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Abstract

We investigate testing of properties of 2-dimensional figures that consist of a black object on a
white background. Given a parameter ε ∈ (0, 1/2), a tester for a specified property has to accept
with probability at least 2/3 if the input figure satisfies the property and reject with probability at
least 2/3 if it is ε-far from satisfying the property. In general, property testers can query the color
of any point in the input figure.

We study the power of testers that get access only to uniform samples from the input figure.
We show that for the property of being a half-plane, the uniform testers are as powerful as general
testers: they require only O(ε−1) samples. In contrast, we prove that convexity can be tested with
O(ε−1) queries by testers that can make queries of their choice while uniform testers for this property
require Ω(ε−5/4) samples. Previously, the fastest known tester for convexity needed Θ(ε−4/3) queries.

1 Introduction
We investigate testing of properties of 2-dimensional figures that consist of a black object and a white

background. Sometimes the correctness of an algorithm depends on whether its input satisfies a certain
property, e.g., it is a half-plane or a convex set. However, for a very large set, it is infeasible to determine
whether it is indeed a half-plane or convex. How quickly is it possible to determine whether the input
approximately satisfies the desired property? What access to the input is sufficient for this task?

Property testing [45, 26] (see also surveys on property testing [23, 42, 22] and a recent book by
Goldreich [24]) studies algorithms that quickly determine whether the input has the desired property or
is far from having it. Many types of objects have been investigated in the property testing framework,
including graphs [26, 21, 1], functions [12, 25, 16, 20, 28, 40, 3, 35], distributions [6, 49, 44, 13, 24],
strings [5, 32], arrays [18, 38, 34] and geometric objects [15, 14]. In this work, we study properties of
2-dimensional figures.

A figure (U,C) consists of a compact convex universe U ⊆ R2 and a measurable subset C ⊆ U .
The set C can be thought of as a black object on a white background U \ C. A figure (U,C) is a
half-plane if there is a line separating C from U \ C. A figure (U,C) is convex iff C is convex. The
relative distance between two figures (U,C) and (U,C ′) over the same universe is the probability of the
symmetric difference between them under the uniform distribution on U . A figure (U,C) is ε-far from
a property (e.g., being a half-plane) if the relative distance from (U,C) to every figure (U,C ′) with the
property over the same universe is at least ε. Otherwise, the figure is ε-close to the property.

Definition 1.1. Given a proximity parameter ε ∈ (0, 1/2) and error probability δ ∈ (0, 1), an ε-tester
for a given property accepts with probability at least 1− δ if the figure has the desired property and rejects
with probability at least 1− δ if the figure is ε-far from the desired property1. A tester has 1-sided error
if it always accepts inputs with the property. (Otherwise, it has 2-sided error). A tester is nonadaptive
if it makes all of its queries in advance, before seeing any of the input. A tester is uniform if it accesses
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Property Previous Work This work

Half-plane

O
(
1
ε

)
queries/running time

adaptive, 1-sided error [37]

O
(
1
ε log 1

ε

)
samples

uniform, 1-sided error

implicitly follows from connection

to PAC-learning in [26]

Θ
(
1
ε

)
samples/running time

uniform, 1-sided error

Convexity
Θ
(

1
ε4/3

)
samples/running time

uniform, 1-sided error [8]

Θ
(
1
ε

)
queries/running time

adaptive, 1-sided error

Ω
(

1
ε5/4

)
samples

uniform, 2-sided error

Table 1: Best previously known and our bounds on query and time complexity of adaptive/uniform
testing of the half-plane property and convexity.

its input only via uniform and independent samples from U , each labeled with a bit indicating whether it
belongs to C.

In particular, a uniform tester is nonadaptive. In general, a tester can query the input at an arbitrary
location. Such a strong assumption about the access model is not always realistic. For some classes of
properties, e.g., linear properties (that is, properties that form linear spaces), adaptivity provably does
not help [7], whereas for other classes of properties, e.g., graph properties in the bounded degree model,
nonadaptive algorithms are not as powerful as the adaptive algorithms [41]). Uniform testers, in contrast
to general adaptive testers, rely only on uniform samples from the input. One advantage of using uniform
testers is that they are universal in the following sense: we can collect uniform samples from the data in
advance, before we know what property of the data needs to be tested.

Uniform testers were first considered by Goldreich, Goldwasser, and Ron [26] and systematically
studied by Goldreich and Ron [27] and Firscher, Lachish, and Vasudev [19] under the name of “sample-
based testers”. In particular, [27, 19] show that certain types of query-based testers yield uniform testers
with sublinear (but dependent on the size of the input) sample complexity.

In the context of property testing and sublinear algorithms, visual properties of 2-dimensional figures
and discretized images have been studied in [37, 36, 43, 29, 30, 31, 11, 8, 9]. In [37], adaptive ε-
testers for the half-plane property and convexity were obtained. For the half-plane property, their query
complexity2 is O(ε−1) and for convexity their query complexity is O(ε−2). Currently, the best ε-tester
known for convexity takes O(ε−4/3) samples and is uniform [8]. This tester has 1-sided error, and every
uniform 1-sided error tester for convexity needs Ω(ε−4/3) samples [8].

This motivates the following questions: What is the power of uniform samples? Specifically, can we
test the half-plane property with O(ε−1) uniform samples? Are uniform testers as powerful as query-
based testers for testing convexity?

1.1 Our Results

We show that for the property of being a half-plane, the uniform testers are as powerful as general
testers: they require only O(ε−1) samples. This is not the case for convexity. We prove that convexity
can be tested with O(ε−1) queries by testers that can make queries of their choice, improving the bound

2For any nontrivial property, including being a half-plane, Ω(ε−1) is an easy lower bound on the complexity of an
ε-tester.
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of O(ε−4/3) in [8]. We also show that uniform testers for convexity, even with 2-sided error, require
Ω(ε−5/4) samples. Our results are summarized in Table 1.

1.2 Connection to Learning

An upper bound O(ε−1 log ε−1) on the number of uniform samples for testing the half-plane property
can be obtained from a connection between (proper) PAC-learning and property testing, described in [26].
This bound follows from the fact that the VC dimension of the half-plane property is constant. Even
though our tester has only slightly better sample complexity, its complexity is tight. Moreover, the
running time of our tester is also optimal. For convexity, PAC-learning under the uniform distribution
requires Θ(ε−3/2) samples, as shown by Schmeltz [46]. (VC dimension of convexity is unbounded, so
this result is specific to the uniform distribution.) For this property, however, as shown in [8], testing
requires significantly fewer samples than learning when the object is accessed via uniform samples. Our
tester for convexity can be viewed as an adaptive learner for the property, followed by a check that the
learned convex object is close to the input.

1.3 Our Techniques

Our tester for the half-plane property is the natural one: it checks whether the convex hull of
sampled black points intersects the convex hull of sampled white points and rejects if it is the case. In
other words, it rejects only if it finds a violation of the half-plane property. To analyze the tester, we use
the notion of black-central and white-central points defined in terms of the Ham Sandwich cut of black
(respectively, white) points. (These central points are related to the well studied centerpoints [17] and
Tukey medians [48]. The guarantee for a centerpoint is that every line that passes through it creates a
relatively balanced cut.) Such cuts have been studied extensively (see, e.g., [17, p. 356] and [33]), for
example, in the context of range queries. Specifically, a black-central (respectively, white-central) point
is the intersection of two lines that partition the figure into four regions, each with black (respectively,
white) area3 at least ε/4. Black-central points were defined in [8] in order to analyze a tester of convexity
of figures. A black-central (respectively, white-central) point is overwhelmingly likely to end up in the
convex hull of sampled black (respectively, white) points. We show that if the figure is ε-far from being a
half-plane, the convex hull of its black-central points intersects the convex hull of its white-central points.
A point in the intersection, even though is not likely to be sampled, is likely to be in the intersection of
the convex hull of the black samples and the convex hull of the white samples. Thus, there is likely to
be the intersection, and the tester is likely to reject.

Our tester for convexity samples points uniformly at random and constructs a rectangle R that with
high probability contains nearly the entire black area and whose sides include sampled black points.
Then it adaptively queries points of R in order to partition it into the candidate black and white regions,
leaving only a small region unclassified. After completing this learning stage, it samples points in the
classified regions and rejects iff it finds a mistake.

To prove our lower bound, we construct hard instances, for which every uniform tester needs to get
a 2-point witness, with points coming from different specified regions, in order to distinguish between
our hard instances that are convex from hard instances that are far from convex. The challenge here is
to construct a figure with regions that can be manipulated independently to either keep convexity or to
violate it.

2 The Uniform Tester for the Half-Plane Property
In this section, we give a uniform tester for the half-plane property.

Theorem 2.1. There is a uniform (1-sided error) ε-tester for the half-plane property of figures with
sample and time complexity O(ε−1) and with error probability 1/3.

Proof. Our uniform tester for the half-plane property is Algorithm 1. It takes O(ε−1) uniform samples
and checks if the sampled black and white points are linearly separable. To do it efficiently, the algorithm
computes the convex hull of sampled black points (by first sorting them and then computing the upper
and the lower hulls) and then checks if it contains a sampled white point (by merging the sorted list of

3For the two properties we consider (being a half-plane and convexity), we assume w.l.o.g. that the input figure U has
unit area. If it is not the case, U can be rescaled. Thus, the area of a region corresponds to the probability of sampling
from it under the uniform distribution.
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white sample with the upper and lower hulls of black samples). Similarly, it checks if the convex hull of
sampled white points contains a sampled black point.

Definition 2.1 (Notation for convex hull, upper and lower hull). For a set of points S, let Hull(S),
UHull(S), and LHull(S) denote its convex hull, upper convex hull, and lower convex hull, respectively.

We will show that the expected running time of Algorithm 1 is O(ε−1) and its error probability is
0.3. A tester with the worst case running time O(ε−1) and error probability 1/3 can be obtained from
Algorithm 1 by standard arguments.

Algorithm 1: Uniform tester for the half-plane property.

input : parameter ε ∈ (0, 1/2);
access to uniform and independent samples from (U,C).

1 Set s← 18
ε . Sample s points from U uniformly and independently at random.

2 Let R be a rectangle of the smallest area that contains the set U . Rotate U , so that R is
axis-aligned. // The area of R is at most twice the area of U

// (see, e.g., [8, Lemma A.1]) for a proof.

3 Compute the list SB of sampled black points sorted by the x-coordinate by using the Bucket
Sort with s bins. Similarly, compute SW for the sampled white points.

// Check if the convex hull of SB contains a point from SW .

4 Use Andrew’s monotone chain convex hull algorithm [2] to compute UHull(SB) and LHull(SB),
the upper and the lower hulls of SB , respectively, sorted by the x-coordinate.

5 Merge sorted lists SW ,UHull(SB) and LHull(SB) to determine for each point w in SW its left
and right neighbors in UHull(SB) and LHull(SB). If w lies between the corresponding line
segments of the upper and the lower hulls, reject.

// Check if the convex hull of SW contains a point from SB.
6 Repeat Steps 4–5 with the roles of SB and SW reversed.

7 Accept.

Consider a half-plane figure (U,C). Let SB and SW be the two lists obtained by Algorithm 1 in
Step 3. Since the figure is a half-plane, Hull(SB) and Hull(SW ) do not intersect, that is, they are linearly
separable. Thus, the algorithm accepts the figure.

Now assume that (U,C) is ε-far from being a half-plane. We prove that the algorithm rejects the
figure with probability at least 2/3. We consider two sets of points in U : black-central and white-central.
We show that if the figure is ε-far from being a half-plane, then the convex hulls of the two sets intersect.
In this case, the tester will detect this intersection, with probability at least 2/3, by only looking at the
convex hull of sampled black points and the convex hull of sampled white points.

Next, we define white-central and black-central points. Black-central points were used in [8] to analyze
a tester for convexity. In that work, they were called central points.

Definition 2.2 (White-central and black-central points). A point in the figure is white-central (respect-
ively, black-central) if it is the intersection of two lines such that each of the quadrants formed by these
lines has white (respectively, black) area at least ε/4.

Lemma 2.2. There is no line that separates white-central points from black-central points in a figure
that is ε-far from being a half-plane.

Proof. : Let (U,C) be a figure that is ε-far from being a half-plane. For the sake of contradiction,
suppose there is a line ` that separates white-central and black-central points in (U,C), i.e., it partitions
the figure into two regions, W` and B` , such that W` contains only white-central points and B` contains
only black-central points (see Figure 1). The sum of the black area in W` and the white area in B` is
at least ε since the figure is ε-far from being a half-plane. W.l.o.g. assume that the black area in W`

is at least ε/2. Consider the line `′ that is parallel to ` and such that the black area in one of the two
half-planes defined by `′ is equal to ε/2. (See Figure 2. Note that the black area in the other half-plane
is at least ε/2.) Clearly, `′ lies in W`. Next, we show that there is a black-central point on `′, i.e., in
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ℓ

white-central points

𝑊ℓ
black-central points

𝐵ℓ

Figure 1: An illustration of black-central and
white-central points separated by a line.

𝑊ℓ

𝐵ℓ

ℓ ℓ′

Figure 2: An illustration of the line `′ and a black-
central point on it.

W`, thus arriving at a contradiction. Consider the two sets of black points, on either side of `′. We have
argued that each of them has area at least ε/2. By the Ham Sandwich Theorem (in two dimensions,
also known as the Pancake theorem), applied to the two sets, there is a line `′′ that bisects the two sets
simultaneously, forming four sets black points of area at least ε/4 each. The intersection point of `′ and
`′′ is black-central and lies in W`. This is a contradiction, since ` is a line that separates white-central
and black-central points.

𝑤
ℓ1

ℓ2

Figure 3: An illustration of a captured white
central point.

𝒗

Figure 4: An illustration of the point v in the
intersection of two convex hulls.

Consider a white-central point w which is the intersection of two lines `1 and `2, as shown in Figure 3.
If four white points from four different quadrants determined by `1 and `2 are sampled by Algorithm 1,
we say that the tester captures w. We define capturing a black-central point analogously.

By Lemma 2.2, the convex hull of all white-central points and the convex hull of all black-central
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points intersect. Thus, there is a point v that lies in both convex hulls (see Figure 4). Moreover, there
exists a set PW of at most three white-central points such that point v lies in the convex hull of the points
in PW . Analogously, there exists a set PB of at most three black-central points such that the point v
lies in the convex hull of the points in PB . If all points in PW ∪ PB are captured then v simultaneously
lies in the convex hull of black samples and in the convex hull of white samples, i.e., the convex hull
of black samples and the convex hull of white samples intersect, and the tester rejects the figure. The
probability that the tester fails to capture a specific point in PW ∪ PB is, by the union bound, at most
4 · (1− ε/4)18/ε ≤ 4 ·e−18/4. The probability that the tester fails to capture at least one point in PW ∪PB
is at most

6 · 4 · e−18/4 < 0.3.

Therefore, the failure probability of the tester is at most 0.3.

Sample and Time Complexity. Algorithm 1 samples s = O(ε−1) points. Next, we analyze its
running time. Conduct the following mental experiment: Suppose we sample points from the rectangle
R (defined in Algorithm 1) uniformly and independently at random until we collect s points from U ;
then we bucket sort sampled points by their x-coordinate into s bins. Let q be the number of points we
sample. Then E[q] ≤ 2s. Since the x-coordinates of the sampled q points are distributed uniformly in
the interval corresponding to the length of the rectangle R, they can be sorted in expected time O(q)
by subdividing this interval into s subintervals of equal length, and using them as buckets in the bucket
sort. Thus, the expected running time of the algorithm in the mental experiment is O(s).

Observe that Algorithm 1 has the same distribution on the s points sampled from U as the algorithm
in the mental experiment. It sorts two (disjoint) subsets of the points sampled in the mental experiment.
Thus, the expected running time of Step 3 of Algorithm 1 is O(s). Recall the lists SW and SB defined
in Step 3 of Algorithm 1. Andrew’s monotone chain algorithm finds the upper and the lower hulls of a
set of s sorted points in time O(s). Thus, the lists UHull(SW ), LHull(SW ), UHull(SB), and LHull(SB)
are found in time O(s). Merging the lists SW , UHull(SB), and LHull(SB) (and the lists SB , UHull(SW ),
and LHull(SW )) in Step 5 also takes O(s) time. In Step 5, checking whether a point lies between two line
segments takes constant time. Overall, Algorithm 1 runs in expected time O(s) = O(ε−1). By standard
arguments, we get a uniform tester with the worst case running time O(ε−1) and with a slightly larger
error probability δ than in Algorithm 1, specifically, with δ = 1/3.

3 The Adaptive Tester for Convexity
In this section, we prove Theorem 3.1 that gives our adaptive convexity tester and state and prove

Corollary 3.4 that gives our adaptive convexity learner.

Theorem 3.1. Given ε ∈ (0, 1/2), convexity of a figure (U,C) can be ε-tested (adaptively) with 1-sided
error in time O(ε−1) and with error probability 1/3.

Proof. : In [8] (see the proof of Theorem 3.1 in [8]), it was shown that testing convexity of figures
(U,C) can be reduced to the special case when the universe U is an axis-aligned rectangle of unit area.
Moreover, we can rescale the figure to obtain a unit square background from a unit rectangle background
without affecting the distance of the figure to convexity. Therefore, we can assume w.l.o.g. that U is an
axis-aligned unit square.

Our ε-tester for convexity (Algorithm 2) samples points uniformly at random and constructs a rect-
angle R that with high probability contains nearly the entire black area and whose sides include sampled
black points. (See Figure 5.) Then it adaptively queries points of R in order to partition it into regions B,
W and F . (See Figure 6.) To do it, the algorithm investigates the boundary of the set C by performing
a walk of step size ε/12. The walk is performed separately on the four corners of the rectangle R. To
investigate the upper right corner, the algorithm performs a walk starting from a sampled black point
on the top side of R until it reaches the right side of R as follows:

i) the algorithm starts by taking steps to the right;
ii) whenever a white point is detected during the walk, the algorithm changes the direction of the

walk and goes down;
iii) whenever a black point is detected during the walk, the algorithm changes the direction of the walk

and goes right.
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Then, similarly, the algorithm investigates the remaining corners. The set B is the convex hull of all
black points discovered during the walk. The walk defines squares that intersect the boundary of C
and whose side length is equal to ε/12. The set F is the “fence” region outside B formed by all such
(ε/12)× (ε/12) squares. The set W is the remaining region in R.

As we will show later, the “fence” region F has a small area. If the image is convex, B is entirely
black and W is entirely white. The algorithm queries a small number of random points in B ∪W and
rejects if it finds a misclassified point (i.e., a white point in B or a black point in W ); otherwise, it
accepts.

At the high level, since the black area outside R and the area of F are small, if the figure is ε-far
from convexity then there are enough misclassified points in B ∪W , and the algorithm detects at least
one of them with high probability.

Algorithm 2: ε-tester for convexity.

input : parameter ε ∈ (0, 1/2); access to a figure (U,C), where U is a unit square

1 Query 64
ε points uniformly at random. If all sampled points are white, accept.

2 Let R be the smallest axis-parallel rectangle that contains all sampled black points. Let p0
(respectively, p1, p2, p3) be a sampled black point on the top (respectively, left, bottom, right)
side of R.

3 for i← 0 to 3 do
4 Let (x, y)← pi and Pi ← ∅. // Investigate the upper right corner of R.

// In line 8, we rotate R to reuse lines 4-8 of the

// pseudocode for investigating all four corners.

5 while (x, y) is in R do
6 if (x, y) is black or below the line through pi and p(i+3) mod 4 then

x← x+ ε/12. // Move right.

7 else
Pi ← Pi ∪ {(x, y)}; y ← y − ε/12. // Move down.

8 Let Wi ← {(u, v) inside R | ∃(x, y) ∈ Pi such that u ≥ x, v ≥ y with respect to the rotated
coordinates}. Rotate R clockwise by 90 degrees.

9 Let B be the convex hull of all black points discovered after Step 3 and W ← ∪3i=0Wi.

10 Query 8
ε points uniformly at random. If a white point in B or a black point in W is detected,

reject; otherwise, accept.

Now we prove that Algorithm 2 satisfies Theorem 3.1. First, we argue that Algorithm 2 always
accepts if its input is a convex figure. If (U,C) has no black points (i.e., C = ∅), Step 1 always accepts.
Otherwise, all points in B are black, by convexity of (U,C). We will show that all points in W are white.

Definition 3.1 (Triangle notation). We use notation 4p1p2p3 to denote the triangle with vertices p1, p2,
and p3.

For the sake of contradiction, suppose there is a black point b = (u, v) in W0. By definition of W0,
there is a white point w = (x, y) in P0 such that u ≥ x and v ≥ y. Thus, the white point w is inside
the triangle 4p0bp3, formed by three black points, contradicting convexity of (U,C). Thus, there are no
black points in W0. Analogously, there are no black points in W1,W2 and W3. Since there are no white
points in B and no black points in W = ∪3i=0Wi, Step 10 of Algorithm 2 always accepts (U,C).

Now assume that (U,C) is ε-far from convex.

Lemma 3.2. The probability that the black area outside the rectangle R (defined in Step 2 of Algorithm 2)
is greater than ε

4 is at most 1/9.

Proof. : Let L be a horizontal line with the largest y-coordinate such that the black area of the figure
above L is at least ε

16 . The probability that no black points above L are sampled in Step 1 of Algorithm 2

(and, consequently R lies below L) is at most (1 − ε
16 )64/ε ≤ e−4 < 1/36. Thus, with probability at

most 1/36, the black area in the half-plane above R is greater than ε
16 . The same bound holds for the

half-planes to the left, to the right and below R. By a union bound, the probability that the black area
outside R is greater than ε

4 is at most (1/36) · 4 = 1/9.
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𝑝0

𝑝1

𝑝2

𝑝3

𝑅

Figure 5: An illustration of Step 2 of Algorithm 2.

fence squares𝑝0

𝑝1

𝑝2

𝐵

W

𝐹

𝐹 𝐹

𝜀/12 

𝑊0
𝑊1

𝑊3
𝑊2

`

𝑝3

Figure 6: An illustration of Steps 3–9 of Al-
gorithm 2.

Lemma 3.3. Let F = R− (B ∪W ). Then the area of F is at most ε
2 .

Proof. : Let γ = ε/12 and (xi, yi) be pi (as defined in Step 2 of Algorithm 2) for i ∈ {0, 1, 2, 3}. Call every
region that consists of points (x, y) + [0, γ]2 a square, where x−xi

γ , y−yiγ ∈ N. Call squares that contain

points from F fence squares. Let r = (x3, y0) and let T = 4p0p3r. We will find an upper bound on the
number of fence squares inside T . Each point that Algorithm 2 queries in Step 5 results in at most one
(new) fence square in T . The algorithm queries at most x3−x0+y0−y3

ε/12 + 2 points in the triangle (thus, it

discovers at most that many fence squares), since, in every iteration, it either increases the x-coordinate
or decreases the y-coordinate of the queried point. Therefore, there are at most x3−x0+y0−y3

ε/12 + 2 fence

squares in this triangle. Similarly, we can find an upper bound on the number of discovered fence squares
in the remaining triangles. Since the perimeter of R is at most 4, the sum of the upper bounds is at

most 4
ε/12 + 8 = 48

ε + 8 ≤ 56
ε . The area of a single fence square is ( ε

12 )2 = ε2

144 and thus the total area of

F is at most ε2

144 ·
56
ε ≤

ε
2 .

We call a point misclassified if it is black and belongs to W or if it is white and belongs to B. Let E
denote the event that the black area outside R is less than ε/4. By Lemma 3.2, the probability that E
does not happen is at most 1/9. Now assume that E happens. Recall that by Lemma 3.3, the area of F
is at most ε/2. Note that we obtain a convex figure if we make all area in B black and all area outside B
white. Thus, since the figure (U,C) is ε-far from convex, the area of misclassified points in B ∪W is at
least ε/4. Consequently, the probability that Step 10 of the algorithm fails to catch a misclassified point

in B ∪W is at most (1− ε
4 )

8
ε < e−2 < 2/9. Therefore, the probability that the algorithm fails to detect

nonconvexity of the figure is at most 1/9 + 2/9 = 1/3, as desired.

Query Complexity. The algorithm queries points in Steps 1, 6 and 10. In Steps 1 and 10, the
algorithm makes O(ε−1) queries. In Step 6, over all iterations, the algorithm also queries O(ε−1) points.
Thus, the overall query complexity of the algorithm is O(ε−1).

Running Time. We show that the running time of Algorithm 2 is O(ε−1). By following the algorithm,
one can see that the running time of Steps 1-8 is O(ε−1). We explain why Steps 9 and 10 run in time
O(ε−1). Note that all black points used in Step 9 to compute B are sorted according to both x and
y coordinates and there are O(ε−1) of them. Thus, in Step 9, we can use Andrew’s algorithm [2] to
compute B in time O(ε−1). Given a sampled point p from Step 10, in time O(1) we identify whether
it belongs to the quadrilateral Q = p0p1p2p3 or to one of the triangles that form the region R \ Q (see
Figure 5). If p is inside Q then it is also in B. Now suppose p is inside the upper right triangle of the
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𝐵

W

𝑊
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𝑝3

Figure 7: An illustration of triangle T partitioned
into strips.

𝑝0

𝑝2

𝑝1

𝑝3

𝑇
𝜀

12

 𝑊𝐵 𝐹

Figure 8: An illustration of one strip inside tri-
angle T .

region R \ Q. Denote this triangle by T . Starting from the horizontal side of T consider a partition of
T into horizontal strips with width ε/12. Note that there are O(ε−1) such strips. Moreover, for each
horizontal strip in the partition of T , there is one vertical line that defines the boundary between F and
W and one line that defines the boundary between F and B. See Figures 7 and 8. For each strip, in time
O(1) we can compute and store such two lines while constructing B and W . In time O(1) we identify
the horizontal strip that point p belongs to. For each line ` computed and stored for this strip, in time
O(1) we identify the half-plane defined by ` that contains point p. Thus, in time O(1) we determine
whether p is in B or W or neither. Since we sample O(ε−1) points in Step 10, its running time is O(ε−1).
Therefore, the running time of the algorithm is O(ε−1), as claimed.

Corollary 3.4. Given ε ∈ (0, 1/2), one can learn a convex figure (U,C) (specifically, obtain a figure that
is ε-close to the input figure and is contained in the input figure) with O(ε−1) (adaptive) queries and in
time O(ε−1) and with probability at least 2/3.

Proof. : Algorithm 2 constructs a convex set B in Steps 3-9 for a convex figure (U,C) in time O(ε−1).
The set B is contained in C because C is convex and B is a convex hull of points in C. By Lemmas 3.2
and 3.3, the area of C \B is at most ε/4 + ε/2 < ε with probability at least 1− 1/9 > 2/3.

4 The Lower Bound for Nonadaptive Convexity Testers

4.1 Preliminaries on Poissonization

The proof of our lower bound uses a technique called Poissonization [47]. In the context of property
testing, this technique was first used in the analysis of properties of distributions by Batu et al. [4]
(conference version only) and Raskhodnikova et al. [39]. It has also been used in the context of testing
properties of figures in [8, 9]. Poissonization consists of modifying a probabilistic experiment by replacing
a fixed quantity (e.g., the number of samples) with a variable one that follows a Poisson distribution.
This breaks up dependencies between different events and makes the analysis tractable. The Poisson

distribution with parameter λ ≥ 0, denoted Po(λ), generates each value x ∈ N with probability e−λλx

x! .
The expectation and variance of a random variable distributed according to Po(λ) are both λ.

Definition 4.1. A Poisson-s tester is a uniform tester that takes a random number of samples distributed
as Po(s).

Lemma 4.1 (Poissonization Lemma [39, Lemma 5.3] and [8]).

9



(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every uniform tester A for
property P that uses at most s samples and has error probability δ, there is a Poisson-2s tester A′
for P with error probability at most δ + 4/s. Moreover,

(b) Let Ω be a sample space from which a Poisson-s algorithm makes uniform draws. Suppose we
partition Ω into sets Ω1, . . . ,Ωk (e.g., these sets can correspond to disjoint areas of the figure from
which points are sampled), where each outcome is in set Ωi with probability pi for i ∈ [k]. Let Xi

be the total number of samples in Ωi seen by the algorithm. Then Xi is distributed as Po(pi · s).
Moreover, random variables Xi are mutually independent for all i ∈ [k].

4.2 The Lower Bound

Theorem 4.2. Every 2-sided error uniform ε-tester for convexity requires Ω(ε−5/4) samples.

Proof. : By the Poissonization Lemma (Lemma 4.1), it is enough to prove the lower bound for Poisson
algorithms. For sufficiently small ε, we define distributions P and N on figures, where P is supported
only on convex figures whereas N is supported only on figures which are ε-far from convex. We show
that every uniform Poisson-s tester, where s = o(ε−5/4), fails to distinguish P from N with sufficient
probability.

Let k = d 12 · ε
−1/2e and the universe U = [0, 1]2. Consider two regular convex k-gons G1 and G2,

centered at (1/2, 1/2), such that G1 has side length sin(πk ) and the vertices of G2 are the midpoints of
the sides of G1 (see Figure 9). Call triangular regions inside G1 but outside G2 teeth (one such triangular
region is a tooth). Let T be a tooth and b be its vertex which is also a vertex of G1. Let the other two
vertices of T be d and d′ and let b0 be a point on dd′ such that bb0 is the height of T from b to its base
dd′. Call 4bb0d and 4bb0d′ half-teeth (see Figure 10). Distributions P and N are defined next.

Tooth

𝑈

𝐺1
𝑏

𝑑

𝑑′

𝐺2

Figure 9: A figure from P for k = 6.

𝑈

Half-
Tooth

𝑏

𝑑

𝑏0

𝑏′

𝑑′

Figure 10: A figure from N for k = 6.

1. For all figures from both distributions, points outside G1 are white and points in G2 are black.
2. For a figure in P, every tooth is independently colored white or black, each with probability 1/2,

as shown in Figure 9.
3. For a figure in N , every tooth is independently colored as follows: one half-tooth is colored black

or white, each with probability 1/2, and the other half-tooth gets the opposite color, as shown in
Figure 10.

Note that every figure in the support of P is convex.

Lemma 4.3. For all ε ≤ 3 · 10−3, every figure in the support of N is ε-far from convex.

Proof. : Consider a figure (U,C) in the support of N . Let 4bdd′ be a tooth of (U,C). Consider the point
b′ that is symmetric to b with respect to the line dd′, as shown in Figure 10. Call the quadrilateral bb′dd′

a block. Observe that there are k disjoint blocks. Let (U,C ′) be a convex figure that is closest to (U,C).

10



𝑏

𝑏′

𝑑′𝑑 𝑏0

𝑏2

𝑑2

𝑏1

𝑑1

Figure 11: An illustration of a block.

Definition 4.2 (Notation for the area of a tooth). The area of a tooth is denoted A4.

Claim 4.4. In every block of C, an area at least
A4
16 must be modified to obtain C ′ from C.

Proof. : For a region R, let A(R) denote the area of R.
Consider the block bdb′d′ illustrated in Figure 11. Let b1 and d1 be the midpoints of bb0 and db0,

respectively. Let the line b1d1 intersect bd′ and db′ at b2 and d2, respectively.
Consider the white triangle 4b1b0d1 and the three black triangles 4dd1d2, 4bb1b2, and 4b0b′d′. If

there is a point in each of these four triangles that has not changed color, then we have a white point
in the convex hull of three black points, i.e., the figure is not convex. Therefore, in at least one of these
four triangles, all points must change color in order to make the figure convex. Since the areas of the
triangles are

A(4b0b′d′) =
A4
2
, A(4b1b0d1) =

A4
8
, A(4dd1d2) = A(4bb1b2) =

A4
16

,

the claim holds.

Claim 4.5. 5.6 · 1
k3 < A4 ≤ 8 · 1

k3 .

Proof. : Consider a tooth 4bdd′ (see Figure 9). Recall that the side length of the regular k-gon G1 is
sin(πk ). Therefore,

|bd| = |bd′| = 1

2
· sin

(π
k

)
.

Let ∠dbd′ denote the angle of 4bdd′ at the vertex b. Note that

∠dbd′ =
π · (k − 2)

k
=

(
π − 2π

k

)
and that

A4 =
1

2
· |bd| · |bd′| · sin (∠dbd′) =

1

2
· 1

4
· sin2

(π
k

)
· sin

(
π − 2π

k

)
=

=
1

8
· sin2

(π
k

)
· sin

(
2π

k

)
.

Since 0.9x ≤ sinx ≤ x for x ∈ [0, 0.78], we obtain that, for sufficiently large k (i.e., for ε ≤ 3 · 10−3),

A4 ≥
1

8
·
(

0.9 · π
k

)2

·
(

0.9 · 2π

k

)
> 5.6 · 1

k3
;

A4 ≤
(

1

8

)
·
(π
k

)2

·
(

2π

k

)
≤ 8

k3
.

11



There are k blocks and, by Claim 4.4, at least

k · A4
16

> k · 5.6

16
· 1

k3
=

7

20
· 1

k2
≥ ε

area needs to be modified to make C convex. (Recall that k = d 12 · ε
−1/2e.) This completes the proof of

Lemma 4.3.

Consider a Poisson-s algorithm A with s = c0 · ε−5/4. We will show that when c0 is sufficiently small
then A fails on P or N with probability greater than 1/3.

Definition 4.3. A pair of points (p1, p2) is called a red-flag pair if p1 and p2 belong to different half-teeth
of the same tooth.

Let BAD denote the event that no red-flag pair is sampled by the algorithm A.

Claim 4.6. If c0 is sufficiently small, Pr[BAD] < 1/10.

Proof.: Let LT and RT be the random variables that count the number of points sampled by the tester
in the left half-tooth and in the right half-tooth of a tooth T , respectively. Let XT and X be the random
variables that count the number of sampled red-flag pairs in a tooth T and in all teeth, respectively.
By the Poissonization Lemma (Lemma 4.1), LT and RT are independent Poisson random variables with
expectation (A4/2) · s. Note that XT = LT ·RT and, therefore,

E[XT ] = E[LT ] · E[RT ] = (A4/2)2 · s2 ≤ 16s2

k6
,

by Claim 4.5. Since all teeth are disjoint, then for sufficiently small c0,

E[X] = k · E[XT ] ≤ k · 16s2

k6
≤ 512 · c20 < 1/10.

By Markov’s inequality, Pr[BAD] = Pr[X ≥ 1] ≤ E[X] < 1/10.

Conditioned on BAD, the distribution on the answers to the queries made by A is the same whether
the input is sampled from P or N . Therefore,

Pr
x∼P

[A accepts x | BAD]

= Pr
x∼N

[A accepts x | BAD] = 1− Pr
x∼N

[A rejects x | BAD].

Consequently,
min( Pr

x∼P
[A accepts x | BAD], Pr

x∼N
[A rejects x | BAD]) ≤ 1/2.

Assume w.l.o.g. that Prx∼P [A accepts x | BAD] ≤ 1/2. Then,

Pr
x∼P

[A accepts x]

= Pr
x∼P

[A accepts x | BAD] · Pr[BAD]

+ Pr
x∼P

[A accepts x | BAD] · Pr[BAD]

<1 · 1

10
+ Pr
x∼P

[A accepts x | BAD] · 1

≤ 1

10
+

1

2
<

2

3
.

Thus, every uniform algorithm requires Ω(ε−5/4) samples to test convexity with error probability at most
1/3.
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5 Conclusion and Open Problems
We showed that uniform testers are as powerful as adaptive testers in the case of the half-plane

property. Specifically, our uniform half-plane tester has 1-sided error and optimal running time. For
convexity, the best previously known tester was uniform. However, we designed an adaptive tester with
better (optimal) query complexity and showed that every uniform tester must have a significantly larger
query complexity than our adaptive tester.

One remaining open problem is to resolve the sample complexity of an optimal (2-sided error) uniform
tester for convexity. Our lower bound on this quantity is Ω(ε−5/4), while the best upper bound is O(ε−4/3)
[8]. The O(ε−4/3)-sample uniform tester in [8] is the natural one: after taking the uniform samples, it
checks if a white point was caught in the convex hull of sampled black points. However, the analysis is
quite sophisticated. One of the ideas in the analysis is the following. The smallest witness of nonconvexity
we can hope to get with O(ε−4/3) uniform samples has 4 points: 3 black points that form a triangle and
a white point contained in that triangle. (We are very unlikely to sample 3 points on the same line, so
we can’t hope to reliably obtain a smaller witness of two black samples and a white sample on the line
segment formed by them.) To save on the size of the witness, one of the black points in the witness
is replaced with a black-central point. Even though we are not likely to sample such a point, we are
likely to have a “proof” that such a point is black because it is likely to be in the convex hull of black
samples. So, the analysis focuses on obtaining the other two black vertices of the triangle in the witness
and the white sample contained in it. Since, for uniform 1-sided error testers, there is a matching lower
bound of Ω(ε−4/3) in [8], the only hope to beat the O(ε−4/3)-sample upper bound for uniform testers is
to allow for 2-sided error. That is, one would have to come up with a criterion to reject a figure that
looks “statistically suspicious”, even in the case when the tester found no witness of nonconvexity.

Another direction for research is to investigate the power of uniform samples in the context of tolerant
property testing. Tolerant testing of 2-dimensional figures was investigated in [9]. The tolerant testers
for half-plane and convexity in that work are uniform and have nearly optimal query complexity (as
compared to any, even adaptive testers). However, it is open whether uniform samples are sufficient for
achieving the optimal running time for tolerantly testing these properties. It is interesting to investigate
the power of other restricted classes of testers, such as nonadaptive testers, in the context of testing of
properties of geometric figures. Finally, this work only looks at 2-dimensional figures. Generalizing this
study to higher dimensions is an intriguing open question.
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