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Abstract. Given a directed graph G = (V,E) and an integer k ≥ 1, a k-
transitive-closure-spanner (k-TC-spanner) of G is a directed graph H =
(V,EH) that has (1) the same transitive-closure as G and (2) diameter
at most k. Transitive-closure spanners are a common abstraction for
applications in access control, property testing and data structures.

We show a connection between 2-TC-spanners and local monotonicity
reconstructors. A local monotonicity reconstructor, introduced by Saks
and Seshadhri (SIAM Journal on Computing, 2010), is a randomized
algorithm that, given access to an oracle for an almost monotone function
f : [m]d → R, can quickly evaluate a related function g : [m]d → R
which is guaranteed to be monotone. Furthermore, the reconstructor
can be implemented in a distributed manner. We show that an efficient
local monotonicity reconstructor implies a sparse 2-TC-spanner of the
directed hypergrid (hypercube), providing a new technique for proving
lower bounds for local monotonicity reconstructors. Our connection is,
in fact, more general: an efficient local monotonicity reconstructor for
functions on any partially ordered set (poset) implies a sparse 2-TC-
spanner of the directed acyclic graph corresponding to the poset.

We present tight upper and lower bounds on the size of the sparsest
2-TC-spanners of the directed hypercube and hypergrid. These bounds
imply tighter lower bounds for local monotonicity reconstructors that
nearly match the known upper bounds.
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1 Introduction

Graph spanners were introduced in the context of distributed computing [1],
and since then have found numerous applications, such as efficient routing [2–6],
simulating synchronized protocols in unsynchronized networks [7], parallel and
distributed algorithms for approximating shortest paths [8–10], and algorithms
for distance oracles [11, 12]. Several variants on graph spanners have been de-
fined. In this work, we focus on transitive-closure spanners that were introduced
in [13] as a common abstraction for applications in access control, property test-
ing and data structures.

Definition 1.1 (TC-spanner). Given a directed graph G = (V,E) and an
integer k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) of G is a
directed graph H = (V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

Thus, a k-transitive-closure-spanner (or k-TC-spanner) is a graph with small
diameter that preserves the connectivity of the original graph. In the applications
above, the goal is to find the sparsest k-TC-spanner for a given k and G. The
number of edges in the sparsest k-TC-spanner of G is denoted by Sk(G).

Our Contributions. The contributions of this work fall into two categories: (1)
We show that an efficient local monotonicity reconstructor implies a sparse 2-
TC-spanner of the directed hypergrid (hypercube), providing a new technique
for proving lower bounds for local monotonicity reconstructors. (2) We present
tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the
directed hypercube and hypergrid. These bounds imply tighter lower bounds for
local monotonicity reconstructors for these graphs that nearly match the upper
bounds given in [14].

1.1 Lower Bounds for Local Monotonicity Reconstruction

Property-preserving data reconstruction was introduced in [15]. In this model,
a reconstruction algorithm, called a filter, sits between a client and a dataset. A
dataset is viewed as a function f : D → R. The client accesses the dataset using
queries of the form x ∈ D to the filter. The filter looks up a small number of val-
ues in the dataset and outputs g(x), where g must satisfy some fixed structural
property P. Extending this notion, Saks and Seshadhri [14] defined local recon-
struction. A filter is local if it allows for a local (or distributed) implementation:
namely, if the output function g does not depend on the order of the queries.

Definition 1.2 (Local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R, and to an auxiliary
random string ρ (the “random seed”), and takes as input x ∈ D. For fixed f and
ρ, A runs deterministically on input x to produce an output Af,ρ(x) ∈ R. (Note
that a local filter has no internal state to store previously made queries.) The
function g(x) = Af,ρ(x) output by the filter must satisfy the following conditions:
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– For each f and ρ, the function g must satisfy P.
– If f satisfies P, then g must be identical to f with probability at least 1− δ,

for some error probability δ ≤ 1/3. The probability is taken over ρ.

In answering query x ∈ D, the filter A may ask for values of f at domain points
of its choice (possibly adaptively) using its oracle access to f . Each such access
made to the oracle is called a lookup to distinguish it from the client query x. A
local filter is non-adaptive if the set of domain points that the filter looks up to
answer an input query x does not depend on answers given by the oracle.

In [14], the authors also required that g must be sufficiently close to f : With
high probability (over the choice of ρ), Dist(g, f) ≤ B(n)·Dist(f,P), where B(n)
is called the error blow-up. (Dist(g, f) is the number of points in the domain
on which f and g differ. Dist(f,P) is ming∈P Dist(g, f).) If a local filter along
with Definition 1.2 satisfies this condition, we call it distance-respecting.

Local Monotonicity Reconstructors. The most studied property in the local re-
construction model is monotonicity of functions [14, 15]. To define monotonic-
ity of functions, consider an n-element poset Vn and let Gn = (Vn, E) be
the relation graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R
is called monotone if f(x) ≤ f(y) for all (x, y) ∈ E. We particularly focus
on posets which have the directed hypergrid graph as its relation graph. The
directed hypergrid, denoted Hm,d, has vertex set {1, 2, . . . ,m}d and edge set
{(x, y) : ∃ unique i ∈ {1, . . . , d} such that yi − xi = 1 and for j ̸= i, yj = xj}.
For the special case m = 2, H2,d is called a hypercube and is also denoted by Hd.
A monotonicity filter needs to ensure that the output function g is monotone.
For instance, if Gn is a directed line, Hn,1, the filter needs to ensure that the
output sequence specified by g is sorted.

To motivate monotonicity reconstructors for hypergrids, consider the scenario
of rolling admissions: An admissions office assigns d scores to each application,
such as the applicant’s GPA, SAT results, essay quality, etc. Based on these
scores, some complicated (third-party) algorithm outputs the probability that a
given applicant should be accepted. The admissions office wants to make sure
“on the fly” that strictly better applicants are given higher probability, that
is, probabilities are monotone in scores. A hypergrid monotonicity filter may
be used here. A local filter can be implemented in a distributed manner with
an additional guarantee that every copy of the filter will correct to the same
monotone function of the scores. This can be done by supplying the same random
seed to each copy of the filter.

[14] gives a distance-respecting local monotonicity filter for the directed hy-
pergrid, Hm,d, that makes (logm)O(d) lookups per query. No non-trivial mono-
tonicity filter for the hypercube Hd (performing o(2d) lookups per query) is
known. One of the monotonicity filters in [15] is a local filter for the directed
line Hm,1 with O(logm) lookups per query (but a worse error blow up than
in [14]). As observed in [14], this upper bound is tight. A lower bound of 2αd,
on the number of lookups per query for a distance-respecting local monotonicity
filter on Hd with error blow-up 2βd, where α, β are sufficiently small constants,
appeared in [14]. Notably, all known local monotonicity filters are non-adaptive.
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We show how to construct sparse 2-TC-spanners from local monotonicity
reconstructors with low lookup complexity. These constructions, together with
our lower bounds on the size of 2-TC-spanners of the hypergrid and hypercube
(Section 1.2), imply lower bounds on lookup complexity of local monotonicity
reconstructors for these graphs with arbitrary error blow-up. We state our trans-
formations from non-adaptive and adaptive reconstructors separately.

Theorem 1.1 (Transformation from non-adaptive Local Monotonicity
Reconstructors to 2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes.
Suppose there is a non-adaptive local monotonicity reconstructor A for Gn that
looks up at most ℓ(n) values on any query and has error probability at most δ.
Then there is a 2-TC-Spanner of Gn with O(nℓ(n) · ⌈log n/ log(1/δ)⌉) edges.

Next theorem applies even to adaptive local monotonicity reconstuctors. It
takes into account how many lookups on query x are points incomparable to x.
In particular, if there are no such lookups, then constructed 2-TC-spanner is of
the same size as in Theorem 1.1. (The proof and the implications of Theorem 1.2
are deferred to the full version.)

Theorem 1.2 (Transformation from adaptive Local Monotonicity Re-
constructors to 2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes.
Suppose there is an (adaptive) local monotonicity reconstructor A for Gn that,
for any query x ∈ Vn, looks up at most ℓ1(n) vertices comparable to x and at
most ℓ2(n) vertices incomparable to x, and has error probability at most δ. Then
there is a 2-TC-Spanner of Gn with O(nℓ1(n) · 2ℓ2(n)⌈log n/ log(1/δ)⌉) edges.

In Theorem 1.1 and 1.2, when δ is sufficiently small, the bounds on the
2-TC-Spanner size become O(nℓ(n)) and O(nℓ1(n) · 2ℓ2(n)), respectively.

As mentioned earlier, all known monotonicity reconstructors are non-adaptive.
It is an open question whether it is possible to give a transformation from adap-
tive local monotonicity reconstructors to 2-TC-spanners without incurring an
exponential dependence on the number of lookups made to points incomparable
to the query point. We do not know whether this dependence is an artifact of
the proof or an indication that lookups to incomparable points might be helpful
for adaptive local monotonicity reconstructors.

In Theorems 1.3 and 1.4 (Section 1.2), we present nearly tight bounds on the
size of the sparsest 2-TC-spanners of the hypercube and the hypergrid. Theo-
rem 1.1, together with the lower bounds in Theorems 1.3 and 1.4, implies the
following lower bounds on the lookup complexity of local monotonicity recon-
structors for these graphs with arbitrary error blow-up.

Corollary 1.1. Consider a nonadaptive local monotonicity filter with constant
error probability δ. If the filter is for functions f : Hm,d → R, it must perform

Ω
(

logd−1 m
dd(2 log logm)d−1

)
lookups per query. If the filter is for functions f : Hd → R,

it must perform Ω
(
2αd/d

)
lookups per query, where α ≥ 0.1620.

Prior to this work, no lower bounds for monotonicity reconstructors on Hm,d

with dependence on both m and d were known. Unlike the bound in [14], our
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lower bounds hold for any error blow-up and for non-distance-respecting filters.
Our bounds are tight for non-adaptive reconstructors. Specifically, for the hy-
pergrid Hm,d of constant dimension d, the number of lookups is (logm)Θ(d), and
for the hypercube Hd, it is 2

Θ(d) for any error blow-up.

Testers vs. Reconstructors. [13] obtained monotonicity testers from 2-TC-spanners.
Unlike in the application to monotonicity testing, here we use lower bounds on
the size of 2-TC-spanners to prove lower bounds on complexity of local mono-
tonicity reconstuctors. Lower bounds on the size of 2-TC-spanners do not imply
corresponding lower bounds on monotonicity testers. E.g., the best monotonicity
tester on Hd runs in O(d2) time [16, 17], while, as shown in Theorem 1.4, every
2-TC-spanner of Hd must have size exponential in d.

1.2 Our Results on 2-TC-Spanners of the Hypercube and Hypergrid

Our main theorem gives a set of explicit bounds on S2(Hm,d):

Theorem 1.3 (Hypergrid). Let S2(Hm,d) denote the number of edges in the
sparsest 2-TC-spanner of Hm,d. Then

5 for m ≥ 3,

Ω

(
md logd m

(2d log logm)d−1

)
= S2(Hm,d) ≤ md logd m.

The upper bound in Theorem 1.3 follows from a general construction of k-TC-
spanners for graph products for arbitrary k ≥ 2, presented in the full version.
The lower bound is the most technically difficult part of our work. It is proved by
a reduction of the 2-TC-spanner construction for [m]d to that for the 2× [m]d−1

grid and then directly analyzing the number of edges required for a 2-TC-spanner
of 2 × [m]d−1. We show a tradeoff between the number of edges in the 2-TC-
spanner of the 2 × [m]d−1 grid that stay within the hyperplanes {1} × [m]d−1

and {2} × [m]d−1 versus the number of edges that cross from one hyperplane
to the other. The proof proceeds in multiple stages. Assuming an upper bound
on the number of edges staying within the hyperplanes, each stage is shown to
contribute a substantial number of new edges crossing between the hyperplanes.
The proof of this tradeoff lemma is already non-trivial for d = 2 and is presented
in Section 3. The proof for d > 2 is deferred to the full version of the paper.

While Theorem 1.3 is most useful when m is large and d is small, in Section 4
we present bounds on S2(Hm,d) which are optimal up to a factor of d2m and,
thus, supersede the bounds from Theorem 1.3 when m is small. The general
form of these bounds is a somewhat complicated combinatorial expression but
they can be estimated numerically. Specifically, S2(Hm,d) = 2cmd poly(d), where
c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82 and c5 ≈ 3.24, each significantly smaller than
the exponents corresponding to the transitive closure sizes for the different m.

As a special case of the above, for m = 2 we obtain the following theorem
for the hypercube. The proof of this theorem is omitted from this version.

5 Logarithms are always to base 2 unless otherwise indicated.
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Theorem 1.4 (Hypercube). Let S2(Hd) be the number of edges in the sparsest
2-TC-spanner of Hd. Then Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

As a comparison point for our bounds, note that the obvious bounds on
S2(Hd) are the number of edges in the d-dimensional hypercube, 2d−1d, and the
number of edges in the transitive closure of Hd, which is 3d−2d. (An edge in the
transitive closure of Hd has 3 possibilities for each coordinate: both endpoints
are 0, both endpoints are 1, or the first endpoint is 0 and the second is 1.
This includes self-loops, so we subtract the number of vertices in Hd to get the
desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d−2d. Similarly, the straightforward
bounds on the number of edges in a 2-TC-spanner ofHm,d in terms of the number
of edges in the directed grid and in its transitive closure are dmd−1(m− 1) and(

m2+m
2

)d
−md, respectively.

1.3 Previous work on bounding Sk for other families of graphs

Thorup [18] considered a special case of TC-spanners of graphs G that have at
most twice as many edges as G, and conjectured that for all directed graphs G on
n nodes there are such k-TC-spanners with k polylogarithmic in n. He proved
this for planar graphs [19], but Hesse [20] gave a counterexample for general

graphs by constructing a family for which all n
1
17 -TC-spanners need n1+Ω(1)

edges. TC-spanners were studied for directed trees: implicitly in [17, 21–24] and
explicitly in [25]. For the directed line, [21] (and later, [22]) expressed Sk(Hn,1)
in terms of the inverse Ackermann function.

Lemma 1.1 ([21, 22, 13]). Let Sk(Hn,1) denote the number of edges in the
sparsest k-TC-spanner of the directed line Hn,1. Then S2(Hn,1) = Θ(n log n),
S3(Hn,1) = Θ(n log log n), S4(Hn,1) = Θ(n log∗ n) and, more generally, Sk(Hn,1)
= Θ(nλk(n)) where λk(n) is the inverse Ackermann function.

The same bound holds for directed trees [21, 23, 25]. An O(n log n ·λk(n)) bound
on Sk for H-minor-free graph families (e.g., bounded genus and bounded tree-
width graphs) was given in [13].

Notation. For a positive integer m, we denote {1, . . . ,m} by [m]. For x ∈ {0, 1}d,
we use |x| to denote the weight of x, that is, the number of non-zero coordinates
in x. Level i in a hypercube contains all vertices of weight i. The partial order
≼ on the hypergrid Hm,d is defined as follows: x ≼ y for two vertices x, y ∈ [m]d

iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y, if x and y are distinct vertices in [m]d

satisfying x ≼ y. Vertices x and y are comparable if either y is above x (that is,
x ≼ y) or y is below x (that is, y ≼ x). We denote a path from v1 to vℓ, consisting
of edges (v1, v2), (v2, v3), . . . , (vℓ−1, vℓ) by (v1, . . . , vℓ).

2 From Monotonicity Reconstructors to 2-TC-spanners

In this section, we prove Theorem 1.1.
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Proof (of Theorem 1.1). Let A be a local reconstructor given by the statement
of the theorem. Let F be the set of pairs (x, y) with x, y in Vn such that x ≺ y.
Then, F is of size at most

(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set

{z ∈ Vn : x ≼ z ≼ y}. Define function f (x,y)(v) to be 1 on all v ≽ x and all
v ≽ y, and 0 everywhere else. Also, define function f (x,y)(v), which is identical
to f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Both, f (x,y) and
f (x,y), are monotone functions for all (x, y) ∈ F . Let Aρ be the deterministic
algorithm which runs A with the random seed fixed to ρ. We say a string ρ is
good for (x, y) ∈ F if filter Aρ on input f (x,y) returns g = f (x,y) and on input
f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s ≤ ⌈2 log n/ log(1/2δ)⌉, con-
sisting of strings used as random seeds by A, such that for every (x, y) ∈ F some
string ρ ∈ S is good for (x, y). We choose S by picking strings used as random
seeds uniformly and independently at random. Since A has error probability at
most δ, we know that for every monotone f , with probability at least 1−δ (with
respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed
(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤
(2 · δ)s, which, for s = ⌈2 log n/ log(1/2δ)⌉, is at most 1/n2 < 1/|F|. By a union
bound over F , Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1. Thus,
there exists a set S with required properties.

We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described
above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ on
query x. (Note that the set Nρ(x) is well-defined since algorithm A is assumed
to be non-adaptive). For each string ρ ∈ S and each vertex x ∈ Vn, connect x
to all comparable vertices in Nρ(x) (other than itself) and orient these edges
according to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists
(x, y) ∈ F with no path of length at most 2 in H from x to y. Consider ρ ∈ S
which is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all
v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by definition of
f (x,y). For a v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).
All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any points in cube(x, y). Therefore, h is well-defined. Since ρ
is good for (x, y) and h is identical to f (x,y) for all lookups made on query x,
Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not
monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · ℓ(n) · s ≤ nℓ(n) · ⌈2 log n/ log(1/2δ)⌉. ⊓⊔
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3 2-TC-Spanners for low-dimensional hypergrids

In this section, we describe the proof of Theorem 1.3 which gives explicit bounds
on the size of the sparsest 2-TC-spanner for Hm,d. The upper bound in The-
orem 1.3 follows straightforwardly from a more general statement about TC-
spanners of product graphs; details are in the full version. Here, we show the
lower bound on S2(Hm,d). Actually, in this extended abstract, we treat only the
special case of this lower bound for d = 2, since it already contains most of the
difficulty of the larger dimensional case. The extension to arbitrary dimension is
deferred to the full version due to space constraints.

Theorem 3.1. Any 2-TC-spanner of the 2-dimensional grid Hm,2 must have

Ω
(

m2 log2 m
loglogm

)
edges.

One way to prove the Ω(m logm) lower bound on the size of a 2-TC-spanner
for the directed line Hm,1, stated in Lemma 1.1, is to observe that at least
⌊m

2 ⌋ edges are cut when the line is halved: namely, at least one per vertex pair
(v,m − v + 1) for all v ∈

[
⌊m

2 ⌋
]
. Continuing to halve the line recursively, we

obtain the desired bound.
A natural extension of this approach to proving a lower for the grid is to

recursively halve the grid along both dimensions, hoping that each such op-
eration on an m × m grid cuts Ω(m2 logm) edges. This would imply that
the size S(m) of a 2-TC-spanner of the m × m grid satisfies the recurrence
S(m) = 4S(m/2) + Ω(m2 logm); that is, S(m) = Ω(m2 log2 m), matching the
upper bound in Theorem 1.3.

An immediate problem with this approach is that in some 2-TC-spanners of
the grid only O(m2) edges connect vertices in different quarters. One example of
such a 2-TC-spanner is the graph containing the transitive closure of each quarter
and only at most 3m2 edges crossing from one quarter to another: namely, for
each node u and each quarter q with vertices comparable to u, this graph contains
an edge (u, vq), where vq is the smallest node in q comparable to u.

The TC-spanner in the example above is not optimal because it has too
many edges inside the quarters. The first step in our proof of Theorem 3.1 is
understanding the tradeoff between the number of edges crossing the cut and
the number of edges internal to the subgrids, resulting from halving the grid
along some dimension. The simplest manifestation of this tradeoff occurs when
a 2 ×m grid is halved into two lines. (In the case of one line, there is no trade
off: the Ω(m) bound on the number of crossing edges holds even if each half-line
contains all edges of its transitive closure.) Lemma 3.1 formulates the tradeoff
for the two-line case, while taking into account only edges needed to connect
comparable vertices on different lines by paths of length at most 2:

Lemma 3.1 (Two-Lines Lemma). Let U be a graph with vertex set [2]× [m]
that contains a path of length at most 2 from u to v for every u ∈ {1}× [m] and
v ∈ {2} × [m], where u ≼ v. An edge (u, v) in U is called internal if u1 = v1,

and crossing otherwise. If U contains at most m log2 m
32 internal edges, it must

contain at least m logm
16 log logm crossing edges.
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Note that if the number of internal edges is unrestricted, a 2-TC-spanner ofHm,2

may have only m crossing edges.

Proof. The proof proceeds in logm
2 log logm stages dealing with pairwise disjoint sets

of crossing edges. In each stage, we show that U contains at least m
8 crossing

edges in the prescribed set.

In the first stage, divide U into log2 m blocks, each of length m
log2 m

: namely, a

node (v1, v2) is in block i if v2 ∈
[
(i−1)·m
log2 m

+ 1, i·m
log2 m

]
. Call an edge long if it starts

and ends in different blocks, and short otherwise. Assume, for contradiction, that
U contains fewer than m

8 long crossing edges.

Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈
[
m
2

]
(right

otherwise). Also, call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal
if u1 = v1 = 2. Let L be the set of low left nodes that are not incident to
long crossing edges. Similarly, let R be the set of high right nodes that are not
incident to long crossing edges. Since there are fewer than m

8 long crossing edges,
|L| > m

4 and |R| > m
4 .

L

R
midline

high nodes & 
internal edges

left nodes right nodes

block

long internal edge

low nodes & 
internal edges

Fig. 1. Illustration of the first stage in the proof of Lemma 3.1.

A node u ∈ L can connect to a node v ∈ R via a path of length at most
2 only by using a long internal edge. Observe that each long low-internal edge
can be used by at most m

log2 m
such pairs (u, v): one low node u and high nodes

v from one block. This is illustrated in Figure 1. Analogously, every long high-

internal edge can be used by at most m
log2 m

such pairs. Since |L| · |R| > m2

16 pairs

in L × R connect via paths of length at most 2, graph U contains more than
m2

16 · log2 m
m = m log2 m

16 long internal edges, which is a contradiction.

In each subsequent stage, call blocks used in the previous stage megablocks,
and denote their length by B. Subdivide each megablock into log2 m blocks of
equal size. Call an edge long if it starts and ends in different blocks, but stays
within one megablock. Assume, for contradiction, that U contains fewer than m

8
long crossing edges.
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Call a node (v1, v2) left if it is in the left half of its megablock, that is,
if v2 ≤ ℓ+r

2 whenever (v1, v2) is in a megablock [2] × {ℓ, . . . , r}. (Call it right

otherwise). Consider megablocks containing fewer than B
4 long crossing edges

each. By an averaging argument, at least m
2B megablocks are of this type. (Recall

that there are m
B megablocks in total). Within each such megablock more than B

4

low left nodes and more than B
4 high right nodes have no incident long crossing

edges. By the argument from the first stage, each such megablock contributes

more than B2

16b long internal edges, where b = B
log2 m

is the size of the blocks.

Hence there must be more than B2

16b ·
m
2B = m log2 m

32 long internal edges, which is

a contradiction to the fact that U contains at most m log2 m
32 internal edges.

We proceed to the next stage until each block is of length 1. Therefore, the
number of stages, t, satisfies m

log2t m
= 1. That is, t = logm

2 log logm , and each stage

contributes m
8 new crossing edges, as desired. ⊓⊔

Next we generalize Lemma 3.1 to understand the tradeoff between the num-
ber of internal edges and crossing edges resulting from halving a 2-TC-spanner
of a 2ℓ×m grid with the usual partial order.

Lemma 3.2. Let S be a 2-TC-spanner of the directed [2ℓ] × [m] grid. An edge
(u, v) in S is called internal if u1, v1 ∈ [ℓ] or u1, v1 ∈ {ℓ+ 1, . . . , 2ℓ}, and crossing

otherwise. If S contains at most ℓm log2 m
64 internal edges, it must contain at least

ℓm logm
32 log logm crossing edges.

Proof. For each i ∈ [ℓ], we match the lines {i} × [m] and {2ℓ − i + 1} × [m].
Observe that a path of length at most 2 between the matched lines cannot use
any edges with both endpoints in {i+1, . . . , 2ℓ− i}× [m]. We modify S to ensure
that there are no edges with only one endpoint in {i+1, . . . , 2ℓ− i}× [m] for all
i ∈ [ℓ], and then apply Lemma 3.1 to the matched pairs of lines.

Call the [ℓ]× [m] subgrid and all vertices and edges it contains low, and the
remaining {ℓ+1, . . . , 2ℓ}×[m] subgrid and its vertices and edges high. Transform
S into S′ as follows: change each low internal edge (u, v) to (u, (u1, v2)), change
each high internal edge (u, v) to ((v1, u2), v), and finally change each crossing
edge ((i1, j1), (2ℓ− i2 + 1, j2)) to ((i, j1), (2ℓ− i+ 1, j2)), where i = min(i1, i2).
Intuitively, we are projecting the edges in S to be fully contained in one of the
matched pairs of lines, while preserving whether the edge is internal or crossing.
Crossing edges are projected onto the outer matched pair of lines chosen from
the two pairs that contain the endpoints of a given edge.

Clearly, S′ contains at most the number of internal (crossing) edges as S.
Observe that S′ contains a path of length at most 2 from u to v for every
comparable pair (u, v) where u is low, v is high, and u and v belong to the same
pair of matched lines. Indeed, since S is a 2-TC-spanner, it contains either the
edge (u, v) or a path (u,w, v). In the first case, S′ also contains (u, v). In the
second case, if (u,w) is a crossing edge S′ contains (u, (v1, w2), v), and if (u,w) is
an internal edge S′ contains (u, (u1, w2), v). As claimed, each edge in S′ belongs
to one of the matched pairs of lines.
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Finally, we apply Lemma 3.1. If S contains at most ℓm log2 m
64 internal edges,

then so does S′, and so at least half
(
i.e., ℓ

2

)
of the matched line pairs each contain

at most m log2 m
32 internal edges. By Lemma 3.1, each of these pairs contributes at

least m logm
16 log logm crossing edges. Thus S′ must contain at least ℓm logm

32 log logm crossing

edges. Since S contains as many crossing edges as S′, the lemma follows. ⊓⊔
Now we prove Theorem 3.1 by recursively halving Hm,2 along the horizontal
dimension. Some resulting ℓ ×m subgrids may violate Lemma 3.2, but we can
guarantee that the lemma holds for a constant fraction of the recursive steps for
which ℓ ≥

√
m. This is sufficient for obtaining the lower bound in the theorem.

Proof (of Theorem 3.1). Assume m is a power of 2 for simplicity. For each step
i ∈ {1, . . . , 1

2 logm}, partition Hm,2 into the following 2i−1 equal-sized subgrids:
{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m − li + 1, . . . ,m} × [m] where
li = m/2i−1. For each of these subgrids, define internal and crossing edges as in
Lemma 3.2. Now, suppose that there exists a step i such that at least half of the

2i−1 subgrids have > lim log2 m
64 internal edges. Since at a fixed i, the subgrids

are disjoint, there are 2i−1Ω(lim log2 m) = Ω(m2 log2 m) edges in S, proving the
theorem. On the other hand, suppose that for every i ∈ {1, . . . , 1

2 logm}, at least
half of the 2i−1 subgrids have ≤ lim log2 m

64 internal edges. Then, applying Lemma

3.2, the number of crossing edges in those subgrids is ≥ lim logm
32 log logm . Counting over

all steps i and for all appropriate subgrids from those steps, the number of edges

in S is bounded by Ω
(
m2 logm logm

log logm

)
= Ω

(
m2 log2 m

log logm

)
. ⊓⊔

In the full version, we extend the above proof to establish lower bounds on
S2(Hm,d) for arbitrary d ≥ 2. The main technical deferred result is a trade-
off lemma between internal and crossing edges with respect to two (d − 1)-
dimensional hyperplanes. An important part of the generalization is the appro-
priate definition of the notions of blocks and megablocks, so that the iterative
argument in the proof of Lemma 3.1 applies in the high-dimensional setting.

4 2-TC-spanners for high-dimensional hypergrids

Theorem 4.1 gives matching upper and lower bounds up to a d2m factor in terms
of an expression involving binomial coefficients. This result supersedes the results
of the previous section when, for instance, m is constant and d is growing.

Before stating Theorem 4.1, we introduce some notation.

Definition 4.1. For the hypergrid Hm,d , define a level to be a set of vertices,
indexed by vector i ∈ [d]m with i1 + · · · + im = d, that consists of vertices
x = (x1, . . . , xd) ∈ [m]d containing i1 positions of value 1, i2 positions of value
2, . . . , and im positions of value m.

Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multino-
mial coefficient(

d

i

)
=

(
d

i1, ..., id

)
=

(
d

i1

)(
d− i1
i2

)(
d− i1 − i2

i3

)
. . .

(
d−

∑m−1
l=1 il

im

)
.
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Indeed, there are
(
d
i1

)
choices for the coordinates of value 1. For each such choice

there are
(
d−i1
i2

)
choices for the coordinates of value 2, and repeating this argu-

ment one obtains the above expression.
For levels i, j ∈ [d]m, say j majorizes i, denoted j ≻ i, if j contains a vertex

which is above some vertex in i, i.e., , if
m∑
ℓ=t

jℓ ≥
m∑
ℓ=t

iℓ for all t ∈ {m,m−1, ..., 1}.

For j ≻ i, the number of vertices y at level i comparable to a fixed vertex x
at level j is M(i, j):

(
jm
im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

( m∑
l=1

jl −
m∑
l=2

il

i1

)
.

Indeed, there are
(
jm
im

)
choices for the coordinates of value m in y. For each such

choice, there are
(
jm+jm−1−im

im−1

)
choices for the coordinates of value m − 1 in y,

and one can repeat this argument to obtain the claimed expression.
For j ≻ i, the number of vertices y at level j comparable to a fixed vertex x

at level i is

N (i, j) =
M(i, j)

(
d
j

)(
d
i

) .

Indeed, there are M(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and

level i contains
(
d
i

)
vertices. Since, by symmetry, each vertex in i is comparable

to the same number of vertices in level j, we get the desired expression.

Theorem 4.1. Let

B(m, d) = max
i,j:j≻i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid
Hm,d is O

(
d2mB(m, d)

)
and Ω (B(m, d)).

The proof for the upper bound part of Theorem 4.1 appears in the full version.
We now prove the lower bound.

Lemma 4.1. Any 2-TC-spanner of Hm,d has at least Ω(B(m, d)) many edges,
where B(m, d) is defined as in Theorem 4.1.

Proof. Let S be a 2-TC-spanner for Hm,d. We count the edges in S that occur on
paths connecting two particular levels of Hm,d. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈
j, v1 ≺ v2}. We will lower bound e∗i,j, the number of edges in the paths of length

at most 2 in S, that connect the pairs Pi,j. Notice that |P (i, j)| =
(
d
j

)
M(i, j).

Let ek,ℓ denote the number of edges in S that connect vertices in level k to
vertices in level ℓ. Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (1)
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We say that a vertex v covers a pair of vertices (v1, v2) if S contains the edges

(v1, v) and (v, v2) or, for the special case v = v1, if S contains (v1, v2). Let V
(k)
i,j

be the set of vertices in level k that cover pairs in Pi,j. Let αk be the fraction of

pairs in Pi,j that are covered by the vertices in V
(k)
i,j . Since each pair in Pi,j must

be covered by a vertex in levels k with i ≺ k ≺ j, we must have
∑

i≺k≺j αk ≥ 1.

For any vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from

vertices of level i incident to v and let outv be the number of outgoing edges to
vertices of level j incident to v. For each level k with i ≺ k ≺ j, since each vertex

v ∈ V
(k)
i,j covers inv · outv pairs,∑

v∈V
(k)
i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)

(
d

j

)
. (2)

We upper bound
∑

v∈V
(k)
i,j

inv · outv as a function of ei,k + ek,j, and then use

Equation (2) to lower bound ei,k + ek,j. For all k with i ≺ k ≺ j, variables inv

and outv satisfy the following constraints:∑
v∈V

(k)
i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V
(k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤ M(i,k) ∀v ∈ V
(k)
i,j , outv ≤ N (k, j) ∀v ∈ V

(k)
i,j .

The last two constraints hold because inv and outv count the number of edges
to a vertex of level k from vertices of level i, and from a vertex of level k to
vertices of level j, respectively. Using these bounds we obtain∑
v∈V

(k)
i,j

inv·outv ≤
∑

v∈V
(k)
i,j

M(i,k) · outv = M(i,k)·
∑

v∈V
(k)
i,j

outv ≤ M(i,k)·(ei,k+ek,j).

Similarly,
∑

v∈V
(k)
i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,∑
v∈V

(k)
i,j

inv · outv ≤ (ei,k + ek,j)min {M(i,k),N (k, j)} .

From Equation (2), ei,k + ek,j ≥ αkM(i, j)

(
d

j

)
1

min {M(i,k),N (k, j)}
for all

i ≺ k ≺ j. Applying Equation (1) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)

≥ min
k

1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)
= min

k

1

M(i,k)N (k, j)
M(i, j)

(
d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner is |S| ≥
B(m, d). ⊓⊔
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