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Abstract

We consider the problem of approximating the sup-
port size of a distribution from a small number of sam-
ples, when each element in the distribution appears with
probability at least 1

n . This problem is closely related
to the problem of approximating the number of distinct
elements in a sequence of length n. For both problems,
we prove a nearly linear in n lower bound on the query
complexity, applicable even for approximation with ad-
ditive error.

At the heart of the lower bound is a construction of
two positive integer random variables, X1 and X2, with
very different expectations and the following condition
on the first k moments: E[X1]/ E[X2] = E[X2

1]/ E[X2
2] =

. . . = E[Xk
1 ]/ E[Xk

2 ]. Our lower bound method is also
applicable to other problems. In particular, it gives new
lower bounds for the sample complexity of (1) approxi-
mating the entropy of a distribution and (2) approximat-
ing how well a given string is compressed by the Lempel-
Ziv scheme.

1 Introduction

In this work we consider the following problem,
which we call DISTRIBUTION-SUPPORT-SIZE (DSS):
Given access to independent samples from a distribution
where each element appears with probability at least 1

n ,
approximate the distribution support size. This prob-
lem is closely related to another natural problem, known
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as DISTINCT-ELEMENTS (DE): Given access to a se-
quence of length n, approximate the number of distinct
elements in the sequence. Both of these fundamental
problems arise in many contexts and have been exten-
sively studied. In statistics, DSS is known as estimating
the number of species in a population (see the list of
hundreds of references in [8]). Typically, the input dis-
tribution is assumed to come from a specific family. DE
arises in databases and data mining, for example, in the
design of query optimizers and the detection of denial-
of-service attacks (see [9, 1] and references therein). Be-
cause of the overwhelming size of modern databases,
a significant effort has focused on solving DE with ex-
tremely efficient classes of algorithms: streaming algo-
rithms [2, 4, 11], which make a single pass through the
data and use very little memory, and sampling-based al-
gorithms [9, 4], which query only a small number of po-
sitions in the input.

This paper looks at the complexity of sampling-based
approximation algorithms for DSS and DE. To the best
of our knowledge, previous works consider only multi-
plicative approximation for these problems. Charikar et
al. [9] and Bar-Yossef et al. [4] prove that approximating
DE within multiplicative error α requires Ω

(
n
α2

)
queries

into the input sequence. This lower bound is tight [9].
Its proof boils down to the observation that every algo-
rithm requires Ω

(
n
α2

)
queries to distinguish a sequence

of n identical elements from the same sequence with α2

unique elements inserted in random positions. Stated in
terms of the DSS problem, the difficulty is in distinguish-
ing a distribution with a single element in its support
from a distribution with support size α2, where all but
one of the elements have weight 1/n. A good metaphor
for the distinguishing task in this argument is finding a
needle in a haystack.

This needle-in-a-haystack lower bound leaves open
the question of the complexity of DSS when the support
size is a non-negligible fraction of n. In other words,
is it possible to obtain efficient additive approximation
algorithms for DSS and DE? This work gives a strong
lower bound for the sample (and hence, time) complex-
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ity of such algorithms. Our techniques also lead to lower
bounds on the sample complexity of approximating the
compressibility of a string and the entropy of a distribu-
tion. We describe our results in more detail in the rest of
this section.

1.1 An Almost Linear Lower Bound

First we discuss how DSS and DE are related. An
instance of DSS where all probabilities are multiples of
1
n is equivalent to a DE instance that can be accessed
only by taking independent uniform samples with re-
placement. Thus, the following problem is a special case
of DSS and a restriction of DE: Given n balls, each of a
single color, approximate the number of distinct colors
by taking independent uniform samples of the balls with
replacement.

We show that this restriction of DE can be made with-
out loss of generality. In principle, an algorithm for DE is
allowed to make arbitrary adaptive queries to the input.
However, Bar-Yossef [3] shows that algorithms that (a)
take uniform random samples with replacement and (b)
see the input positions corresponding to the samples, are
essentially as good for solving DE as general algorithms.
We strengthen his result to algorithms that sample uni-
formly with replacement but are oblivious to the input
positions corresponding to the samples. Hence, to obtain
lower bounds for both DSS and general DE, it suffices to
prove bounds for the restriction of DE above. From this
point on we refer interchangeably to the two variants of
DE and use the terms “balls” for the positions/samples
and “colors” for distinct elements.

Main lower bound. We prove that even if we al-
low an additive error, so that the multiplicative lower
bound [9, 4] does not apply, approximating DE (and
hence DSS) requires an almost linear number of queries.
Specifically, n1−o(1) queries are necessary to distinguish
an input with n

11 colors from an input with n
d colors, for

any d = no(1). In particular, obtaining additive error n
12

requires n1−o(1) samples. In the above statements and
in all that follows, distinguishing means distinguishing
with success probability at least 2/3.

Such a strong lower bound for an additive approx-
imation may seem surprising. It is easy to prove an
Ω (

√
n) bound on the query complexity of approximat-

ing DE with an additive error (recall that we may as-
sume without loss of generality that the algorithm sam-
ples uniformly with replacement): with fewer queries it
is hard to distinguish an instance with n colors, where
each color appears once, from an instance with n

2 col-
ors, where each color appears twice. In both cases an
algorithm taking o (

√
n) samples is likely to see only

unique colors (no collisions). With Ω (
√

n) samples,
2-way collisions become likely even if all colors ap-
pear only a constant number of times in the input. In
general, with Ω

(
n1−1/k

)
samples, k-way collisions be-

come likely. Intuitively, it seems that one should be able
to use statistics on the number of collisions to efficiently
distinguish an input with n

d1
colors from an input with

n
d2

colors, where d1 and d2 are different constants. Sur-
prisingly, in our case, looking at k-way collisions, for
constant k (and even k that is a slowly growing function
of n), does not help.

1.2 Techniques

Moment conditions and frequency variables. To
prove our lower bound, we construct two input instances
that are hard to distinguish, where the inputs have n

d1
and

n
d2

colors, respectively, and d2 � d1. The requirements
on the number of colors imply that, unlike in the needle-
in-a-haystack lower bound of [9, 4], the instances being
distinguished must have linear Hamming distance. Pre-
vious techniques do not apply here, and we need a more
subtle argument to show that they are indistinguishable.
At the heart of the construction are two positive inte-
ger random variables, X1 and X2, that correspond to the
two input instances. These random variables have very
different expectations (which translate to different num-
bers of colors) and many proportional moments, that is
E[X1]
E[X2]

= E[X2
1]

E[X2
2]

= · · · = E[Xk−1
1 ]

E[Xk−1
2 ]

, for some k = ω(1).
The construction of these random variables proceeds by
formulating the problem in terms of polynomials and
bounding their coefficients, and it is the most technically
delicate step of our lower bound (see Section 4).

Let F` be the number of `-way collisions, that is, the
number of colors that appear exactly ` times in the sam-
ple. As explained in the discussion of the main lower
bound, computing F` for small ` gives a possible strat-
egy for distinguishing two DE instances. Intuitively, we
will ensure that this strategy fails for the instances we
construct, by requiring that the expected value of F`

is the same for both instances. To this end, for each
instance of DE we define its frequency variable to be
the outcome of a mental experiment where we choose a
color uniformly at random and count how many times it
occurs in the instance. We prove that the expectation of
F` is the same for two instances if their frequency vari-
ables X1 and X2 have at least ` proportional moments.
Thus, the construction mentioned above leads to a pair
of instances where F` has the same expectation for small
values of `.
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Instances that have frequency variables with pro-
portional moments are indistinguishable. Our sec-
ond technical contribution is to show that constructing
frequency variables with proportional moments is suffi-
cient for proving lower bounds on sample complexity:
namely, the corresponding instances are indistinguish-
able given few samples. (This gives a general technique
for proving lower bounds on sample complexity: if the
quantity to be approximated can be expressed in terms
of the distribution of an input’s frequency variable, then
it suffices to construct two integer variables with pro-
portional moments for which the quantity differs sig-
nificantly. We illustrate this generality by also deriving
bounds for entropy estimation, discussed in Section 1.3.)

To prove a lower bound, it suffices to consider
algorithms that have access only to the histogram
(F1,F2,F3, . . . ) of the selected sample. Namely, the al-
gorithm is only given the number of colors in the sam-
ple that appear once, twice, thrice, etc. The restriction to
histograms was also applied in [7, 6]. The difficulty of
proving indistinguishability based on proportional mo-
ments lies in translating guarantees of equal expecta-
tions of the variables F`, to a guarantee of close distri-
butions on the vectors (F1,F2,F3, . . . ). The main idea
is to show that (a) the variables F1, ...,Fk−1 can each
be faithfully approximated by a Poisson random vari-
able with the same expectation, and (b) they are close
to being independent. The explanation for the latter,
counter-intuitive statement comes from the following
experiment: consider many independent rolls of a biased
k-sided die. If one side of the die appears with proba-
bility close to 1, then the variables counting the num-
ber of times each of the other sides appears are close
to being independent. In our scenario, side ` of the die
(for 0 ≤ ` < k) occurs when a particular color appears
` times in the sample. Any given color is most likely
not to appear at all, so side 0 of the die is overwhelm-
ingly likely and the counts of the remaining outcomes
are nearly independent.

The proofs use a technique called Poissoniza-
tion [15], in which one modifies a probability experi-
ment to replace a fixed quantity (e.g. the number of
samples) with a variable one which follows a Poisson
distribution. This breaks up dependencies between vari-
ables, and makes the analysis tractable.

1.3 Results for Other Problems

As shown in [13], DE is closely related to the problem
of approximating the compressibility of a string accord-
ing to the Lempel-Ziv compression scheme, defined in
[17]. In conjunction with the reduction in [13], the lower
bound we give for DE implies a lower bound on the com-

plexity of approximating compressibility according to
this scheme. The resulting lower bound for compress-
ibility shows that the algorithm given in [13] cannot be
significantly improved.

Furthermore, our lower bound method can be ex-
tended to other problems where one needs to compute
quantities invariant under the permutation of the balls
and the colors. In particular, as shown in Section 7,
our method gives a lower bound of Ω

(
n

2
6α2−3+o(1)

)
on

approximating the entropy of a distribution over n ele-
ments to within a multiplicative factor of α. In particu-
lar, when α is close to 1, this bound is close to Ω(n2/3).
It can be combined with the Ω

(
n

1
2α2

)
bound in [5] to

give Ω
(

n
max

{
1

2α2 , 2
6α2−3+o(1)

})
.

2 Main Result

As noted in the introduction, DE with algorithms that
sample uniformly with replacement is a special case
of DSS where all probabilities are integer multiples of
1
n . Hence, Theorem 2.1, stated next, directly implies a
lower bound for DSS as well.

Theorem 2.1 For all B ≤ n1/4/
√

log n, the following

holds for k = k(n, B) =
⌊√

log n
log B+ 1

2 log log n

⌋
. Every

algorithm for DE needs to perform Ω
(
n1− 2

k

)
queries

to distinguish inputs with at least n
11 colors1 from inputs

with at most n
B colors.

The next corollary provides an important special case:

Corollary 2.2 For all B = no(1), distinguishing inputs
of DE with at least n/11 colors from inputs with at most
n/B colors requires n1−o(1) queries.

To prove Theorem 2.1 we construct a pair of DE in-
stances that are hard to distinguish (though they contain
a very different number of colors). Section 3 shows that
to obtain a lower bound on DE it suffices to consider al-
gorithms that take uniform samples with replacement.
In Section 4, we construct integer random variables that
satisfy the moments condition, as described in the in-
troduction. Section 5 shows that frequency variables
with proportional moments lead to indistinguishable in-
stances of DE. Section 6 culminates in the proof of The-
orem 2.1. Finally, in Section 7, we apply our techniques
to the sample complexity of approximating the entropy.

1We did not try to optimize the constants (in particular, 11).
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3 Algorithms with Uniform Samples

In this section we show that restricted algorithms that
take samples uniformly at random with replacement are
essentially as good for DE as general algorithms.

First, consider algorithms that take their samples uni-
formly at random without replacement from [n]. The
following lemma, appearing in Bar-Yossef’s thesis [3,
Page 88], shows that such algorithms are essentially as
good for solving DE as general algorithms.

Lemma 3.1 ([3]) For any function invariant under per-
mutations of input elements (ball positions), any algo-
rithm that makes s queries can be simulated by an algo-
rithm that takes s samples uniformly at random without
replacement and has the same guarantees on the output
as the original algorithm.

The main idea in the proof of the lemma is that the new
algorithm, given input w, can simulate the old algorithm
on π(w), where π is a random permutation of the input,
dictated by the random samples chosen by the new al-
gorithm. Since the value of the function (in our case,
the number of colors) is the same for w and π(w), the
guarantees on the old algorithm hold for the new one.

Next, we would like to go from the algorithms that
sample uniformly without replacement to the ones that
sample uniformly with replacement and find out the cor-
responding color, but not the input position that was
queried. Bar-Yossef proved that for all functions in-
variant under permutations, algorithms that take O(

√
n)

uniform samples without replacement can be simulated
by algorithms that take the same number of samples
with replacement. The idea is that with so few sam-
ples, an algorithm sampling with replacement is likely
to never look at the same input position twice. To prove
a statement along the same lines for algorithms that take
more samples, Bar-Yossef allows them to see not only
the color of each sample, but also which input position
was queried (this allows the algorithm to ignore replaced
samples). One can avoid giving this extra information to
an algorithm for DE, with a slight loss in the approxima-
tion factor.

Definition 3.2 (Uniform algorithm) An algorithm is
uniform if it takes independent samples with replace-
ment and only gets to see the colors of the samples, but
not the input positions corresponding to them.

Lemma 3.3 Let α = α(n), such that
√

0.1 · α ≥ 1.
For every algorithm A that makes s queries, and pro-
vides, with probability at least 11

12 , an approximation for
DE with multiplicative error (

√
0.1 · α), there is a uni-

form algorithm A′ that takes s samples and provides,

with probability at least 2
3 , an approximation for DE with

multiplicative error α.

Proof: Conduct the following mental experiment: let
algorithm A′ generate an instance of DE by taking n
uniform samples from its input and recording their col-
ors. If there are C = C(n) colors in the input of A′,
the generated instance has at most C colors. However,
some of the colors might be missing. One can show [14]
that with probability ≥ 3

4 at least 0.1 · C colors appear
in the instance. That is, with probability ≥ 3

4 , the in-
stance generated in our mental experiment has between
0.1 · C and C colors. When A is run on that instance,
with probability ≥ 11

12 , it outputs an answer between
0.1·C√
0.1·α =

√
0.1·Cα and

√
0.1·α·C. Thus, ifA′ runsA on

this instance and multiplies its answer by
√

10, it will get
an α-multiplicative approximation to C with probability
≥ 1 − 1

4 −
1
12 ≥ 2

3 , as promised. The final observation
is that since each color in the instance is generated in-
dependently, A′ can run A on that instance, generating
colors on demand, resulting in s samples instead of n.

Rephrasing Lemma 3.3, using a few details from the
reduction in the proof, we obtain Lemma 3.4.

Lemma 3.4 If every uniform algorithm needs at least
s queries to distinguish DE instances with at least C1

colors from DE instances with at most C2 colors, then
every algorithm needs Ω(s) queries to distinguish DE
instances with at least 0.1 ·C1 colors from DE instances
with at most C2 colors.

4 Frequency Variables and the Moments
Condition

This section defines and constructs the frequency
variables needed for the main lower bound, as described
in the introduction. To begin, note that permuting color
names in the input (e.g., painting all pink balls orange
and vice versa) clearly does not change the number of
colors. Intuitively, all colors play the same role, and the
only useful information in the sample is the number of
colors that appear exactly once, exactly twice, etc. This
motivates the following definition.

Definition 4.1 (Collisions and Histograms) Consider
s samples taken by an algorithm. An `-way collision
occurs if a color appears exactly ` times in the sample.
For ` = 0, 1, · · · , s, let F` be the number of `-way
collisions in the sample. The histogram F of the sample
is the vector (F1, · · · , Fs), indicating for each non-zero
` how many colors appear exactly ` times in the sample.
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One can prove that any uniform algorithm for DE can
be simulated by a uniform algorithm that only sees a
histogram of the sample. (We omit the proof since it
follows from the formal argument further below).

To prove our lower bound, we will define a pair of DE
instances that contain a significantly different number of
colors, but for which the corresponding distributions on
histograms are indistinguishable. First, observe that if
the algorithm takes o

(
n1−1/k

)
samples, and each color

appears at most a constant number of times, then with
high probability no k-way collisions occur. Hence, it
suffices to restrict our attention to `-way collisions for
` < k. Next we consider the following notion, closely
related to `-way collisions: A monochromatic `-tuple is
a set of ` samples that have the same color. Notice that
the number of k-way collisions can be obtained from the
number of monochromatic `-tuples for all k ≥ ` by the
Inclusion-Exclusion Principle. Therefore, if for two in-
stances, the expected number of monochromatic `-tuples
is the same for all `, then so is the expected number of
`-way collisions. In this section, we show how to con-
struct pairs of instances with the same expectations on
the number of monochromatic `-tuples, for every ` < k.
(Section 5 proves that equal expectations imply that the
distributions themselves are close.) To express require-
ments on the instances concisely, we define, for each
instance of DE, a corresponding frequency variable.

Definition 4.2 (Frequency Variable) Consider an in-
stance of DE with n

d colors. Group colors into types
according to how many times they appear in the input:
say, pi fraction of the colors are of type i and each of
them appears ai times. Consider a mental experiment
where we choose a color uniformly at random and count
how many times it occurs in the instance. The frequency
variable X is a random variable representing the num-
ber of balls of a color chosen uniformly at random, as
described in the experiment.

By definition, Pr[X = ai] = pi. Since, on average, each
color appears d times, E[X] =

∑
i piai = d. Con-

versely, for any integer random variable X which takes
value ai with probability pi, if the numbers pi

n
d are in-

tegers, we can easily construct a DE instance with fre-
quency variable X.

Suppose an algorithm takes s uniform samples with
replacement from an instance with n

d colors, as de-
scribed in Definition 4.2. The probability that a par-
ticular `-tuple is monochromatic is

∑
i pi

n
d

(
ai

n

)`
, since

there are pi
n
d colors of type i and each gets sampled with

probability ai

n . The expected number of monochromatic

`-tuples in s samples is thus(
s

`

)∑
i

pi
n

d

(ai

n

)`

=
(

s

`

)
1

n`−1

1
d

∑
i

pia
`
i

=
(

s

`

)
1

n`−1

E[X`]
E[X]

.

The last equality holds because E[X] = d and Pr[X =
ai] = pi. We consider s for which this expression goes
to 0 when ` is at least some fixed k. We want to construct
a pair of instances such that for the remaining ` (which
are smaller than k), the expected number of monochro-
matic `-tuples is the same. This corresponds to making
E[X`]
E[X] the same for both instances. This, in turn, leads to

the following condition on the corresponding frequency
variables, which is the core of our lower bound.

Definition 4.3 (Proportional Moments) Random vari-
ables X̂ and X̃ have k − 1 proportional moments if
E[X̃]
E[X̂]

=
E[X̃2]
E[X̂2]

=
E[X̃3]
E[X̂3]

= · · · = E[X̃k−1]
E[X̂k−1]

.

We will see in Section 5 that when two frequency
variables have k − 1 proportional moments, the corre-
sponding instances are indistinguishable by algorithms
that take (roughly) fewer than n1− 1

k samples. Addition-
ally, we need that the instances have very different num-
bers of distinct colors. This corresponds to ensuring that
the frequency variables have different expectations.

Definition 4.4 (Moments Condition) Random vari-
ables X̂ and X̃ satisfy the moments condition with
parameters k and B if X̂ and X̃ have k− 1 proportional

moments and
E[X̃]
E[X̂]

≥ B.

Theorem 4.5 (R.V.’s Satisfying the Moments Condi-
tion) For all integers k > 1 and B > 1, there ex-
ist random variables X̂ and X̃ over positive integers
a0 < a1 < · · · < ak−1 that satisfy the moments con-
dition with parameters k and B. Moreover, for these
variables ai = (B + 3)i, E[X̃] > B and E[X̂] < 1 + 1

B .

To reduce notation, in the rest of the paper, all vari-
ables pertaining to the first instance in the pair of in-
stances that are hard to distinguish, are marked by a hat
(̂ ) and those pertaining to the second, by a tilde (̃ ). In
statements relevant to both instances, the corresponding
variables without hat or tilde are used.

Proof of Theorem 4.5. The rest of the section is de-
voted to this proof, which is comprised of three parts:
an overview, the construction, and its analysis.
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Overview. Let C = E[X̃]/E[X̂]. Then the mo-
ments condition (Definition 4.4) can be restated as
C ≥ B and (E[X̃],E[X̃2], . . . ,E[X̃k−1]) = C ·
(E[X̂],E[X̂2], . . . ,E[X̂k−1]). Recall that the supports of
X̂ and X̃ are both contained in {a0, . . . , ak−1}. The
main step in our construction is to set aj = aj for
an appropriate a > 1. Let pi = Pr[X = ai], and
~p = (p0, . . . , pk−1). Let V denote the (k − 1)× k Van-
dermonde matrix satisfying Vi,j = (aj)i. Then the vec-
tor (E[X],E[X2], . . . ,E[Xk−1]) can be represented as the
product V · ~p. This gives yet another way to formulate
the moments condition: V (C ·~̂p−~̃p) = ~0. For a fixed a,
there is a unique (up to a factor) non-zero vector ~u sat-
isfying V · ~u = ~0. To obtain probability vectors ~̂p and ~̃p
from ~u, we let positive coordinates ui become C · p̂i and
negative ui become −p̃i, divided by the corresponding
normalization factors. This defines distributions X̂ and
X̃, for each a.

To find an appropriate choice of a and to demonstrate
the required properties of our construction, we explic-
itly compute vector ~u that defines the distributions. The
main idea behind this step is to view ~u as coefficients of
a polynomial. Let f(t) = tk−1 + uk−2t

k−2 + . . . + u0

be the unique non-zero polynomial that vanishes on
a, a2, . . . , ak−1. Then f(t) =

∏k−1
i=1 (t − ai). Because

the set of zeros of f is a geometric sequence, we can
show that the coefficients of f also grow rapidly. This
enables us to demonstrate that C > a−3, which implies
that it is enough to set a = B + 3.

Construction. We start by computing the coefficients
of the polynomial f(t), described in the overview. For
every 0 ≤ i ≤ k − 1, let si(y1, . . . , yk−1) be the ith
symmetric function

si(y1, . . . , yk−1) =
∑

T⊆[k−1]
|T |=i

∏
j∈T

yj .

E.g., s2(y1, . . . , yk−1) = y1y2 + y1y3 + y2y3 if k = 4
and i = 2. In general, s0 = 1 and sk−1(y1, ..., yk−1) =
y1 · . . . · yk−1. As explained in the overview, the sup-
ports of the two distributions we construct are contained
in the set {1, a, a2, . . . , ak−1}, where a is a positive in-
teger parameter. Define si(a) def= si(a, a2, . . . , ak−1).
Following our previous example, s2(a) = a3 + a4 + a5

and s3(a) = a6. For our analysis we need the following
bounds on si(a)’s in terms of sk−1(s), proved in [14]:

Claim 4.6 For all a > 3,

1. sk−2(a) > sk−1(a)/a.

2. sk−i(a) < sk−1(a)

ab
i−1
2 c(a−1)i−1

for all 2 ≤ i ≤ k − 1.

Consider the polynomial f(t) =
∏k−1

i=1 (t − ai). It
is easy to see that f(t) = (−1)k−1 ·

∑k−1
i=0 (−1)i ·

sk−1−i(a) · ti. The probability of each element in our
distributions is determined by the corresponding coeffi-
cient of f . We define ∀i, 0 ≤ i ≤ k − 1:

Pr[X̂ = ai] =

{
sk−1−i(a)/N̂(a) for even i

0 for odd i
(1)

Pr[X̃ = ai] =

{
0 for even i

sk−1−i(a)/Ñ(a) for odd i
(2)

where N̂(a) def=
b(k−1)/2c∑

j=0

sk−1−2j(a) and Ñ(a) def=

b(k−2)/2c∑
j=0

sk−2−2j(a) are normalization factors.

Analysis. After proving the two auxiliary lemmas,
we use them to complete the proof of Theorem 4.5.
Lemma 4.7 shows that the distributions X̂ and X̃ have k−
1 proportional moments (see Defition 4.3). Lemma 4.8
bounds E[X̃] and E[X̂].

Lemma 4.7 Let C
def= N̂(a)/Ñ(a). Then C · E[X̂`] =

E[X̃`] for ` = 1, . . . , k − 1.

The proof easily follows from the definition of X̂ and X̃.

Lemma 4.8 For all a > 3,

(1) E[X̂] < 1 +
1

a− 3
; (2) E[X̃] > a− 2 .

Proof: By definition of X̂,

E[X̂] =
1

N̂(a)
·
b(k−1)/2c∑

j=0

sk−1−2j(a)a2j .

By Claim 4.6, Item (2),

E[X̂] <
sk−1(a)
N̂(a)

·

1 +
b(k−1)/2c∑

j=1

a2j

aj(a− 1)2j


<

sk−1(a)
N̂(a)

·

1 +
b(k−1)/2c∑

j=1

1
(a− 2)j


<

sk−1(a)
N̂(a)

·
(

1 +
1

a− 3

)
< 1 +

1
a− 3

.
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To bound E[X̃] from below, we first bound Ñ(a) from
above. Recall that Ñ(a) =

∑b(k−2)/2c
j=0 sk−2−2j(a). By

Claim 4.6, Item (2),

Ñ(a) < sk−1(a) ·
b(k−2)/2c∑

j=0

1
aj(a− 1)2j+1

< sk−1(a) ·
(

1
a− 1

·
(

1 +
1

a(a− 1)2 − 1

))
< sk−1(a)/(a− 2).

Since X̃ takes the value a with probability
sk−2(a)/Ñ(a),

E[X̃] >
sk−2(a) · a

Ñ(a)
>

sk−2(a) · a
sk−1(a)/(a− 2)

> a− 2 .

The last inequality follows from Claim 4.6, Item (1).
The proof of Lemma 4.8 is completed.

It remains to find, for every B > 1, an a such that
E[X̃]/ E[X̂] ≥ B. By Lemma 4.8, E[X̃]

E[X̂]
> a−2

1+1/(a−3) =

a−3. Thus, if we take a = B +3 then E[X̃]/ E[X̂] > B,
E[X̂] < 1 + 1

B and E[X̃] > B. This completes the con-
struction and the proof of Theorem 4.5.

5 Poisson Algorithms

Even though uniform algorithms are much simpler
than general algorithms, they still might be tricky to an-
alyze because of dependencies between the numbers of
balls of various colors that appear in the sample. Batu et
al. [5, conference version] noted that such dependencies
are avoided when an algorithm takes a random num-
ber of samples according to a Poisson distribution. The
Poisson distribution Po(λ) takes the value x ∈ N with
probability eλλx/x!. The expectation and variance of
Po(λ) are both λ (for the proof see, e.g., [10]).

Definition 5.1 We call a uniform algorithm Poisson-s
if the number of samples it takes is a random variable,
distributed as Po(s).

From this point on we consider Poisson algorithms that
get only the histogram of the sample as their input. This
is justified by Lemma 5.2, stated next. Batu et al. [5]
proved a variant of Lemma 5.2 in the context of entropy
estimation of distributions. However, the statements and
the proofs generalize to estimating symmetric functions
over strings and, in particular, to DE.

Recall that two random variables X and Y over a do-
main S have statistical difference δ if maxS′⊂S |Pr[X ∈
S′]− Pr[Y ∈ S′]| = δ.

Lemma 5.2 ( generalizes conference version of [5])

(a) Poisson algorithms can simulate uniform algo-
rithms. Specifically, for every uniform algorithm
A that uses at most s

2 samples, there is a Poisson-s
algorithm A′ such that for every input w, the statis-
tical difference between the distributions A(w) and
A′(w) is o(1/s).

(b) If the input to DE contains b balls of a particular
color, then the number of balls of that color seen
by a Poisson-s algorithm is distributed as Po( b·s

n ).
Moreover, it is independent of the number of balls
of all other colors in the sample.

(c) For any function invariant under permutations of
the alphabet symbols (color names), any Poisson
algorithm can be simulated by an algorithm that
gets only the histogram of the sample as its input.
The simulation has the same approximation guar-
antees as the original algorithm.

The independence of the number of occurrences of
different colors in the sample (Item (b)) greatly simpli-
fies the analysis of Poisson algorithms.

As we explained, we prove Theorem 2.1 by con-
structing a pair of instances that are hard to distinguish.
They correspond to the pair of frequency variables sat-
isfying the moments condition that we constructed in
the proof of Theorem 4.5. Defining DE instances based
on frequency variables is straightforward if we make
an integrality assumption described below. Specifically,
for k > 1 let a0 < a1 < . . . < ak−1 be inte-
gers, and let X be a random variable over these integers
with Pr[X = ai] = pi. Then E[X] =

∑k−1
i=0 pi · ai.

Based on X, we define a DE instance DX of length n
(that is, a string in [n]n) that contains n

E[X] colors. For
i = 0, . . . , k−1, DX contains npi

E[X] colors of type i, where
each color of type i appears ai times. (The full version
of this paper [14] contains a general treatment, without
the assumption that npi

E[X] is an integer.) By Lemma 5.2,
the number of times a given color of type i is seen by a
Poisson-s is distributed according to Po(ais

n ).
Our next main building block in the proof of Theo-

rem 2.1, is the theorem stated below. It shows that if
distributions X̂ and X̃ over integers have k − 1 propor-
tional moments, then the corresponding instances of DE,
DX̂ and DX̃, cannot be distinguished by a Poisson algo-
rithm that looks only at histograms and uses fewer than
about n1− 1

k samples. In fact, the bound is more com-
plicated, since it depends on how the maximum value,
ak−1, in the support of X̂ and X̃ varies as n increases.
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Theorem 5.3 (Distinguishability by Poisson Algo-
rithms) Let X̂, X̃ be random variables over positive in-
tegers a0 < a1 < . . . < ak−1 which have k − 1 pro-
portional moments. For any Poisson algorithm A that
looks only at histograms and takes s ≤ n

2·ak−1
samples

in expectation,
∣∣∣Pr[A(DX̂) = 1]− Pr[A(DX̃) = 1]

∣∣∣
= O

(
k · ak−1 · s

n
+

k⌊
k
2

⌋
! ·
⌈

k
2

⌉
!
· ak−1

k−1 ·
sk

nk−1

)
.

The generality of this bound is required to prove The-
orem 2.1. However, the following simpler corollary is
sufficient to show that algorithms for DE with additive
approximation guarantees require a near-linear number
of samples.

Corollary 5.4 Let X̂ and X̃ be fixed (w.r.t. n) random
variables which have k − 1 proportional moments. If
s = o(n1− 1

k ), then for any Poisson-s algorithm A, we
have |Pr[A(DX̂) = 1]− Pr[A(DX̃) = 1]| = o(1).

We now turn to proving Theorem 5.3. As in Defini-
tion 4.1, for ` = 0, 1, . . . , s, let F` be a random variable
representing the number of `-way collisions a Poisson-s
algorithm sees, and let F = (F1,F2,F3 . . . ) be the cor-
responding histogram. We can restate Theorem 5.3 in
terms of the statistical difference between histogram dis-
tributions. Recall that random variables X and Y have
statistical difference at most δ if and only if for every
algorithm A,

∣∣∣Pr[A(X) = 1]− Pr[A(Y ) = 1]
∣∣∣ ≤ δ.

Theorem 5.5 (Distinguishability by Poisson Algo-
rithms, restated) For s ≤ n

2·ak−1
, the statistical dif-

ference between the histograms (F̂1, F̂2, F̂3, . . . ) and
(F̃1, F̃2, F̃3, . . . ) is

O

(
k · ak−1 · s

n
+

k⌊
k
2

⌋
! ·
⌈

k
2

⌉
!
· ak−1

k−1 ·
sk

nk−1

)
.

For the remainder of this section, assume s ≤ n
2·ak−1

.
The proof of Theorem 5.5 relies on the three follow-
ing lemmas. Lemma 5.6 states that `-way collisions are
very unlikely for ` ≥ k, when s is sufficiently small.
Lemma 5.7 shows that for both distributions DX̂ and
DX̃, the distribution on histograms is close to the prod-
uct of its marginal distributions, that is, the components
of the histogram are close to being independent. Finally,
Lemma 5.10 shows that the number of k-way collisions
is distributed almost identically under DX̂ and DX̃.

Lemma 5.6 For both distributions DX̂ and DX̃, the
probability of a collision involving k > 1 or more balls
is at most

δ1 = O

(
ak−1

k−1

k!
· sk

nk−1

)
.

Proof: Consider any particular color of type i. The
probability that the algorithm sees k or more balls of that
color is Pr[Po(ais/n) ≥ k] ≤ 1

k! (
ais
n )k. Let Ci = npi

E[X]

be the number of colors of type i. Taking a union bound
over all colors, we can bound the probability that some
color appears k or more times. We sum first over types
i, and then over colors of a given type:

k−1∑
i=0

Ci ·
1
k!

(ais

n

)k

=
sk

k! · nk−1
·

k−1∑
i=0

Ci · ak
i

n

<
sk

k! · nk−1
·

k−1∑
i=0

pia
k
i

E[X]
=

sk

k! · nk−1
· E[Xk]

E[X]
. (3)

Since ak−1 is the largest value that X can take, E[Xk] ≤
ak−1

k−1 E[X]. Combining this with the bound above, (3),
completes the proof.

Let X ≈δ Y denote that the statistical difference be-
tween random variables X and Y is bounded by δ.

Lemma 5.7 For both distributions DX̂ and DX̃,
F1, . . . ,Fk−1 are close to independent, that is,
(F1, . . . ,Fk−1) ≈δ2 (F′1, . . . ,F

′
k−1), where the vari-

ables F′` are independent, for each ` the distributions

of F` and F′` are identical, and δ2 ≤
k · ak−1 · s

n
.

The proof of Lemma 5.7 relies on the following two
claims. Claim 5.8 states that the Poisson distribution
is a good approximation to the binomial distribution
Bin(m, p) when the parameter p is small. Recall that
Bin(m, p) represents the number of heads in a sequence
of m coin flips where the probability of heads is p.
Claim 5.9 considers many independent rolls of a biased
k-sided die. It shows that if one side of the die appears
with probability close to 1, then the variables counting
the number of times each of the other sides appears are
close to independent.

Claim 5.8 ([12, 16]) The statistical difference between
Bin(m, p) and Po(mp) is at most p.

Claim 5.9 Consider a k-sided die, whose sides are
numbered 0, . . . , k − 1, where side ` has probability
q` and q0 ≥ 1/2. Let Z0, . . . , Zk−1 be random vari-
ables that count the number of occurrences of each side
in a sequence of independent rolls. Let Z ′

1, . . . , Z
′
k−1
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be independent random variables, where for each `,
the variable Z ′

` is distributed identically to Z`. Then
(Z1, ..., Zk−1) ≈δ4 (Z ′

1, . . . , Z
′
k−1) for δ4 = 2(1− q0).

Proof: Suppose the die is rolled m times. Let Ẑ count
the number of times that side 0 does not come up, i.e.,
Ẑ = m − Z0 =

∑k−1
`=1 Z`. This count follows a bino-

mial distribution Ẑ ∼ Bin(m, 1 − q0). By Claim 5.8,
the statistical difference between Bin(m, 1 − q0) and
Po (m(1− q0)) is at most 1− q0.

Conditioned on a fixed value of Ẑ, the variables
Z1, ..., Zk−1 follow a multinomial distribution. By
Lemma 5.2, if Ẑ itself is chosen according to Po(m(1−
q0)), and Z1, ..., Zk−1 are resampled according to this
value of Ẑ, the resulting distribution on Z1, ..., Zk−1

is a vector of independent Poisson random variables
distributed according to Po(mq1), ...,Po(mqk−1). The
statistical difference between the vector of resampled
(Poissonized) random variables and the original vec-
tor is no greater than the statistical difference between
Po(m(1 − q0)) and the original distribution of Ẑ. For
each `, Po(mq`) approximates the original distribution
Bin(m, q`) within error q`. The overall statistical dis-
tance between Z1, ..., Zk−1 and independent realiza-
tions Z ′

1, ..., Z
′
k−1 is thus at most (1− q0)+

∑k−1
`=1 q` =

2(1− q0).

Proof of Lemma 5.7. We can represent F` as a sum
F` = F

(1)
` + · · · + F

(k)
` , where F

(i)
` is the number of `-

way collisions among colors of type i. Since the types
are independent, it suffices to show that for each i, the
variables F

(i)
1 , . . . ,F

(i)
k−1 are close to being independent.

We can then sum the distances over the types to prove
the lemma.

Let F
(i)
0 denote the number of colors of type i that oc-

cur either 0 times, or k or more times, in the sample. The
vector F

(i)
0 ,F

(i)
1 , . . . ,F

(i)
k−1 follows a multinomial distri-

bution. It counts the outcomes of an experiment in which
Ci independent, identical dice are rolled, and each one
produces outcome ` with probability e−λiλ`

i/`!, where
λi = ais/n for ` ∈ [k − 1], and outcome 0 with the
remaining probability. On each roll, outcome 0 occurs
with probability at least e−λi ≥ 1− λi ≥ 1/2.

Claim 5.9 shows that when one outcome occupies
almost all the mass in such an experiment, the counts
of the remaining outcomes are close to independent —
within distance O(λi). Summing over all types, the dis-
tance of F1, . . . ,Fk−1 from independent is O (

∑
i λi) =

O
(

kak−1s
n

)
.

We now give the third lemma needed for the proof of
Theorem 5.5.

Lemma 5.10 For ` = 1, ..., k − 1, F̂` ≈δ3 F̃` where

δ3 = O

(
k · ak−1 · s

n
+

(ak−1
n

)k−1 · sk⌊
k
2

⌋
! ·
⌈

k
2

⌉
!

)
.

The fact that X̂ and X̃ have proportional moments is
used in the proof of Lemma 5.10 (the other two lemmas
hold as long as the ai’s are bounded). The main idea
of the proof is to approximate F` by a Poisson random
variable with the same expectation, and to show that the
moment conditions imply that F̂` and F̃` have similar
(though not equal) expectations. The proof is quite tech-
nical (see the full version of this paper [14]).

Given the three lemmas above, we can easily prove
the main result of the section:

Proof of Theorem 5.5. The proof follows by a hybrid
argument. Consider a chain of distributions “between”
the two histograms of Theorem 5.5. Starting from the
“hat” histogram, first replace all counts of collisions
greater than k by 0, and then replace each count F̂` with
an independent copy F̂′` for ` ∈ [k−1], as in Lemma 5.7.
Next, change each F̂′` with a corresponding F̃′`. Finally,
replace these independent F̃′`s with the actual variables
F̃` and add back the counts of the collisions involving
more than k variables to obtain the “tilde” histogram.
The resulting chain of distributions has k + 3 steps, and
looks as follows (here δ1, δ2 and δ3 are as defined in
Lemmas 5.6, 5.7 and 5.10, respectively):

(F̂1, . . . , F̂k−1, F̂k, F̂k+1, . . . )
≈δ1 (F̂1, . . . , F̂k−1, 0, 0, . . . )
≈δ2 (F̂′1, . . . , F̂′k−1, 0, 0, . . . )
≈δ3 (F̃′1, . . . , F̂′k−1, 0, 0, . . . )

...
≈δ3 (F̃′1, . . . , F̃′k−1, 0, 0, . . . )
≈δ2 (F̃1, . . . , F̃k−1, 0, 0, . . . )
≈δ1 (F̃1, . . . , F̃k−1, F̃k, F̃k+1, . . . )

By the triangle inequality, the sum of the statistical dif-
ferences between consecutive distributions in the chain
is a bound on the total statistical difference:

2 · δ1 + 2 · δ2 + (k − 1) · δ3

= O

(
1

k!
·
(ak−1

n

)k−1

· sk +
k · ak−1 · s

n

+ k · k · ak−1 · s
n

+
k⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1

· sk

)
.

The first and second terms are negligible given the oth-
ers. Removing them yields the claimed bound.
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6 Proof of Main Lower Bound

We now prove the main lower bound (Theorem 2.1)
by combining the construction of distributions satisfying
the moments condition (Theorem 4.5) with the bound on
distinguishability by Poisson algorithms (Theorem 5.3)
and the reductions to uniform algorithms (Lemma 3.4),
and to Poisson algorithms (Lemma 5.2).

Recall that our goal is to give a lower bound on the
number of queries required for a general algorithm for
DE to distinguish inputs with at least n/11 colors from
inputs with at most n/B colors (for B > 11). By com-
bining Lemmas 5.2 and 3.4 it suffices to give a lower
bound on s for a Poisson-s algorithm that uses only the
histogram of the samples and distinguishes inputs with
at least 10

11n colors from inputs with at most n/B colors
(the main source of loss is Lemma 3.4). Details follow.

Let X̂ and X̃ obey the moments condition with param-
eters k and B, and let DX̃ and DX̂ be the corresponding
DE instances. By Theorem 4.5 these instances have at
least n(1 − 1

B ) > 10
11n and at most n/B colors, respec-

tively. (Here we continue to assume for simplicity that
npi

E[X] is an integer for all i and both distributions.) We
now turn to bounding the statistical difference of the cor-
responding histogram distributions.

Consider any Poisson algorithm A that looks only at
histograms and takes s

2 samples. (The choice of s
2 rather

than s samples is made for the convenience of the anal-
ysis). Recall that Theorem 4.5 states that there exist X̂
and X̃ such that ak−1 = (B + 3)k−1 < (B + 3)k. We
assume that this is in fact the case. By substituting this
bound in Theorem 5.3, we get:∣∣∣Pr[A(DX̂) = 1]− Pr[A(DX̃) = 1]

∣∣∣
= O

(
k·(B+3)k·s

n + k

b k
2 c!·d k

2 e!
· (B+3)k(k−1)·sk

nk−1

)
. (4)

Set k and s as functions of B so that the error term in
Equation (4) is o(1). Given B, define q by the equal-

ity B = log(n)q. Set k =
⌊√

log(n)

(q+ 1
2 ) log log(n)

⌋
, and

s =
⌊
n1− 2

k

⌋
. To ensure s ≥ 1, we need k > 2, so we

restrict q to be 0 < q < log n
4 log log n − 1

2 . In particular, B

is at most n
1
4 /
√

log n. To make the calculations easier,
assume n > 16, so that k <

√
log n. We handle the two

summands in Equation (4) separately. By substituting k,
s, and B in the first summand, k·(B+3)ks

n , one can show

that it is at most 2−
√

1
2 log log(n) log(n). The second sum-

mand, k

b k
2 c!·d k

2 e!
· (B+3)k(k−1)sk

nk−1 ≤ 2−
1
2

√
log log(n) log(n).

By Equation (4) and these two bounds,
∣∣∣Pr[A(DX̂) =

1] − Pr[A(DX̃) = 1]
∣∣∣ = O

(
2−

1
2

√
log log(n) log(n)

)
.

This completes the proof of Theorem 2.1.

7 Lower Bound for Estimating Entropy

The following problem was introduced by Batu et
al. [5]. Let p = 〈p1, . . . , pn〉 be a discrete distribution
over n elements, where pi is the probability of the ith el-
ement. Given access to independent samples generated
according to the distribution p, we would like to approx-
imate its entropy: H(p) = −

∑n
i=1 pi log pi. Batu et

al. showed how to obtain an α-factor approximation in
time Õ

(
n

1+η

α2

)
, provided that H(p) = Ω

(
α
η

)
. They

also proved a lower bound of Ω
(
n

1
2α2

)
that holds even

when H(p) = Ω
(

log n
α2

)
. (Without a lower bound on

H(p), the time complexity is unbounded.)
Here we use our technique to obtain a lower bound

of Ω
(
n

2
6α2−3+o(1)

)
, improving on the Ω

(
n

1
2α2

)
lower

bound for relatively small α. When α is close to 1, the
bound is close to n2/3 (rather than n1/2).

We first provide a different construction of random
variables that satisfy the moments condition (Defini-
tion 4.4) for the special case of k = 3. This much sim-
pler construction gives random variables with support
on smaller integers than the more general construction
in Theorem 4.5, leading to better bounds.

Lemma 7.1 (R.V.’s Satisfying the Moments Condi-
tion with k = 3) For all integers B > 1, there exist
random variables X̂ and X̃ over a0 = 1, a1 = 2B, a2 =
4B − 2, that satisfy the moments condition with param-
eters 3 and B. Moreover, E[X̃] = 2 and E[X̂] = 2B.

Proof: Set Pr[X̂ = a0] = 1 − 1
4B−3 , Pr[X̂ = a1] =

0, Pr[X̂ = a2] = 1
4B−3 , and Pr[X̃ = a0] = Pr[X̃ =

a2] = 0, Pr[X̃ = a1] = 1. By definition, E[X̂] = 2,
E[X̂2] = 4B, while E[X̃] = 2B and E[X̃2] = 4B2. As
required, E[X̃]

E[X̂]
= B, and E[X̂2]

E[X̂]
= E[X̃2]

E[X̃]
.

The two distributions and their entropies. As in
Section 5, given the two random variables X̂ and X̃, de-
fine two distributions over n elements (or, more pre-
cisely, two families of distributions). One distribution,
denoted pX̂, has support on n

2 ·
4B−4
4B−3 elements of weight

1
n each and n

2 · 1
4B−3 elements of weight 4B−2

n each.
The second distribution, denoted pX̃, has support on n

2B

elements of weight 2B
n each. We define two families of

distributions, FX̂ and FX̃, respectively, where we allow
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all permutations over the names (colors) of the elements.
Let D′

X̂
denote the uniform distribution over FX̂, and let

D′
X̃

denote the uniform distribution over FX̃.
Let B = B(n) be of the form B = 1

2n1−β for
β < 1. Then the entropy of each distribution in FX̃
is β log n, and the entropy of each distribution in FX̂

is 2B−2
4B−3 · log n + 2B−1

4B−3 · log n
4B−2 , which is at most

1+β
2 log n − 1 by our choice of B. Thus, the ratio be-

tween the entropies is 1+β
2β − o(1).

While Theorem 5.3 is stated for the distributions on
strings, DX̂ and DX̃, and algorithms taking uniform sam-
ples from an input string of length n, it is not hard to ver-
ify that it also holds for the distributions D′

X̂
and D′

X̃
and

algorithms that are provided with samples from distribu-
tions over n elements. Since k = 3 and a2 = 2n1−β ,
to distinguish the two distributions one has to observe

Ω
((

n
a2

)2/3
)

= Ω
(
n2β/3

)
samples. In other words,

Ω
(
n2β/3

)
= Ω

(
n

2
6α2−3+o(1)

)
samples are required for

α =
(√

1+β
2β − o(1)

)
-estimating the entropy.
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