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Abstract—We show how the communication complexity
method introduced in (Blais, Brody, Matulef 2012) can be used
to prove lower bounds on the number of queries required
to test properties of functions with non-hypercube domains.
We use this method to prove strong, and in many cases
optimal, lower bounds on the query complexity of testing
fundamental properties of functions f : {1, . . . , n}d → R
over hypergrid domains: monotonicity, the Lipschitz property,
separate convexity, convexity and monotonicity of higher-order
derivatives. There is a long line of work on upper bounds and
lower bounds for many of these properties that uses a diverse
set of combinatorial techniques. Our method provides a unified
treatment of lower bounds for all these properties based on
Fourier analysis.

A key ingredient in our new lower bounds is a set of Walsh
functions, a canonical Fourier basis for the set of functions on
the line {1, . . . , n}. The orthogonality of the Walsh functions
lets us use a product construction to extend our method from
properties of functions over the line to properties of functions
over hypergrids. Our product construction applies to properties
over hypergrids that can be expressed in terms of axis-parallel
directional derivatives, such as monotonicity, the Lipschitz
property and separate convexity. We illustrate the robustness
of our method by making it work for convexity, which is the
property of the Hessian matrix of second derivatives being
positive semidefinite and thus cannot be described by axis-
parallel directional derivatives alone. Such robustness contrasts
with the state of the art in the upper bounds for testing
properties over hypergrids: methods that work for other
properties are not applicable for testing convexity, for which
no nontrivial upper bounds are known for d ≥ 2.

Keywords-Property testing; monotonicity; functions on hy-
pergrids; communication complexity; Walsh functions

I. INTRODUCTION

Property testing examines the following general question:
given a property P of functions mapping one set D to an-
other set R, how many queries does a randomized algorithm
with oracle access to some unknown function f : D → R
need to distinguish functions with the property P from those
that are “far” from having this property? (See Section II
for formal definitions.) Over the last two decades, many
powerful tools have been developed for designing efficient
algorithms for testing various properties (see, e.g., [19], [32],
[33] for recent surveys). In contrast, few tools are known for
establishing the limitations of these algorithms.

One such tool is the communication complexity method
recently introduced by Blais, Brody, and Matulef [6]. This
method yields new lower bounds on the query complexity
of property testing problems from known lower bounds in
communication complexity. It has been remarkably success-
ful in establishing strong lower bounds on the query com-
plexity for testing many properties of functions mapping the
hypercube {0, 1}d to some (finite or infinite) set R. The best
previously known lower bounds for testing monotonicity [6],
[8], k-linearity [6], low Fourier degree [6], [24], the Lips-
chitz property [25], and function linear isomorphism [23]
have all been established using this method.

Yet, despite the success in establishing lower bounds
for properties of functions on the hypercube, so far the
communication complexity method has not yielded property
testing lower bounds in any other setting. The state of
affairs is not due to any inherent limitation of the method
itself. Rather, it is due to the specialized nature of the
constructions developed so far in applications of the method.
Roughly speaking, most existing constructions rely on the
fact that they can treat the d dimensions of the Boolean
hypercube {0, 1}d “independently” to obtain the desired
lower bounds. In particular, many of these constructions
use the parity functions, an orthonormal basis for functions
on the hypercube, as a basic building block. To obtain
lower bounds for properties of functions over other domains,
new construction techniques and new building blocks are
required.

We give the first applications of the communication com-
plexity method to the setting of testing properties of func-
tions over non-hypercube domains. Specifically, we focus
our attention on functions over the line [n] := {1, 2, . . . , n}
and the hypergrid [n]d. An extensive research effort has
been devoted to the study of testing fundamental properties
of functions over these domains, with particular emphasis
on testing monotonicity [15], [16], [17], [1], [5], [12], the
Lipschitz property [25], [3], [12], and convexity [29], [31],
[30]. (Subsequent to the publication of the preprint of this
article [7], several more works on testing functions over
hypergrid domain appeared [13], [9], [4], [10].) Yet, prior to
this work, large gaps remained between the best upper and



lower bounds on the query complexity of these property
testing problems. We establish strong, and in many cases
optimal, lower bounds for testing all of these properties.
See Table I for a summary of our lower bounds.

The basic building block used in our constructions is the
set of Walsh functions, which form a canonical Fourier basis
for the set of functions over the line and the hypergrid. The
choice of an orthonormal Fourier basis is crucial because it
allows us to express the rich families of functions used in
our reductions concisely, i.e., using a small number of bits,
which is necessary for the application of the communication
complexity framework. Moreover, it often allows us to lift
our constructions from the line to the high-dimensional
hypergrids using a generic product rule without losing
optimality of the results (see the first part of Table I). Finally,
the expressive power of the Fourier basis allows us to obtain
lower bounds for properties for which no good upper bounds
are known (specifically, convexity, separate convexity and
monotonicity of high-order derivatives).

We also streamline the formulation of the communication
complexity method, which results in simpler proofs. After
the publication of a preprint of this article [7], Goldreich [20]
generalized the streamlined formulation of the communica-
tion complexity method and gave a thorough comparison
with the original formulation.

A. Our results

We give lower bounds for several properties of functions
on the hypergrid. For each of these properties, we first
construct a lower bound for one-dimensional functions.
Many properties we consider can be expressed as conditions
of the axis-parallel derivatives of the function. For these
properties, the orthogonality of Walsh functions enables us
to extend the lower bounds to the hypergrid setting with a
natural product construction.

1) Monotonicity: The function f : [n]d → R is mono-
tone if f(x) ≤ f(y) for every pair of inputs x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ [n]d that satisfy x1 ≤
y1, . . . , xn ≤ yn. Monotonicity testing is a classic problem
in property testing that has been studied extensively for
functions on the line [16], [17], on the hypercube [21],
[15], [18], [6], [12], [11], on general partially ordered
domains [18], and on hypergrid domains [15], [1], [12]. The
best upper bound for testing monotonicity on the hypergrid is
due to Chakrabarty and Seshadhri [12], who recently showed
that O(d log n) queries suffice to test whether f : [n]d → R
is monotone, for any range R ⊆ R.

Prior to this work, however, there were no general lower
bounds for the problem of testing monotonicity of functions
on the hypergrid. We give the first lower bound for this
problem. Furthermore, the bound that we obtain is optimal
for nonadaptive tests,1 since it matches the upper bound of

1A property tester is nonadaptive if its choice of queries does not depend
on the answers to the previous queries. See Definition II.2.

Chakrabarty and Seshadhri [12].

Theorem I.1. Fix ε ∈ (0, 18 ] and m, r ∈ N. Let n = 2m. Any
nonadaptive ε-test for monotonicity of functions f : [n]d →
[nd] makes Ω(d log n) queries.

The special case of the theorem with d = 1 also gives
a new lower bound for the classic problem of testing
monotonicity of functions on the line. Theorem III.6 gives
a more nuanced lower bound for this special case, claimed
in Table I. Ergun et al. [16] showed that Θ(log n) queries
are necessary and sufficient for testing monotonicity of
f : [n] → R nonadaptively with one-sided error, and
Fischer [17] showed that the lower bound also holds for
adaptive testers with two-sided error. But Fischer’s proof
relies on Ramsey theory arguments that only hold when the
range of f is extremely large (i.e., at least exponential in n).
Theorem III.6 gives the first lower bound for two-sided error
monotononicity testers of functions with smaller ranges.

2) Convexity: The function f : [n]d → R is convex if for
all x, y ∈ [n]d and all ρ ∈ [0, 1] such that ρx+ (1− ρ)y ∈
[n]d, the function f satisfies f(ρx + (1 − ρ)y) ≤ ρf(x) +
(1 − ρ)f(y). Parnas, Ron, and Rubinfeld [29] showed that
we can test if f : [n]→ R is convex with O(log n) queries.
They also stated the open problem of testing convexity of
functions on the hypergrid. Our next lower bound represents
the first progress on this ten-year-old problem.

Theorem I.2. Fix ε ∈ (0, 1
16 ] and m, r ∈ N. Let n = 2m.

Any nonadaptive ε-test for convexity of functions f : [n]d →
R makes Ω(d log n) queries.

Notably, the special case of the theorem where d = 1
gives the first lower bound for testing convexity on the line.
This lower bound is optimal because it matches the query
complexity of the nonadaptive tester in [29].

Convexity, unlike the other properties we consider in
this paper, cannot be expressed in terms of conditions on
axis-parallel derivatives—it is a property of the Hessian
matrix of all partial derivatives of a function being positive
semidefinite. As a result, our lower bound construction for
convexity on the hypergrid is more technically involved.

In contrast, a closely related property, separate convexity,
can be expressed in terms of conditions on axis-parallel
derivatives. The function f : [n]d → R is separately convex
if for every i ∈ [d] and x ∈ [n]d, the function g : [n] → R
defined by g(y) = f(x1, . . . , xi−1, y, xi+1, . . . , xd) is con-
vex. Separate convexity is a strictly weaker condition than
convexity (namely, all convex functions are also separately
convex, but the converse statement is false—consider, for
example, f(x, y) = xy). Separate convexity has been studied
in many settings, including convex analysis [35], probability
theory [2], and computational geometry [26], [27]. We give
the first lower bound for the query complexity of testing
separate convexity.



Table I
QUERY COMPLEXITY BOUNDS FOR TESTING PROPERTIES OF THE FUNCTION f : [n]d → Z (TOP) AND OF THE FUNCTION f : [n]→ [r] (BOTTOM).

ALL THE BOUNDS ARE FOR NONADAPTIVE TESTS WITH TWO-SIDED ERROR UNLESS MARKED OTHERWISE.

Functions on the hypergrid
Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(d logn) Ω(d) (adaptive, n = 2) [6] O(d logn) [12]

Convexity Ω(d logn) — —

Separate convexity Ω(d logn) — —

Lipschitz Ω(d logn) Ω(d) (adaptive, n = 2) [25] O(d logn) [12]

Functions on the line
Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(min{log r, logn}) Ω(min{log r, logn}) (1.-s. err.) [16]
O(logn) [16]

Ω(logn) (adaptive, r � n) [17]

Convexity Ω(logn) (r = Ω(n2)) — O(logn) [29]

Lipschitz Ω(min{log r, logn}) Ω(min{log r, logn}) (1-s. err.) [25] O(logn) [25]

Monotone `-th derivative Ω(logn) (r = Ω(n`+1)) — —

Theorem I.3. Fix ε ∈ (0, 1
16 ] and m, r ∈ N. Let n = 2m.

Any nonadaptive ε-test for separate convexity of functions f :
[n]d → [r], where r = Ω(dn2), makes Ω(d log n) queries.

3) Lipschitz property: The function f : [n]d → R is Lips-
chitz if |f(x1, . . . , xn)−f(y1, . . . , yn)| ≤

∑n
i=1 |xi−yi| for

every (x1, . . . , xn), (y1, . . . , yn) ∈ [n]d. Lipschitz functions
play a fundamental role in many areas of mathematics and
computer science. Of particular interest to our present study,
the problem of testing whether a function f : [n]d → R is
Lipschitz was recently found to have important applications
to data privacy and program checking [25], [14]. These
applications motivated a flurry of research on the topic [25],
[3], [12], [14], [14]. A highlight of this line of work is
is Chakrabarty and Seshadhri’s nonadaptive tester which
needs O(d log n) queries to test whether f : [n]d → R is
Lipschitz [12]. We establish the first lower bound on the
query complexity of this problem. Our bound is optimal
because it matches the upper bound in [12].

Theorem I.4. Fix ε ∈ (0, 18 ] and m, r ∈ N. Let n = 2m.
Any nonadaptive ε-test for the Lipschitz property of functions
f : [n]d → [r], where r = Ω(dn), makes Ω(d log n) queries.

The special case of Theorem I.4 when d = 1 is also new.
Jha and Raskhodnikova [25] showed that a nonadaptive one-
sided error algorithm requires Ω(min{log n, log r}) queries
to test if f : [n]d → [r] is Lipschitz. Theorem III.12, a more
nuanced version of Theorem I.4 for d = 1, shows that the
same lower bound also holds for testers with two-sided error.

4) Generalizations: Our techniques are extendable to
other properties as well. In the full version of this article,
we illustrate this on two classes of properties of functions
on the line: (α, β)-Lipschitz properties and the properties of
nonnegativity of higher order discrete derivatives.

For any parameters −∞ ≤ α ≤ β ≤ ∞, a function

f : [n]→ R is (α, β)-Lipschitz if α ≤ f(x+ 1)− f(x) ≤ β
for every x ∈ [n− 1]. The class of (α, β)-Lipschitz proper-
ties, introduced by Chakrabarty and Seshadhri [12], includes
monotonicity and the Lipschitz property as special cases.
Our lower bound constructions for these two properties can
be generalized to to all (α, β)-Lipschitz properties.

As we discuss in Section III-B, convexity of a function
f : [n]→ R is equivalent to the nonnegativity of its discrete
derivative f ′ defined by f ′(x) = f(x + 1) − f(x). In
the full version of the article, we extend the lower bound
construction for testing convexity to give a unified lower
bound for testing the nonnegativity of any higher discrete
derivative of a given function. This is in stark contrast to the
situation with the upper bounds, where significantly different
algorithms and analyses are used to test monotonicity [16]
(nonnegativity of the first derivative) and convexity [29]
(nonnegativity of the second derivative), and no algorithm
is known for testing nonnegativity of higher derivatives.

B. Discussion and open problems

All lower bounds presented in this paper are for nonadap-
tive tests. Interestingly, all the best known upper bounds
on the query complexity of testing monotonicity, convexity,
or the Lipschitz property (for functions over any domain)
are achievable with nonadaptive tests, with one exception:
the new adaptive bound for testing Boolean functions on
constant-dimensional hypergrids from [4].

Subsequent to the publication of a preprint of this arti-
cle [7], Chakrabarty and Seshadhri [13] and later Dixit et
al. [9] gave lower bounds of Ω(d log n) queries for testing
(adaptively or not) whether the function f : [n]d → R
is monotone and, respectively, Lipschitz. These results fol-
low from an extension of the Ramsey theory argument
of Fischer [17]. Like Fischer’s lower bound, their method
only applies to functions with very large ranges. These



results leave two open problems that we find particularly
intriguing. Can the adaptive lower bounds also be established
for functions with small ranges? Can they be obtained via
the communication complexity method?

Organization: The basic definitions and facts for property
testing and communication complexity are introduced in
Section II. In Section III, we prove our lower bounds for
functions on the line. The more general lower bounds for
functions with hypergrid domains are presented in Sec-
tion IV.

II. PRELIMINARIES

A. Property testing

This section is devoted to basic property testing defini-
tions. For a more thorough introduction to the area, we
recommend [32], [33].

Definition II.1 (Distance). The distance between two func-
tions f, g : D → R is the fraction of points x in D for which
f(x) 6= g(x). The distance between f and a property P of
functions mapping D to R is the minimal distance between
f and any g ∈ P . We say f is ε-far from P if its distance
to P is at least ε.

Definition II.2 (Property tester [34], [22]). Fix ε ∈ (0, 1).
An ε-tester for a property P is a randomized algorithm
which, given oracle access to a function f , accepts with
probability at least 2/3 if f ∈ P , and rejects with probability
at least 2/3 if f is ε-far from P .

A tester has one-sided error if it always accepts functions
in P and has two-sided error otherwise. It is nonadaptive
if the queries to f do not depend on the answers to the
previous queries; otherwise, it is adaptive.

B. Communication complexity

In a (two-player) communication game C, Alice receives
some input a, Bob receives some input b, and they must
compute the value of some function fC(a, b) on their joint
input. A protocol defines how Alice and Bob communicate.
The maximum number of bits exchanged by Alice and Bob
during the execution of a protocol over the possible inputs
a and b is the complexity of the protocol. A randomized
protocol is valid for fC if for every input, the protocol
computes fC correctly with probability at least 2/3. The
communication complexity of fC is the minimum complexity
of any protocol that is valid for fC .

A number of different communication models have been
extensively studied. We focus on the one-way shared ran-
domness model. In this model, communication is allowed
only from Alice to Bob. Alice and Bob share access to a
common source of randomness that can be used to determine
the protocol. The communication complexity of fC in the
one-way shared randomness model is denoted RA→B(fC).

A fundamental function fC studied in the one-way shared
randomness model is AUGMENTEDINDEXt, where t ≥ 1

is a parameter specifying the instance size. Alice’s input
to this function is a set A ⊆ [t] while Bob’s input is an
index i ∈ [t] and the set B = A ∩ [i − 1]. The output
of AUGMENTEDINDEXt is 1 if i ∈ A and 0 otherwise.
No randomized one-way communication protocol for this
function does significantly better than the naı̈ve protocol
where Alice communicates her whole set to Bob.

Theorem II.3 ([28]). The one-way communication complex-
ity of AUGMENTEDINDEXt in the shared randomness model
is RA→B(AUGMENTEDINDEXt) = Θ(t).

C. Communication complexity method
A combining operator ψ takes as input a and b, the

inputs of Alice and Bob for a given communication game
C, and returns a function ψ[a, b]. It is a one-way one-bit
combining operator if for every a and b, and every element
x in the domain of ψ[a, b], Bob can compute the value of
ψ[a, b](x) with only one bit of communication from Alice.
A combining operator is also called a reduction operator if
it satisfies the conditions we require to complete a reduction
from C to a property testing problem:

Definition II.4 (Reduction operator). A one-bit one-way
combining operator ψ is a reduction operator for the com-
munication game C, the property P , and the parameter
ε0 ∈ (0, 1) if for all possible inputs a and b of Alice and
Bob, respectively,

1) if fC(a, b) = 0, then ψ[a, b] ∈ P , and
2) if fC(a, b) = 1, then ψ[a, b] is ε0-far from P .

The following lemma is the main tool in our lower bound
constructions. The proof of this lemma is implicit in [6]. For
completeness, we include it below.

Lemma II.5 (Reduction lemma). If there exists a reduction
operator for the communication game C, the property P
and the parameter ε0 ∈ (0, 1), then for all ε ∈ (0, ε0], every
nonadaptive ε-tester for P makes RA→B(C) queries.

Proof: Let ψ be a reduction operator for C, P , and
ε0. Consider a nonadaptive ε-tester T for P that makes at
most q queries for some ε ∈ (0, ε0]. Let Alice and Bob use
their shared randomness to both simulate the tester T and
identify the inputs x(1), . . . , x(q) queried by T . The tester T
is nonadaptive, so they can both identify the queried inputs
without observing the value of ψ[a, b] on any of these inputs.
Since ψ is a one-way one-bit combining operator, Alice only
needs to send q bits of information to enable Bob to compute
ψ[a, b](x(1)), . . . , ψ[a, b](x(q)). Bob completes the execution
of T then outputs 0 if T accepts or 1 if T rejects. The
correctness of this protocol is guaranteed by conditions 1
and 2 of Definition II.4.

The definition of the reduction operator and the reduction
lemma can be generalized to handle two-way bounded-bit
combining operators. Goldreich [20] introduces this general-
ized formulation and provides a thorough comparison with



 

𝑩𝟏
𝒊

 
𝑩𝟐
𝒊

 

𝑩
𝟐𝒎−𝒊
𝒊

1 𝒙

𝒔𝒊(𝒙)

2𝑖 2 ⋅ 2𝑖 2𝑚2𝑚 − 2𝑖
1

-1

⋯

2

3

2𝑚−𝑖

⋮

⋯

Figure 1. Blocks Bi
k and step functions si: an illustration of Defini-

tions III.1 and III.2.

the original formulation of the communication complexity
method. All our reductions use one-way one-bit combining
operators, and in fact they are all obtained from the AUG-
MENTED INDEX communication game. We write ψ[A, i,B]
(instead of ψ[A, (i, B)]) to denote the functions obtained by
the reduction operator ψ for this game. The following corol-
lary follows directly from the reduction lemma (Lemma II.5)
and Theorem II.3.

Corollary II.6 (Reduction corrolary). If there exists a re-
duction operator for AUGMENTEDINDEXt, the property P
and the parameter ε0 ∈ (0, 1), then for all ε ∈ (0, ε0], every
nonadaptive ε-tester for P makes Ω(t) queries.

III. LOWER BOUNDS ON THE LINE

In this section, we consider properties of functions map-
ping the domain [2m] = {1, . . . , 2m} (where m ∈ N) to a
range R ⊆ R. Two classes of functions play a central role
in the study of these properties: step functions and Walsh
functions. The functions in both of these classes are constant
on blocks of inputs in [2m], which we define next.

Definition III.1 (Blocks). Let i ∈ {0, . . . ,m}. For k ∈
[2m−i], the kth block of length 2i is the set of integers
{2i(k − 1) + 1, . . . , 2ik}. We denote this block Bik.

Definition III.2 (Step functions). For i ∈ {0, . . . ,m},
the step function of block length 2i is the function si :
[2m] → [2m−i] defined by si(x) = k, such that x ∈ Bik.
(Equivalently, si(x) =

⌊
x−1
2i

⌋
+ 1.)

The definitions of blocks and step functions are illustrated
in Figure 1. Note that blocks of length 2i partition [2m] and
that the step functions of block length 2i are constant on
each block Bik.

The Walsh functions can be defined in terms of blocks.
Specifically, the Walsh function indexed by i is equal to 1 on
the first half of each block Bik and to −1 on the second half.
In other words, the value of the ith Walsh function on input
x is determined by the ith bit of the binary representation
of x−1. We denote this value by biti(x−1), where the bits
are numbered starting from the least significant.

1 2𝑖 2 ⋅ 2𝑖 2𝑚2𝑚 − 2𝑖

1

−1
⋯

𝒙

𝒘𝒊(𝒙)
⋯

⋯

Figure 2. Walsh functions wi: an illustration of Definition III.3.

Definition III.3 (Walsh functions). For i ∈ [m], the function
wi : [2m] → {−1, 1} is defined by wi(x) = (−1)biti(x−1).
For any S ⊆ [m], the Walsh function wS : [2m]→ {−1, 1}
corresponding to S is wS(x) =

∏
i∈S wi(x). (If S = ∅ then

wS(x) = 1 for all x.) Lastly, we define wm+1(x) = 1.

The Walsh functions are illustrated in Figures 2 and 3. We
use two basic properties of Walsh functions in this section.

Proposition III.4. For every S ⊆ [m], the Walsh function
wS satisfies

∑
x∈[2m] wS(x) ≥ 0.

For two functions f, g : [n]→ R, we write f ·g to denote
the pointwise product of the two functions: for every x ∈ [n],
f · g(x) = f(x)g(x).

Proposition III.5. For every A,B ⊆ [m], the Walsh function
wA4B : [2m] → {−1, 1} corresponding to the symmetric
difference between A and B satisfies wA4B = wA · wB .

A. Monotonicity

In this section, we establish the following lower bound
for testing monotonicity of functions on the line.

Theorem III.6. Fix ε ∈ (0, 14 ] and m, r ∈ N. Let n = 2m.
Any nonadaptive ε-tester for monotonicity of functions f :
[n]→ [r] makes Ω(min(log n, log r)) queries.

A central component of the proof of Theorem III.6 is
the following observation regarding combinations of step
functions and Walsh functions.

Lemma III.7. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define
h = 2si + wS and h− = 2si − wS .

1) If i /∈ S, then h and h− are monotone;
2) If i ∈ S, then h is 1

4 -far from monotone.

Proof: When i /∈ S, then S ⊆ {i + 1, . . . ,m} and the
functions si, wS and −wS are constant on each block Bik
(for k ∈ [2m−i]). This means that the value of the functions
wS and −wS can decrease (from 1 to −1) only between
adjacent blocks (i.e., the inequality wS(x) > wS(x + 1)
can only hold when x ∈ Bik and x + 1 ∈ Bik+1 for some
k ∈ [2m−i − 1]). But the step function si increases by 1
between adjacent blocks, so h and h− are monotone.

When i ∈ S, then the Walsh function wS changes value
in the middle of each block Bik. If this change is from 1
to −1, then wS is 1/2-far from monotone on this block,
and so is h because the step function si is constant on each
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Figure 3. Walsh functions wS for m = 3 and all subsets S of [3]: an illustration of Definition III.3.

Bik. Note that this change is from 1 to −1 for all blocks on
which wS\{i} evaluates to 1. By Proposition III.4, this is the
case for at least half of the blocks. Thus, h is 1

4 -far from
monotone.

Proof of Theorem III.6: To prove the lower bound of
Ω(log n) queries (for n < r), we use the reduction corollary
(Corollary II.6) with the parameter t in the corollary set to
m. To get the bound of Ω(log r) queries (for r ≤ n), we
use the same proof with t set to blog2(r− 1)c and with the
additional restriction that the sets given to Alice and Bob
reside in {m− t+ 1, . . . ,m} instead of [m].

Let ψ be the combining operator that receives Alice’s set
A, Bob’s index i and set B as input and returns the function
h : [2m]→ Z defined by

h(x) = 2si(x) + wA4B(x). (1)

Note that A4B = A ∩ {i, . . . ,m} and that the range of h
is [2 ·2t−1 +1] = [2t+1]. That is, the range is [n+1] when
t = m and is [r] when t = blog2(r − 1)c.

By Proposition III.5, wA4B = wA · wB . Bob knows B,
so to determine h(x) he only needs Alice to communicate a
single bit—namely, the value of wA(x). Thus, ψ is a one-bit
one-way combining operator. Furthermore, by Lemma III.7
the function h is monotone when i /∈ A and it is 1

4 -far from
monotone when i ∈ A, so ψ is a reduction operator for
monotonicity of functions of the form f : [2m] → [t + 1]
and ε0 = 1/4. Then, by Corollary II.6, for any ε < 1

4 ,
every nonadaptive ε-tester for monotonicity requires Ω(t) =
Ω(min(log n, log r)) queries.

B. Convexity

The main result of this section is the following lower
bound on the query complexity for testing the convexity of
functions on the line.

Theorem III.8. Fix ε ∈ (0, 18 ] and n = 2m for some m ≥ 1.
Any nonadaptive ε-test for convexity of functions f : [n]→
[r], where r = Ω(n2), makes Ω(log n) queries.
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Figure 4. Double-step functions r′i: an illustration of Definition III.10.

Recall that the function f : [n] → R is convex if for all
x, y ∈ [n] and all ρ ∈ [0, 1] such that ρx+ (1− ρ)y is also
an integer in [n], the function f satisfies f(ρx+(1−ρ)y) ≤
ρf(x) + (1− ρ)f(y). Equivalently, we can define convexity
in terms of the discrete derivative of functions on the line.

Definition III.9 (Discrete derivative, convexity). The dis-
crete derivative of f : [n]→ R is the function f ′ : [n−1]→
R defined by f ′(x) = f(x + 1) − f(x). The function
f : [n]→ R is convex (resp., concave) if its derivative f ′ is
a monotone nondecreasing (resp., nonincreasing) function.

The proof of Theorem III.8 uses two variants of the
step functions: rising-step-size functions and double-step
functions.

Definition III.10 (Rising-step-size and double-step func-
tions). Fix i ∈ [m]. The rising-step-size function ri : [n]→
[n2] is defined by ri(x) = si(x)+2

∑x−1
y=1 si(y). Its discrete

derivative, r′i(x) = si(x+1)+si(x), is called a double-step
function. Equivalently, for every k ∈ [2m−i] the function
r′i(x) is equal to 2k on all but the last element x of the
block Bik and to 2k + 1 on the last element of Bik.

Lemma III.11. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define
h = ri + 1

2 (wS + 1) and h− = ri − 1
2 (wS + 1).

1) If i /∈ S, then h and h− are both convex.
2) If i ∈ S, then h is 1

8 -far from convex.
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Figure 5. Derivative of singleton Walsh functions w′
i. Illustration for the

proof of Lemma III.11

Proof: First, consider the case where i /∈ S. The
discrete derivative of h is h′(x) = r′i(x) + 1

2w
′
S(x). It is

sufficient to prove that h′ is nondecreasing. Since S ⊆ {i+
1, . . . ,m}, the function wS is constant on each block Bik (for
k ∈ [2m−i]). That is, for all but the last element x of a block
Bik, the discrete derivative w′(x) = 0 and, consequently,
h′(x) = r′i(x) = 2k. Now consider h′(x), where x is the
last element of a block Bik. Recall that r′i(x) = 2k + 1.
Since Walsh functions are ±1-valued, the value 1

2w
′
S(x) is

in {−1, 0, 1} (see Fig. 5 for an illustration of a derivative of
a singleton Walsh function w′i). Thus, h′(x) ∈ [2k, 2k + 2],
i.e., h′(x − 1) ≤ h′(x) ≤ h′(x + 1). Therefore, h′ is
a nondecreasing function. The same argument shows that
when i /∈ S, the function h− is also convex.

Now consider the case where i ∈ S. We start the analysis
of this case by showing that for at least half of the blocks
Bik, the derivative w′S(x) = −2 on the 2i−1th element of
Bik (i.e., on the input x = 2i(k − 1) + 2i−1.) Note that
wS = wi · wS\{i}. By Proposition III.4, wS\{i}(x) = 1 for
at least half of the inputs x ∈ [2m]. Since S ∩ [i − 1] = ∅,
the function wS\{i} is constant within the blocks Bik. Thus,
for at least half of these blocks it is a constant 1. For each
block Bik, the function wi is 1 on the first half of the block
and −1 on the second half. Combining these observations,
for half of the blocks Bik, the derivative of wS on the middle
point x = 2i(k − 1) + 2i−1 of the block satisfies w′S(x) =
wS(x+1)−wS(x) = wS\{i}(x+1) ·wi(x+1)−wS\{i}(x) ·
wi(x) = −2.

Let Bik be a block where w′S(x) = −2 on the 2i−1th
element x of Bik. Note that w′S(x) = 0 on all other inputs
in the block apart from the last one because wS is constant
on all blocks Bi−1j . Consider any three points x, y, z ∈ Bik
such that x ≤ (k−1)2i+ 2i−1 < y < z, namely, x is in the
first half of the block Bik while y and z are in the second half.
Then h′(y) = h′(y+ 1) = · · · = h′(z− 1) = 2k so (h(z)−
h(y))/(z−y) = 2k. However, h′((k−1)2i+2i−1) = 2k−2
so (h(y)−h(x))/(y−x) < 2k, which violates convexity. To
fix convexity on all such triples, we must change the value
of h on all the points (k− 1)2i + 1, . . . , (k− 1)2i + 2i−1 in
the first half of the block Bik, or on all but one point in the
second half of Bik. Thus, we need to change at least 1/4 of
the points in Bik. Since this is the case for at least half of
all blocks, h is 1/8-far from convex.

Proof of Theorem III.8: We use the reduction corollary
(Corollary II.6) with the parameter t in the corollary set to
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Figure 6. Up-down staircase functions ui: an illustration of Defini-
tion III.13.

m. Given Alice’s set A ⊆ [m] and Bob’s index i ∈ [m]
and the prefix set B = A ∩ [i− 1], the combining operator
ψ[A, i,B] returns the function

h(x) = ri(x) + 1
2 (wA4B(x) + 1).

Note that A4B = A∩{i, . . . ,m}. Since wA4B = wA ·wB ,
the operator ψ is a one-bit one-way combining operator.
Furthermore, by Lemma III.11, if i /∈ A then h is convex
and if i ∈ A then h is 1/8-far from convex. So ψ is a
reduction operator for convexity with parameter ε0 = 1

8 and
the theorem follows from Corollary II.6.

C. The Lipschitz property

Theorem III.12. Fix ε ∈ (0, 14 ] and m, r ∈ N. Let n = 2m.
Any nonadaptive ε-test for the Lipschitz property of functions
f : [n]→ [r] makes Ω(min(log n, log r)) queries.

The proof of Theorem III.12 uses yet another variant on
the step functions: up-down staircase functions.

Definition III.13 (Up-down staircase functions). For all i ∈
{0, 1, . . . ,m}, let the up-down staircase function of block-
length 2i be the function ui : [2m]→ [2i], such that ui(1) =
1 and the discrete derivative of ui is

u′i(x) =

{
0 if x is divisible by 2i;
wi+1(x) otherwise.

Equivalently, the function ui takes the values 1, . . . , 2i on
consecutive inputs from the block Bij if j is odd, and the
values 2i, . . . , 1 if j is even. (See Figure 6.)

Lemma III.14. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define
h(x) = ui(x) − 1

2 (wS(x) + 1) and h−(x) = ui(x) −
1
2 (−wS(x) + 1).

1) If i /∈ S, then h and h− are both Lipschitz.
2) If i ∈ S, then h is 1

4 -far from Lipschitz.

Proof: If i /∈ S, i.e., S ⊆ {i + 1, . . . ,m}, then the
function wS is constant on each block Bik (for k ∈ [2m−i]).
Let w(x) = − 1

2 (wS(x)+1). Since Walsh functions are ±1-
valued, the discrete derivative w′(x) is in {−1, 0, 1} for all
x, and w′(x) = 0 for all x not divisible by 2i. By definition
of the up-down staircase functions, u′i(x) ∈ {−1, 0, 1} for



all x, and u′i(x) = 0 for all x divisible by 2i. Thus, h′ =
u′i + w′ takes values only in {−1, 0, 1}, implying that h is
Lipschitz. The proof that h− is Lipschitz is analogous.

When i ∈ S, i.e., i is the smallest element in S, the
rescaled Walsh function w(x) = − 1

2 (wS(x) + 1) changes
value in the middle of each block Bik. This change is either
from -1 to 0 or vice versa. In the former case, the discrete
derivative w′ is 1 on the 2i−1th element of the block, in the
latter, it is -1. In both cases, it is 0 on all other elements
of the block besides the last one. Next we show that if the
former case occurs on a block with odd i (similarly, if the
latter case occurs on a block with even i), then h is 1/2-far
from Lipschitz on this block.

Consider the case when i is odd and w′ is 1 on the 2i−1th
element of a block Bik. Since i is odd, u′i takes value 1 on
all but the last element of Bik. Then h′ = u′i + w′ is 2 on
the 2i−1th element of Bik, and 1 on all other elements of the
block besides the last one. We pair up all elements of Bik as
follows: each element x in the first half of the block is paired
up with the element x+2i−1. The function h is not Lipschitz
on each such pair: h(x+2i−1)−h(x) =

∑x+2i−1−1
y=x h′(y) =

2i−1 + 1. Thus, h is 1/2-far from Lipschitz on each such
block. The other case (when i is even and w′ is -1 on
the 2i−1th element of a block Bik) is analogous—the only
difference is that h′ takes negative values.

We can rephrase what we just proved as follows: the
function h is 1/2-far from Lipschitz on all blocks Bik with
k ∈ [2m−i], where wS\{i}(x) = wi+1(x) for all x ∈ Bik.
Equivalently, wS\{i}(x) ·wi+1(x) = w(S\{i})4{i+1}(x) = 1
for all x ∈ Bik. By Proposition III.4 and the fact that it is
constant on each block Bik, the function w(S\{i})4{i+1} is
the constant 1 function on at least half of the blocks. Thus,
h is 1/2-far from Lipschitz on at least half of the blocks
Bik. That is, overall h is 1/4-far from Lipschitz.

Proof of Theorem III.12: The structure of the proof is
very similar to that of the previous two lower bounds in this
section. As in the monotonicity testing lower bound, when
n < r we will invoke Corollary II.6 with parameter t set to
m, and when r ≤ n we use the same proof with t set to
blog2(r − 1)c and add the restriction that Alice and Bob’s
sets reside in {m− t+ 1, . . . ,m} instead of in [m].

Define a combining operator ψ that receives Alice’s set
A, and Bob’s index i and set B as input then returns the
function h : [2m]→ Z defined by

h(x) = ui(x)− 1

2
(wA4B(x) + 1),

where A4B = A ∩ {i, . . . ,m}. The additional restriction
on the sets A and B that we introduced when r ≤ n
guarantee that in this case the range of the function is
{0, 1, . . . , 2t} ⊆ {0, 1, . . . , r− 1}. Since wA4B = wA ·wB ,
the operator ψ is a one-bit one-way combining operator. And
by Lemma III.14, when i /∈ A then h is Lipschitz and when

i ∈ A then h is 1/4-far from Lipschitz. Therefore, we can
apply Corollary II.6 to obtain the desired lower bound.

IV. LOWER BOUNDS ON THE HYPERGRID

In this section, we generalize the lower bounds for testing
functions on the line to the hypergrid setting. Specifically, we
consider properties mapping the domain [2m]d to some range
R ⊆ R. All of the lower bounds in this section are obtained
via reductions from the AUGMENTEDINDEXmd problem. In
order to obtain these reductions, we associate each subset
of [md] with a d-dimensional vector of subsets of [m] and
each index in [md] with a d-dimensional vector of indices
in {0, 1, . . . ,m}.

Definition IV.1 (Vector representation). Fix m, d ∈ N. The
d-dimensional representation of the set S ⊆ [md] is the
vector S = (S1, . . . ,Sd) defined by Sj = {` ∈ [m] :
(j−1)m+` ∈ S} for each j ∈ [d]. The d-dimensional repre-
sentation of the index i ∈ [md] is the vector i = (i1, . . . , id)
defined by ij = max{0,min{m, i − (j − 1)m}} for each
j ∈ [d].

Equivalently, the d-dimensional representation of the in-
dex i ∈ [md] is the vector i = (m, . . . ,m, ij∗ , 0, . . . , 0),
where j∗ = di/me and ij∗ = i − (j∗ − 1)m. We call j∗

the active coordinate of the vector i. Observe that i ∈ S iff
ij∗ ∈ Sj∗ .

The notions of step functions and Walsh functions extend
very naturally to the d-dimensional setting.

Definition IV.2 (Multidimensional step functions). The step
function indexed by the d-dimensional vector i ∈ [m]d is
the function si : [2m]d → [d2m] defined by

si(x1, . . . , xd) =

d∑
j=1

sij (xj).

Definition IV.3 (Multidimensional Walsh functions). The
Walsh function indexed by the d-dimensional vector S of
subsets of [m] is the function wS : [2m]d → {−1, 1} defined
by

wS(x1, . . . , xd) =

d∏
j=1

wSj
(xi).

The multidimensional Walsh functions satisfy the same
basic properties that we used in our lower bound construc-
tions for properties of functions on the line (c.f. Proposi-
tions III.4 and III.5).

Proposition IV.4. For every S ⊆ [md] with d-
dimensional representation S, the Walsh function wS sat-
isfies

∑
x∈[2m]d wS(x) ≥ 0.

Proof: It is sufficient to prove that if the random
variables X1, . . . , Xd are i.i.d. and uniform over [2m]
then Pr[wS(X1, . . . , Xd) = 1] ≥ 1/2. If Sj = ∅ then
wSj

(Xj) = 1. For all j ∈ [d] such that Sj 6= ∅, the random



variables wSj
(Xj) ∈ {−1, 1} are i.i.d. and uniformly

distributed over {−1, 1}. Thus, Pr[wS(X1, . . . , Xd) = 1] =
Pr[
∏
j∈[d] wSj (Xj) = 1] ≥ 1/2.

Corollary IV.5. Let S be the d-dimensional representation
of S ⊆ [md]. The product

∏
k∈[d]\{j} wSk

(xk), where xk ∈
[2m] for all k ∈ [d] \ {j}, evaluates to 1 for at least half of
the settings of variables xk.

Proof: Let S′ be the (d − 1)-dimensional vector
(S1, . . . ,Sj−1,Sj+1, . . . ,Sd). Then

∏
k∈[d]\{j} wSk

(xk) =
wS′(x1, . . . , xj−1, xj+1, . . . , xd). By Proposition IV.4, this
expression is 1 for at least half of the settings of xk.

Proposition IV.6. Fix A,B ⊆ [md] and S = A4B. Let A,
B, and S be the d-dimensional vector representations of the
sets A, B, and S, respectively. Then wS : [2m]d → {−1, 1}
satisfies wS(x) = wA(x) · wB(x) for all x ∈ [2m]d.

A. Monotonicity

The lower bound for testing monotonicity over the hy-
pergrid domain is conceptually similar to the monotonicity
lower bound for the line domain. For the hypergrid domain,
however, we start with the AUGMENTEDINDEXmd problem
and use the d-dimensional representation of Alice and Bob’s
inputs A,B, and i to define a combining operator ψ that
returns a function h that (a) is monotone in every dimension
when i /∈ A, and (b) is far from monotone in one dimension
j∗ when i ∈ A. The details follow.

Proof of Theorem I.1: We use Corollary II.6 with
parameter t = md. Let A ⊆ [md] be Alice’s input and
i ∈ [md] and B = A ∩ [i− 1] be Bob’s input.

The combining operator ψ is defined as follows. It re-
ceives A, i,B as input. Then it computes S = A4B =
A ∩ {i, . . . ,md} and the d-dimensional vectors i and S
corresponding to i and S, respectively. It returns the function
h : [n]d → {d− 1, . . . , dn+ 1} defined by

h(x) = 2si(x) + wS(x).

By Proposition IV.6, wS = wA ·wB, where A and B are the
d-dimensional representations of A and B, respectively. Bob
knows i and B and can compute their vector representations.
To determine h(x), he only needs Alice to communicate
the bit wA(x). Thus, ψ is a one-bit one-way combining
operator. Lemma IV.7, below, concludes the proof that ψ is a
reduction operator for monotonicity and ε0 = 1/8, implying
the theorem.

Lemma IV.7. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and
let i and S, respectively, be their d-dimensional vector
representations. If i /∈ S, then h is monotone. Otherwise,
h is 1

8 -far from monotone.

Proof: Let j∗ = di/me. We will show that all line
restrictions of h to dimensions other than j∗ are monotone.
If i /∈ S, we will show that all line restrictions of h to

dimension j∗ are also monotone, so h itself is monotone.
Conversely, if i ∈ S, we will show that at least half of
the line restrictions of h to dimension j∗ are 1/4-far from
monotone, so h itself is 1/8-far from monotone.

Consider the restriction of h = 2si + wS to a line in
dimension j ∈ [d], i.e., a function h̄ : [2m] → N defined
by h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the
values x̄k ∈ [2m] are fixed for all k ∈ [d] \ {j}. Then

h̄(xj) = 2
∑
k 6=j

sik(x̄k) + 2sij (xj) + wSj
(xj) ·

∏
k 6=j

wSk
(x̄k)

= 2sij (xj)± wSj (xj) + c, (2)

where ± means “either + or −” and c is a constant
independent of xj .

If j < j∗ then Sj = ∅, ij = m and h̄ = 2sm ±w∅ + c =
2 ± 1 + c. And if j > j∗ then ij = 0, so h̄(xj) = 2xj ±
wSj

(xj) + c. In both cases, the function h̄ is monotone.
Finally, if j = j∗ then ij = i − (j − 1)m. In this

case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then, by (2) and
Lemma III.7, h̄(xj) is monotone. Since all line restrictions of
h(x) are monotone, the overall function h(x) is monotone.
Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k)
that determines whether the expression ± in (2) is actually a
plus or a minus. By Corollary IV.5, this product evaluates to
1 for at least half of the line restrictions h̄ of h in dimension
j. For those restrictions, h̄(xj) = 2sij (xj) + wSj

(xj) + c
and, since ij ∈ Sj , Lemma III.7 implies that h̄ is 1

4 -far from
monotone. Thus, at least half of the line restrictions of h in
dimension j are 1/4-far from monotone. Since the domains
of line restrictions of h in dimension j partition the domain
of h, it implies that the overall function h(x) is 1

8 -far from
monotone.

B. Convexity

The lower bound for testing separate convexity on the
hypergrid domain is obtained with an argument similar to the
one in Section IV-A: we define a combining operator ψ for
the AUGMENTEDINDEXmd problem that returns a function
h that is (a) convex in every dimension when i /∈ A, and (b)
far from convex in one dimension when i ∈ A.

This approach does not suffice for the convexity lower
bound, however, since the convexity of the restriction of a
function h in every dimension does not imply that h itself
is convex; to ensure that h is convex, we need to construct
a reduction such that when i /∈ A, the projection of h is
convex on every line, not just the axis-parallel ones.

The proofs of the lower bounds for testing separate
convexity and for testing convexity share some common
elements, so we present them together.

Proof of Theorems I.2 and I.3: We apply Corollary II.6
with parameter t = md. Let A ⊆ [md] be the set received by
Alice and let i ∈ [md] and B = A∩[i−1] be Bob’s input. Let
j∗ = di/me. Let A,B and i be the d-dimensional vectors
corresponding to A,B and i respectively. The combining



operator ψ receives A and i as input and returns the function
h : [n]d → R defined by

h(x) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+

d∑
j=j∗+1

xj
2,

where S is the d-dimensional vector corresponding to S =
A4B = A ∩ {i, . . . ,md} and rij∗ is a rising-step-size
function (see Definition III.10). The parameter α is set to 1
for separate convexity. In this case, the range of h is [r] for
r = O(dn2) because for every k ∈ [m] the range of rk is
O(n2). For convexity, α ∈ (0, 1) is selected later, to satisfy
Lemma IV.8 below. For any x ∈ [n]d, Bob only needs the
single bit wA(x) from Alice to compute h(x), so ψ is a
one-bit one-way combining operator.

To show that ψ is a reduction operator for convexity
(resp., separate convexity) we need to show that if i /∈ S (or
equivalently ij∗ /∈ Sj∗ ) then h is convex (resp., separately
convex) and otherwise h is 1

16 -far from convex (resp.,
separately convex). We do so with the help of the following
lemma. To apply Lemma IV.8 in the case of convexity recall
that the distance of a function f to convex is at least the
distance of f to separately convex.

Lemma IV.8. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and
let i and S, respectively, be their d-dimensional vector
representations. j∗ = di/me. If ij∗ /∈ Sj∗ then (1) for α = 1
the function h is separately convex; (2) there exists α > 0
such that the function h is convex. Otherwise (if ij∗ ∈ Sj∗ ),
the function h is 1

16 -far from separately convex for all α > 0.

Proof: To prove part (1), it suffices to show that every
restriction of h to any dimension j ∈ [d] is a convex
function.

Every one-dimensional restriction h̄ of h in dimension j∗

can be expressed as h̄(xj∗) = α(rij∗ (xi)± 1
2wSj∗ (xj∗))+c,

where c is some constant independent of xj∗ . Since ij∗ /∈
Sj∗ , this function is convex by Lemma III.11. For all j < j∗,
every one-dimensional restriction h̄ of h to dimension j is
a constant function. For all j > j∗, the restrictions of h to
dimension j can be expressed as h̄(xj) = ± 1

2αwSj
(xj) +

xj
2 + c. The derivative of the first term wSj

satisfies that
| 12αw

′
Sj

(xj)| ≤ α and the derivative of the second term
is 2xj , so for α ≤ 1 the derivative h̄′ is a nondecreasing
function and h̄ is convex. Hence, the function h is separately
convex for all α ≤ 1. This completes the proof of part (1).

To prove part (2), we show how to pick a parameter α ∈
(0, 1) such that the function h is convex. By definition, to
prove that h is convex we need to show that h(z) ≤ γh(x)+
(1−γ)h(y) for every pair of points (x, y) ∈ [n]d× [n]d and
every γ ∈ (0, 1) for which z = γx+ (1− γ)y ∈ [n]d.

The function h is independent of the first j∗ − 1 co-
ordinates, so h(x) = h(y1, . . . , yj∗−1, xj∗ , . . . , xd) and
h(z) = h(y1, . . . , yj∗−1, zj∗ , . . . , zd).

First, consider the case when xj = yj for all j > j∗, so we

have x = (x1, . . . , xj∗ , yj∗+1, . . . , yd). By Lemma IV.8 (Part
1), all the restrictions h̄ of h to dimension j∗ are convex,
so in this case h(z) ≤ γh(x) + (1− γ)h(y).

Otherwise, fix an index j > j∗ such that xj 6= yj .

Proposition IV.9. Define φj∗(x) =
∑d
t=j∗+1 xt

2. For all
n, d ≥ 1 there exists a value δ∗(n, d) > 0 such that

φj∗(γx+ (1− γ)y) ≤ γφj∗(x) + (1− γ)φj∗(y)− δ∗(n, d)

for all pairs (x, y), where xj 6= yj for some j > j∗, and all
γ ∈ (0, 1), where γx+ (1− γ)y ∈ [n]d.

Proof: Let j be an index such that xj 6= yj and j > j∗.
Then

φj∗(γx+ (1− γ)y)− γφj∗(x)− (1− γ)φj∗(y)

=
d∑

t=j∗+1

(
(γxt + (1− γ)yt)

2 − γxt2 − (1− γ)yt
2
)

≤
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
< 0.

The first inequality uses convexity of x2. The second in-
equality uses its strict convexity and the fact that xj 6= yj .
Let

δ(x, y, j, γ, n, d)

= −
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
> 0.

Note that j and γ can take at most d and nd different values
respectively for any fixed pair (x, y). Thus there are at most
dn3d different valid tuples (x, y, j, γ). The claim follows by
letting δ∗(n, d) = minx,y,j,γ δ(x, y, j, γ, n, d).

We set α = δ∗(n,d)
6(2n2+1) . Using the notation introduced

above,

h(x) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+
∑
j>j∗

xj
2

= α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+ φj∗(x).

Since the range of rij∗ is [2n2],

h(z)− γh(x)− (1− γ)h(y)

≤ φj∗(z)− γφj∗(x)− (1− γ)φj∗(y) + 3α(2n2 + 1)

≤ −δ∗(n, d) + 3α(2n2 + 1) = −δ∗(n, d)/2 < 0,

where the inequalities follow from Proposition IV.9. This
concludes the proof of the fact that h is convex (part (2) of
Lemma IV.8).

Finally, we consider the case ij∗ ∈ Sj∗ . By Corol-
lary IV.5, the product

∏
k 6=j∗ wSk

(xk) evaluates to 1 for at
least half of the line restrictions h̄ of h to dimension j∗. For
such restrictions, h̄(xj∗) = α( 1

2wSj∗ (xj∗) + rij∗ (xj∗)) + c,
for some constant c. Lemma III.11 implies that h̄ is 1

8 -
far from convex. The domains of the restrictions h̄ of h



in dimension j∗ partition the domain of h, so we conclude
that the function h is 1

16 -far from separately convex.

C. The Lipschitz property

Definition IV.10 (Multidimensional up-down staircase func-
tions). The up-down staircase function indexed by the d-
dimensional vector i ∈ [m]d is the function ui : [2m]d →
[d2m] defined by ui(x1, . . . , xd) =

∑d
j=1 uij (xj).

Proof of Theorem I.4: The starting point of the reduc-
tion is the same as in the proof of the lower bound for mono-
tonicity in Section IV-A. We use the same notation for the
parameters of the reduction from AUGMENTEDINDEXmd,
Alice’s and Bob’s inputs, the set S = A4B = A ∩
{i, . . . ,md} and the vector representation of these objects.
The combining operator ψ returns the function

h(x) = ui(x)− 1
2 (wS(x) + 1).

As in the proof of Theorem I.1, ψ is a one-bit one-way
combining operator. The next lemma completes the proof of
the theorem.

Lemma IV.11. Fix i ∈ [md] and S ⊆ {i, . . . , dm},
and let i and S be their respective d-dimensional vector
representations. If i /∈ S, then h is Lipschitz. Otherwise, h
is 1

8 -far from Lipschitz.

Proof: Consider a restriction of h to a line in di-
mension j ∈ [d], that is, a univariate function h̄(xj) =
h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈
[2m] are fixed for all k ∈ [d] \ {j}. Then

h̄(xj) =
∑
k 6=j

uik(x̄k) + uij (xj)

− 1

2

(
wSj

(xj) ·
∏
k 6=j

wSk
(x̄k) + 1

)
=uij (xj)−

1

2
(±wSj

(xj) + 1) + c, (3)

where ± means “either + or −” and c is a constant
independent of xj .

Let j∗ = di/me. If j < j∗ then Sj = ∅, ij = m and h̄ =
uij − 1

2 (±1+1)+c. Since every up-down staircase function
ui is Lipschitz, and since a Lipschitz function plus a constant
function is Lipschitz, the resulting function h̄ is Lipschitz. If
j > j∗ then ij = 0, so h̄(xj) = 1− 1

2 (±wSj
(xj) + 1) + c,,

i.e., h̄ is again a Lipschitz function because it is the sum of
a Lipschitz function and a constant function.

Finally, if j = j∗ then ij = i − (j − 1)m. In this
case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then, by (3) and
Lemma III.14, h̄ is Lipschitz. Since all line restrictions of
h are Lipschitz, the overall function h is Lipschitz. Now
suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k) that
determines whether the expression ± in (3) is a plus or a
minus. By Corollary IV.5, this product evaluates to 1 for at
least half of the line restrictions h̄(xj) of h in dimension j.

For those restrictions, h̄(xj) = uij + 1
2 (wSj

+1)(xj)+c and,
since ij ∈ Sj , Lemma III.14 implies that h̄ is 1

4 -far from
Lipschitz. Thus, at least half of the line restrictions of h in
dimension j are 1/4-far from Lipschitz. Since the domains
of the line restrictions of h in dimension j partition the
domain of h, the overall function h is 1

8 -far from Lipschitz.
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