2 O(log n) [33] Ω(log n)

constantk > 2 Ω(2log1−ǫ n)

k = 3 O(n2/3 polylog n) [20] O((n log n)2/3)
applies to DIRECTED k-SPANNER

k > 3 O(n) [trivial] O((n log n)1−1/k)

k = Ω
(

log n
log log n

)

O(n) [trivial] O
(

n log n
k2+k log n

)

separation from DIRECTED k-SPANNER

Table 1: Summary of Results on Approximability ofk-TC-SPANNER

SPANNER is inapproximable within a factor of2log1−ǫ n, for
all ǫ ∈ (0, 1), unless NP⊆DTIME(npolylogn). This result
is our main technical contribution. Observe that a stronger
inapproximability result fork > 2 would imply the same
inaproximability for DIRECTED-k-SPANNER, and as shown
in [23], collapse classes III and IV in Arora and Lund’s clas-
sification.

Our2log1−ǫ n-hardness matches the known hardness for
DIRECTED k-SPANNER. As is the case for DIRECTED k-
SPANNER, we start by building a directed graph from a well-
known hard problem called MIN-REP, which has the same
inapproximability as SYMMETRIC LABEL COVER. How-
ever, as illustrated in Section 3, all known hard instances for
DIRECTED k-SPANNER cannot imply anything better than
Ω(1)-hardness fork-TC-SPANNER. Intuitively, our lower
bound is much harder to prove than the one for DIRECTEDk-
SPANNERsince our instance must be transitively-closed, and
thus, many more “shortcut” routes between pairs of vertices
exist. Our construction uses a novel application of the gen-
eralized butterfly and broom graphs, together with several
transformations of the MIN-REP problem, which make it
noise-resilient. We call a MIN-REP instance noise-resilient
to indicate that its structure is preserved under small per-
turbations. The paths in the generalized butterfly are well-
structured, which allows us to analyze the many different
routes possible in the transitive closure.

Structural results. Finally, we study the minimumk-
TC-spanner size for a specific graph family with sparsek-
TC-spanners:H-minor-free graphs. A graphH is a minor
of G if H is a subgraph of a graph obtained fromG by a
sequence of edge contractions and deletions. For a fixed
graphH (e.g.,K5), the family of H-minor-free graphsis
a minor-closed family that excludesH . Examples of such
families include planar graphs, bounded treewidth graphs,
and bounded genus graphs, explicitly studied in applications
in Section 1.3. ForH-minor-free graphs, we efficiently
construct2-TC-spanners of sizeO(n log2 n), and k-TC-
spanners of sizeO(n · log n · λk(n)), whereλk(·) is the
kth-row inverse Ackermann function. The main idea is to
use the path separators for undirectedH-minor free graphs
due to Abraham and Gavoille [1]. However, although the
separators are paths, in our digraph they may be the union

of many dipaths, and so we cannot efficiently recurse using
the sparsek-TC-spanners for the directed line of Alon and
Schieber [5]. We observe that these separators satisfy a
stronger property than claimed in [1], effectively allowing us
to encode the direction of edges in a cost function associated
with the separators.

1.3 Applications of TC-spanners
Monotonicity testing. Monotonicity of functions [4,

17, 24, 25, 26, 27, 29] is one of the most studied properties in
property testing [28, 40]. Fischeret al.[26] prove that testing
monotonicity is equivalent to several other testing problems.
Let Vn be a poset ofn elements andGn = (Vn, E) be the
relation graph, i.e., the Hasse diagram, forVn. A function
f : Vn → R is calledmonotoneif f(x) ≤ f(y) for all
(x, y) ∈ E. We sayf is ǫ-far from monotone iff has
to be changed on≥ ǫ fraction of the domain to become
monotone, that is,minmonotoneg |{x : f(x) 6= g(x)}| ≥ ǫn.
A monotonicity tester onGn is an algorithm that, given an
oracle for a functionf : Vn → R, passes iff is monotone
but fails with probability≥ 2

3 if f is ǫ-far from monotone.
The optimal monotonicity tester for the directed lineLn,
consisting of nodes{1, 2, . . . , n} and edges{(i, i + 1) : 1 ≤
i ≤ n − 1}, proposed by Dodiset al. [17], is based on the
sparsest2-TC-spanner for that graph. Implicit in the proof
of Proposition 9 in [17] is a lemma relating the complexity
of a monotonicity tester forLn to the size of a2-TC-spanner
for Ln. We generalize this by observing that a sparse2-TC-
spanner for any partial order graphGn implies an efficient
monotonicity tester onGn.

LEMMA 1.1. If a directed acyclic graphGn has a2-TC-
spanner withs(n) edges, then there exists a monotonicity

tester onGn that runs in timeO
(

s(n)
ǫn

)

.

Proof. The tester selects8s(n)
ǫn edges of the2-TC-spannerH

uniformly at random. It queries functionf on the endpoints
of all the selected edges and rejects if some selected edge
(x, y) is violatedby f , that is,f(x) > f(y).

If the function f is monotone onGn, the algorithm
always accepts. The crux of the proof is to show that
functions that areǫ-far from monotone are rejected with
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probability at least23 . Let f : Vn → R be a function that
is ǫ-far from monotone. It is enough to demonstrate thatf
violates at leastǫn4 edges in H . Then each selected edge is
violated with probability ǫn

4s(n) , and the lemma follows by
elementary probability theory.

Denote the transitive closure ofG by TC(G). We say
a vertexx ∈ Vn is assigned abad label byf if x has an
incident violated edge inTC(Gn); otherwise,x has agood
label. LetV ′ be a set of vertices with good labels. Observe
thatf is monotone on the induced subgraphG′ = (V ′, E′)
of TC(G). This implies ([26], Lemma 1) thatf can be
changed into a monotone function by modifying it on at most
|Vn − V ′| vertices. Sincef is ǫ-far from monotone, it shows
that there are at leastǫn vertices with bad labels.

Every function that isǫ-far from monotone has a match-
ing M of at least ǫn

2 violated edges inTC(G) [17]. We
will establish a map from the set of edges inM to the set
of violated edges inH , so that each violated edge inH is
the image of at most2 edges inM . For each edge(x, y) in
the matching, consider the corresponding path fromx to y
of length at most2 in the2-TC-spannerH . If the path is of
length1, (x, y) is the violated edge inH corresponding to
the matching edge(x, y). Otherwise, let(x, z, y) be a path
of length 2 inH . At least one of the edges(x, z) and(z, y)
is violated, and we map(x, y) to that edge. SinceM is a
matching, at most2 edges inM can be mapped to one vio-
lated edge inTC(G). Thus, the2-TC-spannerH has≥ ǫn

4
violated edges, as required. �

Therefore, all the2-TC-spanner constructions described
in this paper yield monotonicity testers for functions defined
on the corresponding posets. Moreover, forH-minor free
graphs, the resulting tester has much better query complex-
ity than the previously known, due to Fischeret al. [26]. In-
deed, we achieve testers withO(log2 n/ǫ) queries, whereas
previous testers requiredΘ(

√
n/ǫ) queries.

Key management in an access hierarchy.In the prob-
lem of key management in an access hierarchy, i.e., access
control, there is a partially ordered set (poset) of access
classes and a key associated with each class. This is modeled
by a directed graphG whose nodes are classes and whose
edges indicate an ordering. A user is entitled to access a
certain class and all classes reachable from it. This prob-
lem arises in content distribution, operating systems, and
project development (see, e.g., the references in [8]). One
approach to the access control problem [7, 8, 41] is to asso-
ciate public informationP (i, j) with each edge(i, j) ∈ G
and a secret keyki with each nodei. There is an efficient
algorithmA which takeski and P (i, j) and generateskj .
However, for each(i, j) in G, it is computationally hard
to generatekj without knowledge ofki. To obtain a key
kv from a keyku, algorithmA is run dG(u, v) times. To
speed this up, [8] suggest adding edges toG to increase
connectivity. To preserve the access hierarchy ofG, new

edges must be from the transitive closure ofG. The num-
ber of edges added corresponds to the space complexity of
the scheme, while the shortest-path distances correspond to
the time complexity. Implicit in [8] are TC-spanners for di-
rected trees withk = 3 and sizeO(n log log n) and also
with k = O(log log n) and sizeO(n). Our results forH-
minor free graphs extend the known posets for which access
control schemes haveO(n polylog n) storage andO(1) key
derivation time. Our approximation algorithms yield sparse
k-TC-spanners for general posets.

Partial products in a semigroup. Yao [49] and Alon
and Schieber [5] study space-efficient data structures for the
following problem: Preprocess elements{s1, . . . , sn} of a
semigroup(S, ◦), such as(R, min), to be able to compute
partial productssi ◦si+1 ◦ · · ·◦sj for all 1 ≤ i < j ≤ n with
at mostk queries to a small database of pre-computed partial
products. This problem reduces to finding a sparsestk-TC-
spanner for a directed lineLn+1. Chazelle [11] and Alon
and Schieber also consider a generalization of the above
problem, where the input is an (undirected) treeT with an
elementsi of a semigroup associated with each vertexi. The
goal is to create a space-efficient data structure that allows
one to compute the product of elements associated with all
vertices on the path fromi to j, for all vertex pairsi, j in T .
The generalized problem reduces to finding a sparsestk-TC-
spanner for a directed treeT ′ obtained fromT . We describe
the reduction in the full version of this paper [10].

Organization. Section 2 contains an overview of our
algorithms. In Section 3, we give an overview of our lower
bounds and the techniques involved. Section 4 contains an
overview of our bounds for minor-free graphs. We defer the
details and proofs of our results to [10].

Notation.Thetransitive closureof a graphG = (V, E),
denotedTC(G), is the directed graph(V, E′), whereE′ =
{(u, v) : u  G v}. Verticesu and v are comparableif
either(u, v) ∈ TC(G) or (v, u) ∈ TC(G). The transitive
reductionof G, denotedTR(G), is a digraphG′ with the
fewest edges for whichTC(G′) = TC(G). As shown by
Aho et al. [3], TR(G) can be computed efficiently via a
greedy algorithm. For directed acyclic graphsTR(G) is
unique, andG is transitively reducedif TR(G) = G. We
call an edge ashortcut edgeif it is in TC(G) but not inG.

TheAckermann function[2] is defined by:A(1, j) = 2j ,
A(i+1, 0) = A(i, 1), A(i+1, j+1) = A(i, 22A(i+1,j)

). The
inverse Ackermann function isα(n) = min{i : A(i, 1) ≥
n} and theith-row inverse isλi(n) = min{j : A(i, j) ≥ n}.

2 Overview of Algorithms for k-TC-SPANNER and
Related Problems

Our O((n log n)1−1/k)-approximation fork-TC-SPANNER

for arbitrary k is based on a new combination of con-
vex programming and sampling. Our technique also
achieves anO((n log n)1−1/k) ratio for DIRECTED k-
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SPANNER, CLI ENT/SERVER DIRECTED k-SPANNER, and
k-DIAMETER SPANNING SUBGRAPH. Here we describe the
result for DIRECTED k-SPANNER. To achieve the same re-
sult for k-TC-SPANNER, it suffices to run the algorithm on
the transitive-closure of the input digraph.

THEOREM 2.1. For any (not necessarily constant)k > 2,
there is a deterministic polynomial-time algorithm achiev-
ing anO((n log n)1−1/k)-approximation forDIRECTED k-
SPANNER.

We start by formulating the problem as an integer program.
We briefly explain the problems with this approach and the
ideas required to make it work. One can introduce binary
edge variablesxe for each edgee in the transitive closure,
and binary path variablesyP for each pathP of length≤ k in
the transitive closure. One enforces the constraintsyP ≤ xe

for eache ∈ P , which allow a pathP in the spanner only
if all edges along it are present. The final constraint is
∑

P yp ≥ 1 for all edges(u, v) ∈ G, where the sum is over
pathsP of length≤ k from u to v. Finally, one can relax the
problem to an LP, and try to round the solution.

The first problem is that the integrality gap is huge,
which may be why an LP approach had not been considered
before. Indeed, if there areΘ(n) paths of length at mostk
(say, for constantk) betweenu andv, the LP might assign
each of them a value ofΘ(1/n). However, we observe that
if there arer = n1−1/k distinct paths fromu to v of length
≤ k, there must be≥ r1/(k−1) distinct verticesw for which
u  w  v. Let BFS(v) denote a shortest path tree of
edges directed away fromv, together with a shortest path
tree of edges directed towardsv. We sampleÕ(n/r1/(k−1))
vertices, and growBFS(w) of 2(n− 1) edges around each
samplew. Then we are likely to sample aw for which
u  w  v, and the path fromu to v along the edges in
BFS(w) has length≤ k. We let the spannerH be the union
of the outputs of the LP and sampling-based algorithms.

1. H ← ∅.
2. For each edgee ∈ G, if xe ≥ 1/2

(n log n)1−1/k ,

H ← H ∪ {e}.
3. Randomly sampler = O((n log n)1−1/k) ver-

ticesz1, z2, . . . , zr ∈ G.

4. H ← H ∪ (∪iBFS(zi)). OutputH .

With high probability, an edge(u, v) is covered by either the
LP relaxation or the sampling.

LEMMA 2.1. With probability at least1 − 1/n, H is a k-
TC-spanner ofG.

The spanner has at mostr · OPT + n2

r1/(k−1) edges, where
OPT is the optimum of the LP. By observing that any

spanner must have sizemin(OPT, n−1), one can guarantee
that this is anÕ(n1−1/k)-approximation. Note that we
assume thatG is connected, as otherwise we can run the
algorithm separately on each component. A more careful
analysis gives anO((n log n)1−1/k)-approximation, and a
simple greedy algorithm derandomizes the sampling.

LEMMA 2.2. |H | = O((n log n)1−1/kOPT ).

The problem with this approach is that the number of vari-
ables and the size of each of the constraints grows exponen-
tially with k. We replace the variablesyP with mine∈P xe,
reducing the number of variables toO(n2). The result-
ing program is convex, and we use the ellipsoid algorithm
with a separation oracle. The oracle, given~x, just needs
to find one pair of vertices(u, v) for which the constraint
∑

P :u v mine∈P xe ≥ 1 is violated. It can do this by sorting
the coordinates of~x, and counting the number ofu-v pathsP
for which some particularxe is the minimum edge variable
alongP . For this, it iteratively removes edgese from G for
whichxe is smallest, and uses matrix multiplication to count
theu-v paths that remain in the graph.

LEMMA 2.3. For any k, there exists a separation oracle
which runs in timepoly(n).

k-TC-SPANNERalgorithm for large k. OurÕ(n/k2)-
approximation algorithm, which is specific tok-TC-
SPANNER, works by samplingÕ(n/k) vertices and select-
ing O(n/k) edges from the transitive closure adjacent to the
samples. We also include the edges ofTR(G) in the spanner.
A simple greedy algorithm derandomizes the sampling.

THEOREM 2.2. For any k, there exists a deterministic ap-
proximation algorithm for thek-TC-SPANNERproblem with
approximation ratioO((n log n)/(k2 + k log n)).

3 Overview of Hardness Results fork-TC-Spanner

This section outlines the proof of Theorem 3.1, which is
our main technical contribution. Missing details appear
in [10]. At the end we briefly describe the ideas behind the
inapproximability result for 2-TC-SPANNER.

THEOREM 3.1. For any fixedǫ ∈ (0, 1), the size of the
sparsestk-TC-spanner cannot be approximated to within a
factor of2log1−ǫ n unlessNP ⊆ DTIME(npolylog n).

3.1 The Construction and its Motivation Sincek-TC-
SPANNER is a special case of DIRECTED k-SPANNER,
which isΘ(log n)-inapproximable fork = 2 and2log1−ǫ n-
inapproximable fork ≥ 3, it is natural to ask whether the
hard instances of DIRECTED k-SPANNER from [32, 20, 23]
can be used to prove hardness fork-TC-SPANNER. It
turns out that all these instances have very smallk-TC-
spanners. We demonstrate it for the instance used in the
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proof of Ω(log n)-hardness for DIRECTED k-SPANNER,
which works via a reduction from SET-COVER.

Let G be a bipartite digraph for SET-COVER with n
vertices (“sets”) on the left,n vertices (“elements”) on the
right, and edges from left to right. LetI be a set ofi new
independent vertices, for some valuei, and letL be a directed
line onk−1 new vertices. Call the first vertex ofL the head,
and the last vertex the tail. Include directed edges (1) from
the tail ofL to every set inG, (2) from every vertex ofI to
the head ofL, and (3) from every vertex ofI to the sets and
the elements ofG. Call the constructed digraphG′.

Observe that inG′, all directed edges except those from
I to G must be included in the directedk-spanner, as such
edges form the unique path between their endpoints. At
this point, the only pairs of vertices at distance larger than
k are those from a vertex inI to an element ofG. Since
these vertices are adjacent inG′, there must be a path of
length at mostk in the spanner. The only possible path is
from the vertex inI to a vertex ofG. It is easy to see that
adding exactlyOPT edges from each vertex inI to the sets
of G is necessary and sufficient to obtain a spanner, where
OPT is the size of the minimum set-cover. By makingi
sufficiently large, the size of the spanner is easily seen to
beΘ(i · OPT ), and thus one can approximate SET-COVER

by approximating DIRECTED k-SPANNER, so the problem
is Ω(log n)-inapproximable.

However, there is a trivialk-TC-spanner for this in-
stance! Indeed, by transitivity we can simply connect the
head ofL to each of the elements ofG. This is ak-TC-
spanner of size proportional to the number of vertices inG′.
Thus, the best one could hope for with this instance is to
showΩ(1)-hardness fork-TC-SPANNER. For similar rea-
sons, the instance showing2log1−ǫ n-inapproximability for
DIRECTED k-SPANNER also cannot establish anything be-
yondΩ(1)-hardness fork-TC-SPANNER.

In the example above there are many paths to cover
(those fromI to elements ofG), but a few “shortcut” edges
cover them all. Ideally, we would have many paths to
cover, and each shortcut edge could only cover a single path.
Hesse’s digraph requiring a large number of shortcuts to
reduce its diameter [30] satisfies the desired condition. His
idea was to associate vertices with a subsetV of vectors in
R

d such that(u, v) ∈ E iff u − v is an extreme point of the
d-dimensional ball of integer points. By the properties of an
extreme point, a shortcut can cover at most one path from a
large family of shortest paths.

However, to achieve an inapproximability result, we
need better structured graphs. We usegeneralized butterflies
defined in [48]. In these digraphs vertices are identified
with coordinates[n1/k]k × [k + 1], and an edge connects
u = (u1, . . . , uk, i) to v = (v1, . . . , vk, i + 1) iff for all
j 6= i, uj = vj . We say a vertex(u1, . . . , uk, i) is in strip i.
It is easy to see that there is a unique shortest path of length

k from anyu in strip 1 to anyv in strip k + 1. Moreover,
any shortcut is on at mostn1−2/k such paths because if it
connects a vertex in stripi with a vertex in stripi + ℓ (where
ℓ ≥ 2) it fixes all but i − 1 coordinates ofu and all but
k + 1 − (i + ℓ) coordinates ofv. Thus,≥ n1+2/k shortcuts
are needed to reduce the diameter tok − 1.

Reduction from MIN-REP. To get 2log1−ǫ n- inap-
proximability, we reduce from the MIN-REP problem. An
(n, r, d, m)-MIN-REP instance is a bipartite graph of max-
imum degreed in which the left part can be partitioned into
setsA1, . . . ,Ar and the right part into setsB1, . . . ,Br, so
that |Ai| = |Bi| = n/r for all i ∈ [r]. To describe the
last parameterm, call a vertexisolated if its degree is0,
and non-isolatedotherwise. Letm(Ai) be the inverse of
the fraction of non-isolated vertices inAi. Thenm is the
minimum suchm(Ai). Define thesupergraphto have nodes
A1, . . . ,Ar,B1, . . . ,Br, with asuperedge(Ai,Bj) iff there
is a node inAi adjacent to a node inBj. A rep-coveris
a vertex setS in the graph such that whenever(Ai,Bj) is
an edge in the supergraph, there is an edge between some
u, v ∈ S with u ∈ Ai andv ∈ Bj. A solution to MIN-REP
is a smallest rep-cover, and its size is denoted by OPT. The
problem is2log1−ǫ n-inapproximable [20].

As a first attempt, we construct a graphG of diameter
k + 2 as follows. We attach a disjoint copy of a generalized
butterfly of diameterk − 1 to eachAi in the MIN-REP
instance graph; that is, we identify the vertices inAi with the
last strip of the butterfly. We call the vertices in the butterfly
at distancex fromAi thex-th shadowof Ai. Next, for each
Bj, we attach what we call abroom. This is a 3-layer graph,
where the two leftmost layers form a bipartite clique, and the
right layer consists of degree-1 nodes, calledbroomsticks,
attached to nodes in the middle layer. Each node in the
middle layer has the same number of broomsticks attached
to it. EachBj is identified with the left layer of a disjoint
broom. All edges ofG are directed from the shadows of the
Ai towards the broomsticks (left to right).

We would like to argue that the minimumk-TC-spanner
H of G is formed as follows. LetS be a minimum rep-cover
of the underlying MIN-REP instance. For eachs ∈ S, if s
is in anAi, include all shortcuts from the2-shadow ofAi to
s which are in the transitive closure ofG. Otherwise (s is in
aBj), include all shortcuts froms to the broomsticks ofBj .
By balancing the number of broomsticks with the size of2-
shadows, one can showH has size|S|f(n, k), wheref(n, k)
is an easily computable function. SinceS is a rep-cover,H
is a k-TC-spanner. IfH were optimal, then approximating
its size within some factor would approximate MIN-REP
within the same factor.

It turns out thatH is not optimal, and so our first attempt
does not work. Below, we modifyG and consider a related
k-TC-spannerH of the modifiedG. We show that anyk-TC-
spanner has sizeΩ(|H |/ logn) for constantk. Since MIN-
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REP is2log1−ǫ n-inapproximable, this still gives2log1−ǫ n-
hardness.

To prove this, we need to argue that most verticesv in
thek-shadows do not “benefit” from traversing other short-
cuts to reach the broomsticks. This requires a classification
of all alternative routes from suchv to broomsticks. Sinev is
in a generalized butterfly, these routes are well-understood.
However, for a generic MIN-REP instance, most of these
routes do indeed lead to a much smallerk-TC-spanner.

To rule out the alternative routes, we ensure that OPT
and the four parameters of the MIN-REP instance each lie
in a narrow range. In Theorem 3.2, we prove that MIN-REP
with the required parameter restrictions is inapproximable by
giving a reduction from an unrestricted MIN-REP instance.
It works by carefully interleaving the following five opera-
tions on a “base” MIN-REP instance with unrestricted pa-
rameters: (1) disjoint copies, (2) dummy vertices inside clus-
ters, (3) blowup inside clusters with matching supergraph,
(4) blowup inside clusters with complete supergraph, and (5)
tensoring. Each operation increases one or several parame-
ters by a prespecified factor, and together they give us five
degrees of freedom to control the range of OPT and the four
parameters of MIN-REP.

THEOREM 3.2. (Noise-Resilient MIN-REP is hard) Fix
parametersκ ∈ (0, 1) and R, D, M, F ∈ (0, 1 − κ)
satisfyingF ∈ (R, 2R) and D + M + F < 1. Noise-
Resilient MIN-REP is a family of (n, r, d, m)-MIN-
REP instances withr ∈ [nR, nR+κ], d ∈ [nD, nD+κ],
m ∈ [nM , nM+κ], and OPT ∈ [nF , nF+κ]. This prob-
lem is 2log1−ǫ n-inapproximable for allǫ ∈ (0, 1) unless
NP ⊆ DTIME(npolylogn).

The variant of MIN-REP in Theorem 3.2 is called
“noise-resilient” because even if many vertices in the setsAi

andBj are adversarially deleted in an instance of this prob-
lem, the minimum rep-cover does not shrink significantly.
This property helps us rule out many alternative routes in
the TC-spanner, though we will need to change our graph
G. Our reduction from noise-resilient MIN-REP tok-TC-
SPANNER for k > 2 consists of two steps: first we produce a
specializedMIN-REP instanceI from an arbitrary instance
I0 of noise-resilient MIN-REP, and then we construct ak-
TC-SPANNER instanceG by carefully adjoining generalized
butterflies on the left and broom graphs on the right ofI.

From noise-resilient MIN-REP to specializedMIN-
REP. Set δ = k−1

k− 1
4

, η = δ
2(4k−4)(4k−2) , and ζ =

δ
(

4k−5
4k−4 + 1

4k−2

)

. Let κ be a sufficiently small positive

constant. We start from an(n0, r0, d0, m0)-instanceI0
of noise-resilient MIN-REP with optimumOPT0, where
n0 = nδ, r0 ∈ [nδ/2, nδ/2+κ], d0 ∈ [nη, nη+κ], m0 ∈
[n2η, n2η+κ], and OPT0 ∈ [nζ , nζ+κ]. By instantiat-
ing Theorem 3.2 withR = 1

2 , D = η
δ , M = 2η

δ ,

Figure 1: TC-spanner instanceG & an example of a broom.

F = ζ
δ and κ, we obtain that the(n0, r0, d0, m0)-MIN-

REP problem is2log1−ǫ n-inapproximable unlessNP ⊆
DTIME(npolylogn). The conditions on the parameters in
Theorem 3.2 are satisfied sinceζ ∈ ( δ

2 , δ) andη+2η+ζ < δ.
We transformI0 to a specialized(n, r, d, m)-MIN-

REP instanceI with r = r0, d = d0n
1−δ andm = m0.

GraphI is bipartite, with nodes partitioned into clusters
A1, . . . ,Ar on the left, andB1, . . . ,Br on the right. EachAi

andBj is a union ofn1−δ groupsAi,s andBj,s, respectively,
with s ∈ [n1−δ]. Each groupAi,s andBj,s, for i, j ∈ [r],
s ∈ [n1−δ], is a copy ofAi and, respectively,Bj , from the
original instanceI0. For each edge(u, v) with u ∈ Ai and
v ∈ Bj of I0, graphI has edges between the copy ofu in
Ai,k1 and the copy ofv in Bj,k2 , for all k1, k2 ∈ [n1−δ]. The
solution value ofI remainsOPT0 because the supergraph
corresponding toI0 andI are identical.

From specialized MIN-REP to k-TC-SPANNER.
From I, we construct a graphG of diameterk + 2 as fol-
lows. We first attach a disjoint generalized butterfly of diam-
eterk−1, denotedBF (Ai,s), to each groupAi,s in I, for all
i ∈ [r], s ∈ [n1−δ]. That is, we identify vertices inAi,s with
the last strip ofBF (Ai,s) in the way discussed below. De-
note byBF (Ai) = ∪sBF (Ai,s) the set of all the vertices
attached in this manner to the clusterAi. Let BF j(Ai,s)
be the vertices in stripj of the butterflyBF (Ai,s), where
BF k(Ai,s) = Ai,s, and letBF j(Ai) = ∪sBF j(Ai,s). We
call the vertices in the butterflyBF (Ai,s) at distancex from
Ai,s thex-th shadowof Ai,s. Call the in-degree as well as

out-degree of the vertices in the butterfliesd∗
def
= (nδ

r )
1

k−1 .
Next, for each Bi,s, we attach a broom, denoted

BR(Bi,s). More specifically, each vertex inBi,s is
connected to the vertices of a setBRk+2(Bi,s) of size
d∗, and each vertexv ∈ BRk+2(Bi,s) is connected to
a disjoint set of nodes, called broomsticks, of sized∗.
Let BRk+3(Bi,s) be the set of broomsticks adjacent to
BRk+2(Bi,s). Let BRk+2(Bi) = ∪sBRk+2(Bi,s) and
BRk+3(Bi) = ∪sBRk+3(Bi,s). Identify layer Vj with
∪i,sBF j(Ai,s) for j ∈ [k], layerVk+1 with ∪i,sBi,s, and
layerVj with ∪iBRj(Bi) for j ∈ {k + 2, k + 3}. Direct all
the edges fromVi to Vi+1. See Figure 1.

Attaching butterflies. Recall that we identify vertices
in Ai,s with the last stripBF k(Ai,s) of a disjoint butterfly,
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for all i ∈ [r], s ∈ [n1−δ]. The mapping fromAi,s to
BF k(Ai,s) is constructed in [10]. Here we explain the
requirements we impose on the mapping. Recall that each
each groupAi,s has≤ nδ

rm non-isolated vertices. For our
analysis,eachvertex inBF k−1(Ai,s) must be adjacent to
≤ d∗

m non-isolated vertices inAi,s. The isolated vertices
help us control the number of routes with shortcuts from the
x-shadows to the(x − 2)-shadows, for somex > 2, since
connecting vertices in the1-shadow to many isolated vertices
decreases the number of comparable pairs in the first and last
layers ofG connected by a path containing such a shortcut.

A sparse TC-spannerH for the k-TC SPANNER in-
stanceG. Let S0 be a smallest rep-cover ofI0 of size OPT.
Recall that eachAi andBj is replicatedn1−δ times inI. Let
S be the set of all replicas inI of vertices inS0. Consider a
k-TC-spannerH of G that contains shortcuts from the nodes
in layerVk−2 to their descendants inS ∩ Vk, and from the
nodes inS ∩ Vk+1 to their descendants inVk+3.

LEMMA 3.1. (Rep-cover Spanner Lemma)H is a k-TC-
spanner forG, with |H| = O(OPT n1−δ(nδ

r )
2

k−1 ).

3.2 Path Analysis and Rerandomization The next
lemma shows that thek-TC-spannerH defined above and
analyzed in Lemma 3.1 is nearly optimal.

LEMMA 3.2. Any k-TC-spannerK of G has |K| =

Ω

(

OPTn1−δ
(

nδ

r

)
2

k−1

/ log n

)

.

We introduce a bit of notation. Ak-TC-spanner for
G = V1 ∪ V2 ∪ · · · ∪ Vk+3 is built by adding shortcut edges
(u, v) between comparableu andv, whereu ∈ Vi, v ∈ Vi+ℓ

andℓ ≥ 2. For givenℓ, i, we classify such a shortcut edge
as typeℓ&i. SinceG has diameterk + 2, a k-TC-spanner
for G remains ak-TC-spanner when a typeℓ&i edge(u, v)
with ℓ ≥ 4 is replaced by a type3&i edge(u, v′), wherev′

is a predecessor ofv. Therefore, it is enough to consider
k-TC-spanners with shortcut edges only of types2&i for
1 ≤ i ≤ k + 1 and 3&i for 1 ≤ i ≤ k. Say a pathπ
from V1 to Vk+3 is of type(ℓ&i) if it uses an edge of type
ℓ&i (with ℓ ∈ {2, 3}), andπ is of type(2&i, 2&j) if it uses
edges of types2&i and2&j, i < j. Notice that thek-
TC-spanner constructed in Lemma 3.1 contains only edges
of type2&(k − 2) and2&(k + 1).

Proof of Lemma 3.2:Given ak-TC-spannerK of G with

o
(

n1−δd2
∗

log n

)

OPT edges, we show that we can construct a

MIN-REP cover forI of sizeo(OPT ), which is a contra-
diction (recall thatd∗ = (nδ

r )
1

k−1 ). We will accomplish this
by a series of transformations which modifyK into ak-TC-
spanner that uses only shortcut edges of the form2&(k− 2)
and2&(k + 1). The process increases the size of thek-TC-
spanner only by a logarithmic factor. Finally, we show that

from the modifiedk-TC-spanner, one can extract a MIN-
REP cover of sizeo(OPT ) for I, the desired contradiction.

We call a superedge(Ai,Bj), wherei, j ∈ [r], deletable
with respect toK if at least1/4 of the vertex pairs(u, v) ∈
BF 1(Ai) × BRk+3(Bj) have a path between them inK of
length at mostk and of type other than(2&(k − 2), 2&(k +
1)). Our first step is to show that such cluster pairs can be
essentially ignored.

LEMMA 3.3. (Path Analysis Lemma) The number of
deletable superedges with respect toK is o(OPT ).

Proof sketch:We call a pathcanonicalif it contains shortcut
edges of types both2&(k − 2) and2&(k + 1); otherwise,
a path isalternative. Observe that every alternative path
contains a shortcut edge from one of the following three
categories: (1) edges that connect vertices inVi and Vj ,
wherei ≤ k andj ≥ k + 1; (2) edges of type3&i where
i ≤ k − 3; (3) edges of type2&i wherei ≤ k − 3. Let
SB be the set of all shortcut edge types included in the
three cases. We analyze the three cases separately and show
that for eachS ∈ SB, the number of superedges(Ai, Bj),
(i, j) ∈ [r]2, such that at least a 1

4|SB | fraction of pairs

(u, v) ∈ BF 1(Ai) × BRk+3(Bj) have an alternative path
containing a shortcut of typeS, iso(OPT ). Then by a union
bound overS ∈ SB, we prove the lemma. The analysis of
case (1) relies on the fact that the degree of each non-isolated
vertex ofVk is at leastn1−δ ≥ d∗. For case (2), we need
the facts that the out-degree of each vertex inVk is at most
d0n

1−δ and thatnη = o(d∗). For case (3), we use the facts
that every vertexv in Vk−1 is connected to is at mostd∗

m
non-isolated vertices inVk, and thatnη = o(n2η). �

Next, form the graphG′ from G by deleting all edges
of G connectingAi to Bj , for all the deletable superedges
(Ai,Bj) with respect toK. Similarly, obtain a graphK′

fromK as follows: for all deletable superedges(Ai,Bj) with
respect toK, delete all edges ofK connectingAi to Bj, and
also delete all shortcuts inK of types other than2&(k − 2)
and2&(k + 1). Note that for any cluster pair(Ai,Bj) of G′,
either there are no edges between vertices inAi andBj or at
least34 of the pairs inBF 1(Ai)×BRk+3(Bj) are connected
by a canonical path. Also define a MIN-REP instanceI ′
from I by deleting all edges inI corresponding to all the
deletable superedges with respect toK.

For µ ∈ [0, 1], we say a subgraph ofTC(G) is a µ-
goodk-TC-spanner forG if for every (i, j) ∈ [r]2 such that
Ai andBj are comparable inG, at least aµ fraction of pairs
(u, v) ∈ BF 1(Ai)×BRk+3(Bj) are connected by canonical
paths in the subgraph. E.g., the graphK′ is a 3

4 -good k-TC-
spanner forG.

LEMMA 3.4. (Rerandomization Lemma) If a 3
4 -good k-

TC-spannerK′ for G′ is given, then there existsK′′, a1-good
k-TC-spanner forG′, such that|K′′| ≤ O(|K′| · log n).
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Proof sketch:To constructK′′ from K′, we letK′′ be the
union of O(log n) random transformations of the edges of
K′. Each transformationΠr will keep the edges ofG′
invariant but move the shortcut edges. Thus, when we
let K′′ = ∪O(log n)

r=1 Πr(K′), the edges ofK′′ are still a
subset of the edges inTC(G′). The goal of the random
transformations is to ensure that inΠr(K′), with a constant
probability, each vertex inBF 1(Ai) can reach a vertex
in Vk−2 incident to a shortcut edge, and each vertex in
BRk+3(Bj) is incident to a shortcut edge fromVk+1. We
achieve this by randomly permuting the groups inside the
clustersAi andBj and by randomly permuting the edges
of the butterfly and broom graphs attached toAi andBj .
After these random transformations, any two verticesu and
v in BF 1(Ai) andBRk+3(Bj) are connected by a canonical
path with probability at least116 . Hence,K′′ has such a path
between them with probability1− 1

poly(n) . Theunion bound
over all possible(u, v) and(i, j) shows that the desiredK′′

with the claimed size exists. �

Now that thek-TC-spanner is 1-good, it is easier to rea-
son about rep-covers of the underlying MIN-REP instance.
Recall thatG′ hasn1−δ copies of MIN-REP instanceI ′ em-
bedded in it. Moreover, many pairs of vertices in layersV1

andVk+3 rely on each instance to connect. We partition the
shortcut edges ofK′′ into n1−δd2

∗ parts, according to which
groups of vertex pairs inV1×Vk+3 they can help to connect.
By averaging, one of the parts haso(OPT ) shortcut edges,
and can be used to extract a rep-cover ofI ′ of sizeo(OPT ).
By including two vertices for each of theo(OPT ) deleted
superedges, we obtain a rep-cover forI of size o(OPT ).
This is a contradiction, completing the proof Lemma 3.2.

LEMMA 3.5. (Rep-cover Extraction Lemma) Given K′′,
a 1-goodk-TC-spanner forG′, of sizeo(OPT · n1−δ · d2

∗),
there exists aMIN-REP cover ofI of sizeo(OPT ). �

Hardness of2-TC-SPANNER. Our result onΩ(log n)-
inapproximability of 2-TC-SPANNER, described in [10], is
based on a reduction from SET-COVER instead of MIN-
REP. Our hard instance is a generalized butterfly of diameter
2 attached to an instance of transformed SET-COVER. We
identify strip 3 of the butterfly with the sets in the instance,
and using ideas similar to our proof fork > 2 for ruling
out alternative routes, show that up to a constant factor, the
optimal2-TC-spanner contains only shortcuts from strip 1 to
a minimum set-cover in strip 3.

4 Overview of Structural Results

In [26], the authors implicitly give2-TC-spanners for pla-
nar digraphs of sizeO(n3/2 log n) using Lipton-Tarjan sep-
arators [34]. For planar digraphs, our first idea is to in-
stead use Thorup’s planar separators [45] in conjunction with
Alon and Schieber’sk-TC-spanners for the directed line [5]

to recursively constructk-TC-spanners of sizeO(n log2 n).
More generally, forH-minor-free graphs, employing an idea
from [45], we use an arbitrary rooted spanning treeT of the
digraphG to partitionG into edge-disjoint digraphs so that
for every partGi, any undirected path from the root ofT
to a leaf is the union of at most two dipaths when restricted
to Gi. Next, instead of Thorup’s planar separators, we use
path separatorsof Abraham and Gavoille [1] for undirected
H-minor-free graphs.

However, the Abraham-Gavoille separators are not flex-
ible enough to be applied directly. That is, these separa-
tors consist of a sequence of unions of minimum cost paths,
where the cost function on the edges is arbitrary but specified
in advance. We, however, need to adaptively change the cost
function during the construction of the separator. Indeed, in
the outermost level of recursion we need the path separa-
tor to lie onT , as otherwise the path separator may be the
union ofΩ(n) dipaths in the underlying digraph, preventing
us from recursing efficiently. Thus, we specify the cost of
an edge inT to be1, while outside ofT it is∞. However,
when we partitionG into subgraphs in the recursion, it may
be that two vertices in the same subgraph no longer have a
path contained inT . Since the cost function is fixed and
the cost of any path between these two vertices is now∞,
a path separator in the recursive step need not be contained
in T , and so it may not be the union of a small number of
dipaths. Thus, we again cannot efficiently recurse. If, how-
ever, we could change the cost function in the recursive step,
we could define a new rooted tree in each subgraph and base
our cost function on that. We observe that the proof of the
Abraham-Gavoille separators can be used to show that their
path separators satisfy this stronger property.

THEOREM 4.1. If G is anH-minor-free graph, then it has
a 2-TC-spanner of sizeO(n log2 n) and, more generally, a
k-TC-spanner of sizeO(n · log n · λk(n)) whereλk(·) is the
kth-row inverse Ackermann function.
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