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Abstract
We consider the following basic geometric problem: Given ε ∈ (0, 1/2), a 2-dimensional figure
that consists of a black object and a white background is ε-far from convex if it differs in at least
an ε fraction of the area from every figure where the black object is convex. How many uniform
and independent samples from a figure that is ε-far from convex are needed to detect a violation of
convexity with probability at least 2/3? This question arises in the context of designing property
testers for convexity. Specifically, a (1-sided error) tester for convexity gets samples from the
figure, labeled by their color; it always accepts if the black object is convex; it rejects with
probability at least 2/3 if the figure is ε-far from convex.

We show that Θ(ε−4/3) uniform samples are necessary and sufficient for detecting a violation
of convexity in an ε-far figure and, equivalently, for testing convexity of figures with 1-sided
error. Our testing algorithm runs in time O(ε−4/3) and thus beats the Ω(ε−3/2) sample lower
bound for learning convex figures under the uniform distribution from [26]. It shows that, with
uniform samples, we can check if a set is approximately convex much faster than we can find an
approximate representation of a convex set.
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1 Introduction

Convexity is a fundamental property of geometric objects that plays an important role in
algorithms, learning, optimization, and image processing. Some algorithms require that their
input is a convex set. However, it is infeasible to check whether an infinite (or a very large)
set is indeed convex. How quickly can we check whether it is approximately convex? Can it
be done faster than learning an approximate representation of a convex set?

Property testing [25, 12] is a formal study of fast algorithms that determine whether
a given object approximately satisfies the desired property. There is a line of work on
property testing and sublinear algorithms for geometric convexity1 and other visual properties
(see [20, 19, 29, 14, 15, 16] and references therein). Previous works on testing geometric
convexity [20, 19, 29] assume that the tester can query an arbitrary point in the input and
find out whether it belongs to the object.

We study the problem of property testing convexity of 2-dimensional figures with only
uniform and independent samples from the input. A figure (U,C) consists of a compact
convex universe U ⊆ R2 and a measurable subset C ⊆ U . The set C can be thought of

1 Property testing of convexity (and submodularity) of functions has also been investigated [18, 27, 22, 6, 5].
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17:2 Testing Convexity of Figures Under the Uniform Distribution

as a black object on a white background U \ C. A figure (U,C) is convex iff C is convex.
The relative distance between two figures (U,C) and (U,C ′) over the same universe is the
probability of the symmetric difference between them under the uniform distribution on U .
A figure (U,C) is ε-far from convex if the relative distance from (U,C) to every convex figure
(U,C ′) over the same universe is at least ε.

I Definition 1.1. Given a proximity parameter ε ∈ (0, 1/2) and error probability δ ∈ (0, 1), a
(1-sided error) ε-tester for convexity accepts if the figure is convex and rejects with probability
at least 1− δ if the figure is ε-far from convex2. A tester is uniform if it accesses its input
via uniform and independent samples from U , each labeled with a bit indicating whether it
belongs to C.

Our goal is to determine the smallest number of samples necessary and sufficient for ε-testing
convexity under the uniform distribution.

An easy upper bound for this problem can be obtained from a connection between
(proper) PAC-learning and property testing [12] and the work of Schmeltz [26] who gives a
PAC-learner of convex d-dimensional sets under the uniform distribution. Specifically, for two
dimensions, he shows that Θ(ε−3/2) samples are necessary and sufficient3. In other words,
Schmeltz [26] shows that it suffices to take O(ε−3/2) uniform and independent samples from
a convex shape of unit area, so that the convex hull of these samples has area at least 1− ε
with probability at least 2/3; and moreover, for a disk, Ω(ε−3/2) samples are necessary to
satisfy this requirement.

We prove that Θ(ε−4/3) uniform samples are necessary and sufficient for ε-testing 2-
dimensional convexity under the uniform distribution with 1-sided error. Our algorithm
runs in time O(ε−4/3) and thus beats the Ω(ε−3/2) lower bound for learning convex figures
under the uniform distribution. It shows that, with uniform samples, we can check if a set
is approximately convex much faster than we can find an approximate representation of a
convex set.

Our results imply the same upper and lower bounds for convexity testing in the pixel
model of [20]. The input representation in that model differs from ours only in that the
images are discretized, whereas we consider continuous figures. In the pixel model, an image
is specified by an n × n matrix of Boolean pixel values, representing a discretization of a
black-and-white image in [0, 1]2. An algorithm is adaptive if it is allowed to query arbitrary
entries in the matrix and its queries depend on answers to previous queries. In [20], an
adaptive tester for convexity4 that makes O(ε−2) queries is presented. Our upper and lower
bounds hold for the pixel model, provided that n is sufficiently large to ensure that every
convex area we consider in our analysis has some pixels (i.e., non-zero probability mass when
we sample uniformly from the n× n matrix). See the full version of this article for details.

Our techniques. We present a (1-sided error) uniform tester for convexity of 2-dimensional
figures with sample and time complexity O(ε−4/3) and prove a matching lower bound.

2 If δ is not specified, it is assumed to be 1/3. By standard arguments, the error probability can be
reduced from 1/3 to an arbitrarily small δ by running the tester O(log 1/δ) times.

3 The PAC learner in [26] is not distribution-free—it works only with respect to the uniform distribution.
The VC dimension of convexity, even in two dimensions, is infinite, so convexity is not PAC-learnable
under arbitrary distributions.

4 The VC dimension of convexity of n×n images is Θ(n2/3), since this is the maximum number of vertices
of a convex lattice polygon in an n× n lattice [2]. Therefore, proper PAC-learners for convex images in
the pixel model (that work with respect to all distributions) cannot have complexity independent of n.
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Our tester is the natural one: it computes the convex hull of sampled black points and
rejects iff it contains a sampled white point. In other words, it rejects only if it finds a
convexity violation. How many points are needed to witness such a violation? The smallest
number of points is three: a white point between two black points on the same line. However,
a uniform tester is unlikely to sample three points on the same line. If the points are in
general position, the smallest number is four: three black and one white in the triangle
formed by the three black points. A natural way to exploit this in the analysis is to divide
the figure into different parts (which we call patterns) with four regions each, such that we
are likely to sample a 4-point witness of non-convexity from the corresponding regions of
some pattern. However, the higher the number of regions in each pattern from which we
require the tester to sample at least one point, the more samples it needs.

To reduce the number of regions in the patterns, we use a central point defined in terms
of the Ham Sandwich cut of black points5. Such cuts have been studied extensively (see, e.g.,
[10, p. 356] and [17]), for example, in the context of range queries. Specifically, a central point
is the intersection of two lines that partition the figure into four regions, each with black area
at least ε/4. A central point is overwhelmingly likely to end up in the convex hull of sampled
black points. So, even though the central point itself is not likely to be sampled, it becomes
a de facto part of a witness that comes nearly for free. Conditioned on the central point
indeed being in the convex hull of sampled black points, our witness only needs 3 additional
points: two black and one white, such that the white point is in the triangle formed by the
two black points and the central point. This will ensure that the white point is in the convex
hull of sampled black points, that is, a violation of convexity is detected.

The main technical part of the analysis is finding disjoint 3-region patterns in the figure,
such that the algorithm is likely to sample a 3-point witness from at least one of the patterns.
We can show that if the figure is ε-far from convex then the white regions of the patterns
together occupy a fraction of the area proportional to ε. We have two separate lines of
argument for the case when there are many white regions in the patterns that have large white
area and for the case when the white area is distributed more evenly among the patterns.
These two cases are analyzed in the recoloring and the sweeping phases of the analysis,
respectively. The main geometric construction of the patterns appears in the sweeping phase
(which uses sweeping lines to construct the patterns).

We remind the reader that these phases are only used in the analysis. Our algorithm is
extremely simple and natural.

To prove our lower bound, we construct hard instances, for which a uniform tester for
convexity needs to get a 3-point witness, with points coming from different specified regions,
in order to detect a violation of convexity. Intuitively, the fact that the number of points in a
witness is also 3, as in the analysis of the algorithm, allows us to get a matching lower bound.

Related Work in Property Testing. We already mentioned work on testing geometric
convexity [20, 19, 29] in the model similar to ours, but where the tester can query arbitrary
points in the input. There is another line of work on testing geometric properties, initiated by
Czumaj, Sohler, and Ziegler [9] and Czumaj and Sohler [8], where the input is a set of points
represented by their coordinates. The allowed queries and the distance measures on the input
space considered in those works are different from ours. The most related problem to ours is
that of testing whether points, represented by their coordinates, are in convex position or far

5 Our central points are related to the well studied centerpoints [10] and Tukey medians [30]. The
guarantee for a centerpoint is that every line that passes through it creates a relatively balanced cut.
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17:4 Testing Convexity of Figures Under the Uniform Distribution

from having that property (for example, in the sense that at least an ε fraction of points
has to be changed to ensure that they are in a convex position). In [8], several sophisticated
distance measures and powerful queries to the input are considered. For example, a range
query, given a range and a natural number i, returns the i-th point in the range. Chazelle
and Seshadhri [7], in another related work, give a property tester for convexity of polygons
represented by doubly-linked lists of their edges. In contrast to these works, we consider only
extremely simple access to the input, measure the distance between figures by the area on
which they differ, and can deal with continuous figures.

Related Work in Computational Geometry. The random process of sampling uniform and
independent points from a convex body has been studied extensively. (We stress that, in our
problem, the input figure is not guaranteed to be convex. Instead, we are trying to distinguish
convex figures from those that are far from convex.) The expected number of vertices of a
convex hull of n such samples is well understood. For example, in 2 dimensions, it is O(n1/3)
when the object is a disk [23] and O(k logn) when the object is a convex k-gon [24]. (See
also [13] for simple proofs of these statements.) Bárány and Füredi [3] analyze the probability
that n points chosen from the d-dimensional unit ball are in the convex position. Eldan [11]
shows that no algorithm can approximate the volume of a convex body in Rd, with high
probability and up to a constant factor, when provided only with a polynomial in d number
of random points.

2 Preliminaries on Poissonization

The analysis of our algorithm uses a technique called Poissonization [28], in which one
modifies a probabilistic experiment to replace a fixed quantity (e.g., the number of samples)
with a variable one that follows a Poisson distribution. This breaks up dependencies between
different events, and makes the analysis tractable. The Poisson distribution with parameter
λ ≥ 0, denoted Po(λ), takes each value x ∈ N with probability e−λλx/x!. The expectation
and variance of a random variable distributed according to Po(λ) are both λ.

I Definition 2.1. A Poisson-s tester is a uniform tester that takes a random number of
samples distributed as Po(s).

The following lemma is paraphrased from [21, Lemma 5.3], except that the terminology is
adjusted to fit in with our application. The proofs from [21] work nearly verbatim. Even
though part (a) is not stated in [21], the proof for this part is similar to the proof of part (b).
We use part (a) to analyze our algorithm and part (b) to prove lower bounds on the sample
complexity (so, we do not need a statement about the running time in part (b)).

We use [k] to denote the integer set {1, . . . , k}.

I Lemma 2.2 (Poissonization Lemma).
(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every Poisson-s

tester A for property P with error probability δ, there is a uniform tester A′ for P that
uses at most 2s samples and has error probability at most δ + 4/s. Moreover,
• if A has 1-sided error, so does A′;
• if A runs in time t(x) when it takes x samples, then A′ has running time O(t(2s)).

(b) Uniform algorithms can simulate Poisson algorithms. Specifically, for every uniform
tester A for property P that uses at most s samples and has error probability δ, there is a
Poisson-2s tester A′ for P with error probability at most δ + 4/s. Moreover,
• if A has 1-sided error, so does A′.
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(c) Let Ω be a sample space from which a Poisson-s algorithm makes uniform draws. Suppose
we partition Ω into sets Ω1, . . . ,Ωk (e.g., these sets can correspond to disjoint areas of the
figure from which points are sampled), where each outcome is in set Ωi with probability
pi for i ∈ [k]. Let Xi be the total number of samples in Ωi seen by the algorithm.
Then Xi is distributed as Po(pi · s). Moreover, random variables Xi are mutually
independent for all i ∈ [k].

3 Uniform Tester for Convexity

In this section, we give our optimal uniform convexity tester for figures.

I Theorem 3.1. There is a uniform (1-sided error) ε-tester for convexity with sample and
time complexity O(ε−4/3).

Proof. We start by reducing the problem to the special case when the universe U is an
axis-aligned rectangle of unit area. Consider a convex two-dimensional set U ′. It is not hard
to show that U ′ is contained in a rectangle U whose area is at most twice the area of U ′. If
we consider figures (U,C) instead of (U ′, C), relative distances between figures increase by
at most a factor of 2. We can simulate a tester that works on (U,C) while having access to
(U ′, C) without affecting asymptotic complexity. Therefore, we can assume w.l.o.g. that U is
a rectangle. Finally, note that if U does not have unit area, the figure can be rescaled, and if
U is not axis-aligned, the figure can be rotated.

By the Poissonization Lemma (Lemma 2.2), it is sufficient to prove that there is a
1-sided error Poisson-s convexity tester with s = O(ε−4/3), error probability δ ≤ 0.333, and
linear running time in the number of samples6. By standard arguments, such a tester can
be obtained from a tester as described, but with expected linear running time and error
probability δ ≤ 0.33. Our Poisson convexity tester satisfying the latter requirements is
Algorithm 1. To make the algorithm and its analysis easier to visualize, we color points in C
black and points in U \ C white. (In the analysis, we recolor some of the black points to
make them violet.)

Query and Time Complexity. Algorithm 1 queries q = Po(s) points, where s = O(ε−4/3).
Since the x-coordinates of the sampled q points are distributed uniformly in the interval
corresponding to the length of the rectangle U , they can be sorted in expected time O(q) by
subdividing this interval into s subintervals of equal length, and using them as buckets in the
bucket sort. Andrew’s monotone chain algorithm finds the convex hull of a set of q sorted
points in time O(q). Since the expectation of q is O(ε−4/3), Algorithm 1 runs in expected
time O(ε−4/3). By the discussion preceding the algorithm, we get a uniform algorithm with
the worst case running time O(ε−4/3) and with a slightly larger error δ than in Algorithm 1.

Correctness. If figure (U,C) is convex, Hull(SB) contains only black points, and Algorithm 1
always accepts. From now on, we consider a figure (U,C) that is ε-far from convexity. We
show that Algorithm 1 rejects it with probability at least 0.33.

For a set (region) R, let Hull(R) denote its convex hull and A(R) denote its area or,
equivalently, its probability mass under the uniform distribution of points in U . (It is

6 Our proof works for sufficiently small ε. Suppose an algorithm works for all ε ≤ ε0. For ε > ε0, we can
run it with parameter ε0 in constant time and obtain the required guarantees, since an ε0-tester is also
an ε-tester for ε0 < ε.

SoCG 2016



17:6 Testing Convexity of Figures Under the Uniform Distribution

Algorithm 1: Uniform ε-tester for convexity (when U is an axis-aligned rectangle).
input : parameter ε ∈ (0, 1/2);

access to uniform and independent samples from (U,C).

1 Set s = 50ε−4/3. Sample Po(s) points from U uniformly and independently at random.
2 Bucket sort sampled black points by the x-coordinate into s bins to obtain list SB .
Similarly, compute SW for the sampled white points.

// Check if the convex hull of SB contains a pixel from SW .
3 Use Andrew’s monotone chain convex hull algorithm [1] to compute UH(SB) and
LH(SB), the upper and the lower hulls of SB , respectively, sorted by the x-coordinate.

4 Merge sorted lists SW ,UH(SB) and LH(SB) to determine for each point w in SW its
left and right neighbors in UH(SB) and LH(SB). If w lies between the corresponding
line segments of the upper and lower hulls, reject.

5 Accept.

equivalent because we assumed w.l.o.g. that U has unit area.) For a region R, its area of a
certain color (e.g., its black area) is the probability mass of points of that color in R. For
example, initially, the black area of R is A(R ∩ C).

We start by defining a special point, which belongs, with high probability, to Hull(SB)
constructed by Algorithm 1.

I Definition 3.2 (Central point). A point is central if it is the intersection of two lines such
that each of the closed quadrants formed by these lines has black area at least ε/4, i.e., the
intersection of C and each quadrant has area at least ε/4. We say that the two lines define
this central point.

I Claim 3.3. If A(C) ≥ ε then U contains a central point.

Proof. By a continuity argument, there exists a line that bisects C into two sets of area
A(C)/2 each. By the Ham Sandwich Theorem, applied to the two resulting sets, for every
such line, there exists another line that bisects both of the resulting sets into sets of area
A(C)/4 each. By Definition 3.2, the intersection point of the two lines is a central point. J

Since the empty set is convex and (U,C) is ε-far from convex, A(C) ≥ ε. Thus, by Claim 3.3,
there is a central point in U . Denote one such point by u. The central point u is fixed
throughout the analysis of Algorithm 1. Next, we bound the probability that u is in Hull(SB).
Note that u is just a point in U , not necessarily a sample.

I Lemma 3.4. The probability that the central point u is not in Hull(SB), where SB is the
set of black points sampled by Algorithm 1, is at most 0.01.

Proof. Let `u1 and `u2 be the two lines that define the central point u (see Definition 3.2).
If the algorithm samples a black point from each open quadrant formed by `u1 and `u2 then
the central point u is in the convex hull of the four points sampled from each quadrant, i.e.,
it is in the convex hull of all sampled black points. By the Poissonization Lemma 2.2, the
number of samples from each quadrant has distribution Po(p · s), where p ≥ ε/4. Thus, the
probability that the algorithm fails to sample a black point from one particular quadrant is at
most e−ε·s/4. For s = 50 · ε−4/3, the value e−ε·s/4 ≤ e−6. By a union bound, the probability
that the algorithm will not sample a black point from at least one of the four open quadrants
is at most 4 · e−6 < 0.01. Thus, the probability that u /∈ Hull(SB) is at most 0.01. J
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Figure 3.1 A witness triple (b1, b2, w).
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Figure 3.2 A pattern.

I Definition 3.5 (A witness triple). Recall that u is a fixed central point. A triple of points
(b1, b2, w) is a witness triple if b1 and b2 are black, and w is a white point contained in
the triangle 4ub1b2. (See Figure 3.1. Note that 4ub1b2 could be degenerate, i.e., all three
vertices could lie on the same line.)

If the central point u is indeed contained in the convex hull of all black points sampled by
Algorithm 1 and if, in addition, the algorithm samples a witness triple, then the algorithm
rejects because it found a white sample w in the convex hull of black samples. By Lemma 3.4,
the first event fails to occur with probability at most 0.01. If we get a guarantee that the
algorithm fails to sample a witness triple with probability at most 0.32 then, by a union
bound, the algorithm fails to reject with probability at most 0.01 + 0.32 < 0.33, as required.

The required guarantee follows from Propositions 3.8 and 3.9 that we will prove in
Sections 3.1 and 3.2, respectively. This completes the proof of Theorem 3.1. J

Propositions 3.8 and 3.9 break the analysis into two cases, depending on the number of
certain patterns in the input. Patterns are parts of the input from which, intuitively, we are
likely to sample a witness triple.

I Definition 3.6 (A pattern). A pattern consists of two rays r′ and r′′, emanating from the
central point u, a line ` that crosses the two rays, and disjoint sets B1 and B2 of black points
for which the following conditions hold. Set B1 (respectively, B2) has area t = 0.025 · ε3/2

and is a subset of the infinite region formed by the line ` and the ray r′ (respectively, by `
and r′′). (See Figure 3.2.) If, in addition, the white area of the triangular region W, formed
by `, r′, and r′′, is at least 0.025 · ε4/3, then the pattern is called a white-heavy pattern.
Otherwise, it is called a white-light pattern.

Observe that, for any pattern, a point from B1, a point from B2, and a white point from W

form a witness triple.

I Claim 3.7. For a given pattern and i ∈ [2], let Ei be the event that Algorithm 1 samples
a point from Bi. Then Pr[E1 ∩ E2] ≥ 0.39 · ε1/3 for sufficiently small ε.

Proof. Recall that t = 0.025 · ε3/2. By definition of a pattern, B1 has area t. Therefore,
by the Poissonization Lemma (Lemma 2.2), Pr[E1] = 1− e−ts = 1− e−1.25ε1/6 . By Taylor
expansion, 1 − e−x ≥ x − x2

2 ≥ x/2 for x ∈ (0, 1.5). Therefore, Pr[E1] ≥ 0.625ε1/6 for
sufficiently small ε. The same bound holds for event E2.

SoCG 2016



17:8 Testing Convexity of Figures Under the Uniform Distribution

Since B1 and B2 are disjoint, events E1 and E2 are independent. Thus, Pr[E1 ∩ E2] =
Pr[E1] · Pr[E2] ≥ (0.625ε1/6)2 ≥ 0.39 · ε1/3, as required. J

To explain the two cases considered in Propositions 3.8 and 3.9, we describe our analysis
in two phases, recoloring and sweeping.

3.1 The Recoloring Phase
In the recoloring phase of the analysis, we change the color of some points in the input
figure from black to violet. While there is a white-heavy pattern in the figure, we repeat the
following mental experiment.
1. Choose a white-heavy pattern. Let B1 and B2 be the associate sets of black points.
2. If it is iteration i of the mental experiment, let V i1 = B1 and V i2 = B2.
3. Recolor violet all points in V i1 and V i2 (so that they are not used in subsequent iterations

and the next phase of the analysis).

I Proposition 3.8. When the input figure is ε-far from convexity, if the number of iterations
in the recoloring phase is at least 9 · ε−1/3 then the tester samples a witness triple with
probability at least 0.68.
The proof of the proposition is deferred to the full version.

3.2 The Sweeping Phase
In this section, we prove Proposition 3.9, the main technical component in the proof of
Theorem 3.1.

I Proposition 3.9. When the input figure is ε-far from convexity, if the number of iterations
in the recoloring phase is less than 9 · ε−1/3 then the tester samples a witness triple with
probability at least 0.68.

Proof. If the recoloring phase has less than 9 · ε−1/3 iterations then, for sufficiently small ε,
the violet area (that was black in the original input) is at most

9 · ε−1/3(2 · 0.025 · ε3/2) = 0.45 · ε7/6 < 0.04 · ε. (1)

In the sweeping phase of the analysis, we iteratively construct a set of sweeping lines L.
Each line ` ∈ L is associated with a set of black points S` of area at most 4t. The set S` lies
in the half-plane defined by ` that does not contain the central point u. Sets S` associated
with different lines ` are disjoint. Lines ` whose sets S` have area exactly 4t are collected in
L∗. For each such line `, we define an anchor point p`. Later, we use the sets S` of lines
` ∈ L∗ to create white-light patterns whose associated regions B1, B2, and W are all disjoint
from each other and whose W regions jointly cover a large white area. Each S` will be
partitioned into four sets of the form B1, B2 for the patterns. The anchor points are used
to partition sets S` and to choose subsequent sweeping lines. We describe the construction
of sweeping lines next. We start by constructing a bounding rectangle R formed by initial
sweeping lines and then add more sweeping lines.

Recall that t = 0.025 · ε3/2 and that some of the originally black points became violet in
the recoloring phase and thus are no longer black. Also, recall that w.l.o.g. we can assume
that U is a rectangle. Now we construct lines `0, `1, `2, `3 that form a bounding rectangle
R inside U . Let `0 and `2 be the horizontal lines such that A(S`0) = A(S`2) = 4t, where
S`0 (respectively, S`2) denote the set of all black points above `0 (respectively, below `2).
Initially, L = L∗ = {`0, `2}.
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Figure 3.3 Bounding rectangle R.

Triangles of 𝑇0𝑝ℓ0
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𝑝ℓ2

𝑢

Figure 3.4 Triangles of T0.

I Definition 3.10 (Anchor points). Consider a line ` that does not contain the central point
u. Define Hu

` (resp., H`) to be the closed half-plane formed by ` that contains (resp., does
not contain) u. For a set S of points in H`, the anchor point of S on ` is the intersection of
the line ` and the ray emanating from u that bisects the set S into two sets of equal area. For
a sweeping line ` ∈ L∗ and the associated set S`, let p` denote the anchor point of S` on `.

Initially, the set of anchor points P = {p`0 , p`2}. Now we define the vertical lines `1 and `3.
The set S`1 (respectively, S`3) will be the set of all black points to the left of `1 (respectively,
to the right of `3) between `0 and `2. See Figure 3.3. Intuitively, for i ∈ {0, 1, 2, 3}, we move
the line `i in parallel starting from the boundary of U and stop moving it immediately when
it “sweeps” a set of black points (not “swept” by previous lines) whose area is equal to 4t.
However, the lines `1 and `3 will stop before “sweeping” black area 4t if they encounter an
anchor point. Specifically, for i = 1, 3, we require that A(S`i

) ≤ 4t and that the half-plane Hu
`i

must contain both anchor points p`0 and p`2 . Let `i be the vertical line with the maximum
A(S`i

) that satisfies these requirements. If A(S`i
) < 4t then `i is added only to L. Otherwise,

it is added to L and L∗ and its anchor point p`i
(given by Definition 3.10) is added to P .

The bounding rectangle R is formed by the lines `0, `1, `2, `3. At this point, 2 ≤ |P | ≤ 4.
Let T0 be the set of (at most four) triangles formed by removing the (possibly degenerate)
quadrilateral Hull(P ) from the rectangle R. See Figure 3.4.

I Definition 3.11 (Line and ray notation.). For two points x and y, let r(x, y) denote the ray
that emanates from x and passes through y, and let `(x, y) denote the line through x and y.

We describe a procedure that completes the construction of L,L∗, and P by inductively
constructing sets Ti, starting from the set T0, defined before. (Recall that this construction
is needed only in the analysis, not in the algorithm.)
1. Let m = log(2/ε)/2 (w.l.o.g. assume that log(2/ε)/2 is an integer7).
2. Initially, Ti = ∅, for every i ∈ [m], and sets L,L∗, P and T0 are as defined earlier.
3. For every i = 1, 2, . . . ,m and every triangle T ∈ Ti−1, do the following:

a. Let v be the only vertex of T that is not in P ; let p′, p′′ ∈ P be its other two vertices.
b. If the black area in T = 4vp′p′′ is less than 4t then let ` = `(p′, p′′), define S` to be

the set of black points in 4vp′p′′ and add ` to L.

7 If ε ∈ (1/2j , 1/2j−2) for some odd j, to ε-test P it is enough to ε′-test P with ε′ = 1/2j since ε′ < ε.
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𝑇′′𝑇′

𝑆ℓ

Figure 3.5 Constructing triangles of Ti in
a triangle of Ti−1.

𝑢

Figure 3.6 An illustration of type 1 and
type 2 patterns when u is inside Hull(P ).

c. Otherwise, let ` be the line parallel to the base p′p′′ that intersects the sides vp′ and
vp′′ at v′ and v′′, respectively, such that the black area of 4vv′v′′ is 4t (see Figure 3.5).
Let S` be the set of black points in 4vv′v′′. Let p` be the anchor point of S` on `.
Add line ` to L and L∗, point p` to P , and triangles 4p`p′v′ and 4p`p′′v′′ to Ti.

4. This completes the construction of L,L∗, P and Ti, for every i ∈ [m].

Intuitively, we move a line starting from the vertex v towards the base p′p′′ keeping it
parallel to the base. We stop moving it when it reaches the side p′p′′ or when it “sweeps” a
black area 4t in 4vp′p′′.

The goal of sweeping is to eventually construct patterns. Black sets for the patterns
will be obtained from the sets S` for lines in L∗, whereas white regions for the patterns will
come from Hull(P ). The area between the polygon formed by the sweeping lines and Hull(P )
is “uninvestigated” and not useful in the construction of patterns. In order to reduce the
uninvestigated area quickly (with a few sweeps), we take sweeping lines parallel to the bases
of uninvestigated rectangles. After sweeping, only triangles in Tm remain uninvestigated.

I Lemma 3.12. The sum of the areas of all triangles in Tm is at most ε/2.

Proof. Fix i ∈ [m]. Consider a triangle T ∈ Ti−1 and the two triangles T ′, T ′′ ∈ Ti obtained
in the procedure that constructs sets Tj , for j ∈ [m]. Recall that in the procedure, triangle
T = 4vp′p′′, where v is the only vertex of T that is not in P and p′, p′′ ∈ P are its other
two vertices. Moreover, T ′ = 4p`p′v′ and T ′′ = 4p`p′′v′′, where p` is the anchor point on
the line ` that is parallel to the base p′, p′′, whereas v′ and v′′ are the intersection points of `
and the sides vp′ and vp′′, respectively. (See Figure 3.5.)

I Claim 3.13. For the triangles T ∈ Ti−1 and T ′, T ′′ ∈ Ti, defined above,

A(T ′) +A(T ′′) ≤ A(T )
4 .

Proof. Let a and c be the lengths of the sides p′p′′ and v′v′′, respectively. Let ha and hc be
the heights of triangles T and 4vv′v′′, respectively. See Figure 3.5. Then

A(T ′) +A(T ′′) = A(T )−A(4vv′v′′)−A(4p`p′p′′) = aha
2 − chc

2 −
a(ha − hc)

2 = (a− c)hc
2 .
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Figure 3.7 A pattern of type 1.
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Figure 3.8 A pattern of type 2.

Since triangles T and 4vv′v′′ are similar, hc

ha
= c

a . Thus, A(T ′)+A(T ′′)
A(T ) = (a−c)hc

2 · 2
aha

=
(1− c

a ) hc

ha
= (1− c

a ) ca ≤
1
4 , as claimed. The last inequality holds since (1− x)x is maximized

when x = 1/2. J

By Claim 3.13,
∑
T∈Ti

A(T ) ≤ 1
4

∑
T ′∈Ti−1

A(T ′) for all i ∈ [m]. The total area of all triangles
in T0 is at most 1. Thus, the total area of all triangles in Tm is at most 1

4m = ε
2 , completing

the proof of Lemma 3.12. J

Next, we find an upper bound on |L|. Recall that m = log(2/ε)/2. The set L consists of
the lines that define the sides of the bounding rectangle R and one line for each triangle in

Ti for all i ∈ {0, 1, . . . ,m− 1}. Therefore, |L| = 4 +
m−1∑
i=0
|Ti| ≤ 4 +

m−1∑
i=0

4 · 2i = 4 · 2m ≤ 5.7√
ε
.

I Lemma 3.14. Let V be the set of vertices of the polygon formed by all lines in L. Then
the central point u is in Hull(V ).

I Lemma 3.15. The white area of Hull(P ) is at least 0.14ε.

Proof. There are at most 5.7 · ε−1/2 lines in L. Each of them sweeps a black area 0.1 · ε3/2.
Thus, A(∪`∈LS`) ≤ 0.1 · ε3/2 · 5.7 · ε−1/2 ≤ 0.57ε. By Lemma 3.12, the area of all triangles in
Tm is at most 0.5ε. By (1), the violet area is at most 0.04ε. We obtain a convex figure if we
recolor all black and violet points outside of Hull(V ), all white points inside Hull(P ), and
color each triangle in Tm according to the majority of its area. This recolors area at most
(0.57 + 0.04 + 0.5/2) · ε = 0.86ε outside of Hull(P ). Since F is ε-far from convexity, the white
area of Hull(P ) is at least 0.14ε. J

Now we show that with probability at least 0.68, the tester samples a witness triple. For
each line ` ∈ L∗, let p` denote the anchor point of S` on `. Denote the two sets, into which
the ray r(u, p`) divides S`, by S1

` and S2
` (points of S1

` come first in the clockwise order).
Let p′` and p′′` denote the anchor points on ` of the sets S1

` and S2
` , respectively. Let the ray

r(u, p′`) (resp., r(u, p′′` )) divide the set S1
` (resp., S2

` ) into sets S11
` and S12

` (resp., S21
` and

S22
` ) such that S11

` (resp., S21
` ) is the leftmost subset of S1

` (resp., S2
` ).

Recall what patterns are from Definition 3.6. For each ` ∈ L∗, the rays r(u, p′`), r(u, p′′` )
and the line `, together with sets B1 = S11

` and B2 = S22
` , form a pattern. We say that such

a pattern is of type 1. For every two adjacent lines ` and `′ from L, the rays r(u, p′`), r(u, p′`′)
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and the line `(p`, p`′), together with sets B1 = S21
` and B2 = S12

`′ , also form a pattern. We
say that such a pattern is of type 2. Patterns of types 1 and 2 alternate. See Figures 3.6-3.8.

By Lemma 3.14, the point u is inside Hull(V ). Note that u can be inside Hull(P ) or in
one of the triangles of Tm. If the former is the case, then every type 1 and type 2 pattern is
well defined, their W regions entirely cover Hull(P ) and are disjoint (see Figure 3.6). If the
latter is the case, consider the triangle of Tm in which u is located. Consider the sweeping
lines that define the sides of this triangle. Type 2 pattern with respect to these lines may
not be well defined but all other type1 and type 2 patterns are well defined. Moreover, their
W regions are disjoint and they entirely cover Hull(P ). These two properties of the patterns
are the only properties that we need in the further analysis.

Index all patterns of types 1 and 2 by natural numbers 1, 2, . . . All of them are white-light
patterns, since there are no white-heavy patterns left after the recoloring phase. For a pattern
i, let EiW denote the event that a white point is sampled from its W region, let ai be the
white area of W , and let EiB denote the event that a point is sampled both from its B1 and
from its B2. By Claim 3.7, Pr[EiB ] ≥ 0.39 · ε1/3. Moreover, Pr[EiW ] = 1− e−ais. Recall that,
by Definition 3.6, ai < 0.025ε4/3 and, thus, ais < 1.5. We use the fact that 1−e−x ≥ 0.5x for
all x ∈ (0, 1.5). We obtain that Pr[EiW ] ≥ 0.5ais. Therefore, the probability that we sample a
witness triple from pattern i is Pr[EiB ∩EiW ] ≥ 0.39 · ε1/3 · 0.5ais = 9.75ai/ε. By Lemma 3.15,∑
ai ≥ 0.14ε. By standard arguments, the probability that a witness triple is sampled from

at least one pattern is Pr[
⋃

(EiB ∩ EiW )] ≥ 1 − e−
∑

i
9.75ai/ε ≥ 1 − e−0.14·9.75 > 0.68, as

desired. This completes the proof of Proposition 3.9. J

4 Lower Bound for Uniform Testing of Convexity

I Theorem 4.1. Every 1-sided error uniform ε-tester for convexity needs Ω(ε−4/3) samples.

Proof. By the Poissonization Lemma (Lemma 2.2), it is sufficient to prove the lower bound
for Poisson algorithms. Observe that a 1-sided error tester can reject only if the samples
it obtained are not consistent with any convex figure. For each sufficiently small ε, we will
construct a set Cε in U = [0, 1]2 that is ε-far from convex. We will show that there exists a
constant c0 such that every Poisson-s tester with s = c0 · ε−4/3 fails to detect a violation of
convexity with probability at least 1/2, for every constructed set Cε.

First, we construct the hard sets Cε. Let k = d 1
5 · ε

−1/2e. Let G be a convex regular
2k-gon inside [0, 1]2 with the side length 1

2 sin( π2k ). Number all vertices of G from 1 to 2k in
the clockwise order (see Figure 4.1). Let G′ and G′′ be the two regular k-gons obtained by
connecting the vertices with odd and even numbers, respectively. Let Cε be the set of points
in G′ ∪G′′. That is, all points in G′ ∪G′′ are black on the figure, and all remaining points in
[0, 1]2 are white.

I Lemma 4.2. The figure (U,Cε) is ε-far from convexity for all sufficiently small ε.

Proof. The region G\(G′ ∪G′′) consists of triangles in which all points are white. Call any
such triangle white. The symmetric difference of G′ and G′′ consists of triangles in which all
points are black. Call any such triangle black. Let T be a black triangle and b be its vertex
such that it is also a vertex of G (see Figure 4.2). Let d and d′ denote the other two vertices
of T . Let b0 be the point on the side dd′ such that bb0 is the height of T . Call triangles
4bb0d and 4bb0d

′ teeth. A crown consists of two teeth that intersect in exactly one point
and the white triangle between them. The the following claim is proved in the full version.



P. Berman, M. Murzabulatov, S. Raskhodnikova 17:13

black 
triangle

1

2

10

…

…

white 
triangle

3

Figure 4.1 An illustration of G for k = 5.
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Figure 4.2 Teeth and crowns.

I Claim 4.3. Let AT and AW be the areas of a tooth and a white triangle, respectively.
Then, for sufficiently large k, we have 1/(5k3) ≤ AT ≤ AW ≤ 1/k3. Moreover, area at least
AT

8 of each of the 2k disjoint crowns must be changed to make Cε convex.

There are 2k disjoint crowns. Recall that k = d 1
5 · ε

−1/2e. Thus, by Claim 4.3, to make
Cε convex, area at least AT

8 · 2k ≥ 1/(20k2) ≥ ε needs to be modified. That is, the figure
(U,Cε) is ε-far from convexity. J

Now consider how an algorithm can detect a violation of convexity in the hard figures we
constructed. First, it is sufficient to change all the points in the white triangles to make such
a figure convex. Therefore, a violation can be detected only if a point from a white triangle
is in the sample. For any white triangle, it is sufficient to change the points in one of the two
black triangles adjacent to it to ensure that the points from the white triangle are not in the
convex hull of black points. Therefore, it is necessary to sample a point from both adjacent
black triangles. Thus, the probability of detecting a violation of convexity is bounded from
above by the probability of detecting a red-flag triple, defined next.

I Definition 4.4 (A red-flag triple). A triple of points (w, b1, b2) is a red-flag triple if w
belongs to a white triangles and b1 and b2 belong to two different adjacent black triangles.

I Lemma 4.5. Let c0 be an appropriate constant. For all sufficiently small ε, a Poisson-s
algorithm with s = c0 · ε−4/3 detects a red-flag triple in the figure (U,Cε) with probability at
most 1/2.

Proof. We define the following random variables for the Poisson-s algorithm: Y counts the
total number of sampled red-flag triples, YW counts the number of sampled red-flag triples
that involve a point w from a white triangle W, variable XW counts the number of samples
in a white triangle W , and XB1 and XB2 count the number of samples in the two black
triangles adjacent to W , respectively. To prove the lemma, it is sufficient to show that
Pr[Y ≥ 1] ≤ 1/2.

By the Poissonization Lemma (Lemma 2.2), XW is a Poisson random variable with
expectation AW · s, where AW is the area of a white triangle. Similarly, E[XB1 ] = E[XB2 ] =
2AT · s, where AT is the area of a tooth and hence half the area of a black triangle. The
random variables XW , XB1 , XB2 are independent because they are sample counts for disjoint
areas. Since YW = XW · XB1 · XB2 , we get that E[YW ] = E[XW ] · E[XB1 ] · E[XB2 ] =
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4AW · (AT )2 · s3 ≤ 4(AW )3 · s3 ≤ 4
k9 · s

3. The inequalities above use Claim 4.3 and hold for
sufficiently large k (i.e., sufficiently small ε).

Since there are 2k crowns, with identical distributions of samples inside them,

E[Y ] = 2k · E[YW ] ≤ 8 1
k8 · s

3 ≤ 8 · 58ε4 · c3
0ε
−4 ≤ 1/2,

assuming c0 is sufficiently small. By Markov’s inequality, the probability of detecting a
red-flag is at most Pr[Y ≥ 1] ≤ E[Y ] ≤ 1/2. J

Theorem 4.1 follows from Lemmas 4.2 and 4.5. Thus, 1-sided error uniform ε-tester for
convexity needs s = Ω(ε−4/3) samples. J

5 Conclusion

We showed that in 2 dimensions, testing convexity of figures with uniform samples can be
done faster than learning convex figures under the uniform distribution. It is an interesting
open question whether this is also true in higher dimensions. We showed that the running
time of our tester cannot be improved if 1-sided error is required. The question is open for
2-sided error testers.

In subsequent work [4], we designed an adaptive, O(1/ε) time tester for testing convexity
of visual images in the pixel model. The tester and its analysis, with small modifications,
also apply to testing convexity of figures.
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