
Transitive-Closure Spanners: A Survey?

Sofya Raskhodnikova1??

Pennsylvania State University, USA
sofya@cse.psu.edu

Abstract. We survey results on transitive-closure spanners and their
applications. Given a directed graph G = (V,E) and an integer k ≥ 1,
a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph
H = (V,EH) that has (1) the same transitive-closure as G and (2) diam-
eter at most k. These spanners were studied implicitly in different areas
of computer science, and properties of these spanners have been redis-
covered over the span of 20 years. The common task implicitly tackled
in these diverse applications can be abstracted as the problem of con-
structing sparse TC-spanners.
In this article, we survey combinatorial bounds on the size of sparsest
TC-spanners, and algorithms and inapproximability results for the prob-
lem of computing the sparsest TC-spanner of a given directed graph. We
also describe multiple applications of TC-spanners, including property
testing, property reconstruction, key management in access control hier-
archies and data structures.

1 Introduction

A spanner is a sparse backbone of a graph that approximately preserves dis-
tances between every pair of vertices. More precisely, a subgraph H = (V,EH) is
a k-spanner of G = (V,E) if for every pair of vertices u, v ∈ V , the shortest path
distance dH(u, v) from u to v in H is at most k · dG(u, v). Since they were intro-
duced by Awerbuch [10] and Peleg and Schäffer [43] in the context of distributed
computing, spanners for undirected graphs have found numerous applications,
including efficient routing [22, 23, 45, 46, 55], simulating synchronized protocols
in unsynchronized networks [44], parallel and distributed algorithms for approx-
imating shortest paths [20, 21, 27], and algorithms for distance oracles [11, 56].

In the setting of directed graphs, three notions of spanners have been pro-
posed: the direct generalization of the above definition [43], roundtrip spanners
[23, 46] and transitive-closure spanners [15]. In this survey, we focus on the latter
definition. It captures the notion that a spanner should have a small diameter
but preserve the connectivity of the original graph. By diameter1, we mean the

? Parts of this survey are adapted from [15–17, 14].
?? Supported by National Science Foundation (NSF/CCF award 0729171 and

NSF/CCF CAREER award 0845701).
1 The definition of diameter used in this survey and other papers on transitive-closure

spanners is nonstandard. The diameter is usually defined as the largest distance

2 Sofya Raskhodnikova

largest distance between a pair (u, v) of nodes in a directed graph such that v is
reachable from u.

Recall that the transitive closure of a graph G = (V,E) is a graph (V,ETC)
where (u, v) ∈ ETC if and only if there is a directed path from u to v in G.

Definition 1.1 (TC-spanner [15]). Given a directed graph G = (V,E) and an
integer k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) is a directed
graph H = (V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) <∞, then dH(u, v) ≤ k.

The edges from the transitive closure of G that are added to G to obtain a TC-
spanner are called shortcuts, and the parameter k is called the stretch.

Notice that a k-TC-spanner of G is a directed k-spanner of the transitive closure
of G. Nevertheless, TC-spanners are interesting in their own right due to the
multiple TC-spanner-specific applications.

Before TC-spanners were introduced in [15], they were studied implicitly in
access control, property testing, and data structures, and properties of these
combinatorial objects have been discovered and rediscovered over the span of 20
years. In this work, we survey results on TC-spanners and their applications. We
start by discussing a simple example of a TC-spanner of a directed line, which
has been studied in different areas under different guises.

1.1 A Simple Example: TC-spanners of the Directed Line

Directed acyclic graphs (DAGs) represent the most interesting case in applica-
tions of TC-spanners. There is also a reduction from constructing TC-spanners
of graphs with cycles to constructing TC-spanners of DAGs, with a small loss
in stretch, which we present in Section 3.2. In this section, we illustrate the
definition of TC-spanners by constructing sparse TC-spanners of the simplest
DAG—the directed line. The directed line Ln consists of nodes2 [n] and edges
{(i, i+ 1) : 1 ≤ i ≤ n− 1}. As discussed in Section 3.1, TC-spanners of the line
were implicitly studied in different contexts by multiple authors, many of whom
discovered the optimal constructions we describe here.

An additional motivation for considering optimal TC-spanners of the directed
line in a separate section is that it gives one of the simplest settings where inverse
Ackermann’s functions (see Definitions 1.2) arise naturally—simple enough to
explain in an undergraduate algorithms class.

It is easy to see that the transitive closure of Ln has
(
n
2

)
= Θ(n2) edges.

A TC-spanner, even of the smallest possible stretch—stretch 2, can be much
sparser then the transitive closure.

between a pair of nodes in a graph, and is set to infinity if a graph contains a pair
of nodes with no path from one to the other.

2 We use [n] to denote {1, 2, . . . , n}.

Transitive-Closure Spanners: A Survey 3

Ln TC(Ln) 2-TC-spanner of Ln

Lemma 1.1 (2-TC-spanner of the line). For all n ≥ 3, the directed line Ln
has a 2-TC-spanner with at most n log n edges3.

Proof. Our 2-TC-spanner, H, is a graph with vertex set [n]. We construct the
edge set of H recursively. First, define the middle node vmid = dn2 e. Use this node
as a hub: namely, add edges (v, vmid) for all nodes v < vmid and edges (vmid, v)
for all nodes v > vmid. Then recurse on the two line segments resulting from
removing vmid from the current line. Proceed until each line segment contains
exactly one node.

……

vmid

H is a 2-TC-spanner of the line Ln, since every pair of nodes u, v ∈ [n] is
connected by a path of length at most 2 via a hub. This happens in the stage
of the recursion during which u and v are separated into different line segments,
or one of these two nodes is removed.

To get the bound on the size of the 2-TC-spanner, observe that there are
blog nc stages of the recursion. In each stage, every non-hub node connects to
the hub in its current line segment, adding a total of at most n edges. Therefore,
the constructed spanner has at most n log n edges. ut

The same idea can be extended to construct a 3-TC-spanner of the line graph:

Lemma 1.2 (3-TC-spanner of the line). The directed line Ln has a 3-TC-
spanner with O(n log log n) edges.

Proof. Again we construct the edge set of our 3-TC-spanner H recursively. For
simplicity, assume that

√
n is an integer. Designate nodes which are the multiples

of
√
n as hubs. Connect each non-hub node to the nearest hub before it and the

nearest hub after it. More precisely, for each non-hub node v, let v` be v rounded
down to the nearest multiple of

√
n and let vr = v` +

√
n. Add edge (v`, v) if

v` ∈ [n] and edge (v, vr) if vr ∈ [n].

vrvl v

3 Logarithms in this article are base 2 unless indicated otherwise.

4 Sofya Raskhodnikova

Also, add edges between all hubs, orienting them from the smaller to the larger.
Finally, remove the hubs from the current line and recurse on the

√
n resulting

line segments. Proceed until each line segment contains exactly one node.
H is a 3-TC-spanner of the line Ln, since every pair of nodes u, v ∈ [n] is

connected by a path of length at most 3 via a pair of hubs. This happens in the
stage of the recursion where u and v are separated into different line segments,
or one of these two nodes is removed. For example, we add a path (u, ur, v`, v)
if u and v are not hubs.

Denote the number of edges in the spanner by T (n). At the first stage of

recursion, we add
(√

n
2

)
≤ n edges to connect the hubs and at most 2 edges

per non-hub node to connect non-hubs to hubs. Therefore, T (n) satisfies the
following recurrence:

T (n) ≤

{
0 if n ≤ 1;

3n+
√
n · T (

√
n) if n > 1.

The solution to this recurrence is T (n) ≤ 3n log log n. ut

This construction generalizes to TC-spanners of arbitrary constant stretch k,
giving k-TC-spanners of size O(n · λk(n)), where λk(n) are very slowly growing
functions of n, called the kth-row inverse Ackermann functions.

Definition 1.2 (Inverse Ackermann functions4). Let R≥0 be the set of non-
negative real numbers. For every function f : R≥0 → R≥0 satisfying f(n) < n
for all n > 1, define the function f∗(n) : R≥0 → R≥0 as:

f∗(n) = min{k ∈ Z≥0 : f (k)(n) < 2},

where f (k) denotes f composed with itself k times.
Define the kth-row inverse Ackermann function λk(n) as follows:

λ0(n) = n/2, λ1(n) =
√
n, and λk(n) = λ∗k−2(n) for k ≥ 2.

Intuitively, f∗(n) represents the number of times f can be applied before the
answer drops below 2. If f(n) = n/2 this number is Θ(log n), if f(n) =

√
n

it is Θ(log log n), and if f(n) = log n it is log∗ n. Therefore, λ2(n) = Θ(log n),
λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n). Also note that λk(n) is a non-
decreasing function of n for all k ≥ 0.

Lemma 1.3 (k-TC-spanner of the line). The directed line Ln has a k-TC-
spanner with at most k · n · λk(n) edges.

Proof. Lemmas 1.1 and 1.2 imply Lemma 1.3 for k = 2 and 3. (Recall that in
the proof of Lemma 1.3, we gave an upper bound of 3n loglog n on the size of the

4 We define these functions, following the spirit of the presentation by Seidel [50]. The
prevalent definition (see, e.g., [5]) is complicated and yields asymptotically equivalent
functions.

Transitive-Closure Spanners: A Survey 5

sparsest 3-TC-spanner of the line, even though we chose to hide the constant in
the statement of the lemma.) We prove Lemma 1.3 by induction on k, using the
constructions of 2- and 3-TC-spanners as base cases. Our induction hypothesis
is that one can construct a (k − 2)-TC-spanner of the line Ln with at most
(k−2) ·n ·λk−2(n) edges. To construct a k-TC-spanner for k > 3, we proceed as
for k = 3, but select even more nodes as hubs, connect them using an optimal
(k−2)-TC-spanner, add edges from each node to the nearest hub before and the
nearest hub after it, and recurse. Then each pair of nodes (u, v) will be connected
by a path that jumps from u to the smallest hub greater than u, then follows a
path of length at most k− 2 in the (k− 2)-TC-spanner on the hubs to reach the
largest hub smaller than v, and uses one more edge to jump to v.

It remains to specify the number of hubs, which we will denote by h, and to
analyze the size of the spanner. Let f(n) = λk−2(n). We set h = n

f(n) − 1 and

recurse on the segments of size f(n). By the induction hypothesis, the size of
the optimal (k − 2)-TC-spanner on the hubs is at most

(k−2) ·h ·λk−2(h) ≤ (k−2) · n

f(n)
·f
(

n

f(n)

)
≤ (k−2) · n

f(n)
·f(n) ≤ (k−2)n.

As before, each non-hub connects to at most 2 hubs. Therefore, the number of
edges in constructed spanner, T (n), satisfies the following recursion:

T (n) ≤

{
0 if n ≤ 1;

kn+ n
f(n) · T (f(n)) if n > 1.

The solution is T (n) = k · n · f∗(n). This follows from the fact that f∗(f(n)) =
f∗(n)− 1 for n > 1. Thus, T (n) = k · n · λ∗k−2(n) = k · n · λk(n). ut

As discussed in Section 3.1, the bound in Lemma 1.3 is tight when k is a
constant.

1.2 A Brief Overview

TC-spanners were defined by Bhattacharyya et al. [15] as a common abstrac-
tion for several applications. Prior to that, Thorup [52] considered a special
case of TC-spanners of graphs G that have at most twice as many edges as
G, and conjectured that for all directed graphs G on n nodes there are such
k-TC-spanners with k polylogarithmic in n. He proved his conjecture for planar
graphs [53], but later Hesse [37] gave a counterexample to Thorup’s conjecture
for general graphs. TC-spanners were also studied for directed trees: implicitly
in [5, 9, 19, 25, 60] and explicitly in [18, 54]. The implicit results were interpreted
as TC-spanner constructions in [15].

[15] presented several applications of TC-spanners: testing monotonicity of
functions, key management in an access hierarchy and data structures for com-
puting partial products in a semigroup. They also studied the computational
problem of finding a sparsest k-TC-spanner for a given directed graph. They

6 Sofya Raskhodnikova

presented algorithms and inapproximability results for this problem. Finally,
they gave sparse TC-spanner constructions for new graph families.

Later, [16, 14] studied TC-spanners for the directed hypercube and hypergrid
and presented an application of TC-spanners to property reconstruction. Steiner
TC-spanners (see Definition 3.1) were formally introduced in [17], but studied
before that in the context of access control hierarchies by [7] and [49]. Berman,
Raskhodnikova and Ruan [13] improved algorithms presented in [15]. Finally, Jha
and Raskhodnikova [39] pointed out the application of TC-spanners to testing
if a function is Lipschitz.

1.3 Organization of This Survey

We start by introducing notation and basic graph-theoretic background in Sec-
tion 2. In Section 3, we describe structural results on TC-spanners, that is,
combinatorial bounds on their size. Structural results for specific graph families
are surveyed in Section 3.1, while general structural results, applicable to all
graphs, appear in Section 3.2. In Section 4, we survey results on the computa-
tional problem of finding a sparsest TC-spanner of a given directed graph and the
more general problem of finding directed spanners. We describe approximation
algorithms and hardness results for these problems. Finally, Section 5 presents
multiple applications of TC-spanners, including property testing, property re-
construction, key management in access control hierarchies and data structures
for computing partial product in a semigroup.

2 Preliminaries and Notation

We write u �G v to denote that vertex v is reachable from vertex u in graph G.
When the graph is clear from the context, we omit G. The transitive closure of a
directed graph G = (V,E), denoted TC(G), is the directed graph (V,E′), where
E′ = {(u, v) : u �G v}. Vertices u and v are comparable if either (u, v) ∈ TC(G)
(that is, u is below v or, equivalently, smaller than v) or (v, u) ∈ TC(G) (that
is, u is above v or, equivalently, larger than v). This terminology and notation is
usually used for partially-ordered sets (posets), which are equivalent to directed
acyclic graphs, but can be also applied to general directed graphs.

A digraph G is weakly connected if replacing each directed edge in G with an
undirected edge results in a connected undirected graph. A digraph is strongly
connected if each vertex in the graph is reachable from every other vertex via
a directed path. The graph of strongly connected components of a digraph G
is the digraph obtained by contracting each strongly connected component into
one vertex, while maintaining all the edges between these components.

A transitive reduction of G is a digraph G′ with the fewest edges for which
TC(G′) = TC(G). As shown by Aho et al. [2], a transitive reduction of a given
graph can be computed efficiently via a greedy algorithm. The algorithm con-
tracts each strongly connected component C to a vertex v(C) to get a supergraph
H, obtains a supergraph H ′ by greedily removing edges in H that do not change

Transitive-Closure Spanners: A Survey 7

its transitive closure, and finally uncontracts v(C) to an arbitrary directed cycle
on vertices in C, choosing a representative vertex of C to be incident to the
edges incident to v(C) in H ′. Directed acyclic graphs have a unique transitive
reduction. We say G is transitively reduced if G is equal to its own transitive
reduction.

3 Overview of Structural Results on TC-spanners

For a directed graph G, we denote the number of edges in G by |G| and the
size of the sparsest k-TC-spanner of G by Sk(G). (The size refers to the number
of edges.) To put the following results in proper context, observe that if G has
n vertices, Sk(G) = O(n2). Unlike in the undirected setting, where for every
k ≥ 1, all graphs on n vertices have (2k − 1)-spanners with O(n1+1/k) edges [6,
42, 56], sparsest TC-spanners (and hence, sparsest directed spanners) can have
Ω(n2) edges. An example of a graph with a sparsest 2-TC-spanner of size Ω(n2)
is the complete bipartite graph Kn

2 ,
n
2

with n/2 vertices in each part and all
edges directed from the first part to the second. Therefore, most constructions
surveyed below are for TC-spanners of specific graph families. Nevertheless, there
are several general results, described in Section 3.2.

3.1 TC-spanners of Specific Graph Families

TC-spanners of lines and trees. TC-spanners of the directed lines and directed
trees were discovered under many different guises. They were studied implicitly
in [5, 9, 19, 25, 60] and explicitly in [18, 54]. Alon and Schieber [5] implicitly gave
tight bounds on Sk(Ln). They showed that, for constant k, the size of the sparsest
k-TC-spanner of the directed line is Θ(n · λk(n)), where λk(n) is the kth-row
inverse Ackermann function (see Definition 1.2 and Lemma 1.3). [5] also showed
that the smallest k for which Sk(Ln) = O(n) is O(α(n)), where α(n) is the
inverse Ackermann function. (The inverse Ackermann function is defined by
α(n) = min{k ∈ Z≥0 : λ2k(n) ≤ 3}.) Note that the size of any TC-spanner of
Ln is at least n − 1, since all edges of the form (i, i + 1) must be present in
a TC-spanner to ensure the same connectivity as in Ln. [5, 19, 54] proved that
sparsest k-TC-spanners of rooted directed trees asymptotically have the same
number of edges as k-TC-spanners of the line.

TC-spanners of planar graphs. Thorup [52] considered a special case of TC-
spanners of graphs G that have at most twice as many edges as G. In [53], he
proved that all directed planar graphs G on n nodes have such TC-spanners with
stretch polylogarithmic in n.

TC-spanners of graphs with small separators (H-minor-free graphs). A graph H
is a minor of G if H is a (not necessarily induced) subgraph of a graph obtained
from G by a sequence of edge contractions. A graph family F is minor-closed
if it contains every minor of every graph in F . For a fixed graph H (e.g., K5),

8 Sofya Raskhodnikova

a minor-closed family F is H-minor-free if H /∈ F . Examples of such families
include planar graphs, bounded treewidth graphs, and bounded genus graphs,
explicitly studied in applications in Section 5. Bhattacharyya et al. [15] gave an
efficient construction of k-TC-spanners of H-minor-free graphs. For constant k,
the size of the spanners is O(n · log n · λk(n)), where λk(·) is the kth-row inverse
Ackermann function. This result allowed [15] to drastically improve monotonicity
testers of Fischer et al. [33]. The application to monotonicity testing is described
in Section 5.

The construction in [15] uses divide-and-conquer approach. A natural first
attempt would be to use separators of Lipton and Tarjan [41]. Recall that an s-
separator for a graph G on n nodes is a set of s nodes whose removal disconnects
G into connected components of size at most 2n/3. Observe that the proofs of
Lemmas 1.1–1.3 implicitly use this approach for the special case of the line graph.
There, at every stage graph separators play a role of hubs. To come up with
efficient constructions for a wider family of graphs, Bhattacharyya et al. use the
path separators for undirected H-minor free graphs due to Abraham and Gavoille
[1]. An s-path-separator5 for a graph G on n nodes is a set of s paths whose
removal disconnects G into connected components of size at most 2n/3. For some
graph families, path separators can be much smaller than ordinary separators.
For example, planar graphs require ordinary separators of size Θ(

√
n), but are

3-path separable [1]. For a simple case of a 2-dimensional m×m grid, a Lipton-
Tarjan separator has size of Ω(m), but it is enough to remove m nodes on one
path, say, a horizontal line that cuts through the middle, to separate it.

The path separators of Abraham and Gavoile were constructed for undirected
graphs. Bhattacharyya et al. employ this construction on the undirected graph,
resulting from ignoring the directions of the edges of the input directed graph.
The resulting path separator for the original directed graph may be the union of
many directed paths. Here we only explain the construction for the simple case
when a separator for the graph (and a separator for every subgraph obtained

5 For a graph G to be s-path-separable one needs to be able to disconnect the graph
by removing nodes on at most s paths from any minimum spanning tree of G. To
keep our high-level overview simple, we do not get into details.

Transitive-Closure Spanners: A Survey 9

by removing a separator) consists of a small number of directed paths, as is the
case, for instance, for a 2-dimensional grid [m]× [m] where all edges are directed
towards vertices with larger coordinates. More precisely, we focus on the case
when there exists an integer s, such that every graph obtained at any recursion
stage has a separator with at most s directed paths, and moreover, this separator
can be found efficiently. (See [15] for the general treatment.)

Even though we use a 2-dimensional grid as an example in this proof, TC-
spanners of d-dimensional hypergrids are treated separately in the current sec-
tion, after TC-spanners of H-minor-free graphs.

If a separator consists of a constant number of (say, at most s) directed paths,
we can construct a k-TC-spanner of each path P in the separator as in the proof
of Lemma 1.3. We also need to make sure that our TC-spanner contains short
paths between all pairs of nodes that were using P to connect. To accomplish
this, for each node u with a path to some node in a separator path P , let u′ be
the first node in P reachable from u. As we are constructing a k-TC-spanner of
P , at each stage of the recursion, we add an edge from u to a hub h whenever we
add an edge (u′, h). We deal symmetrically with each node v with a path from
some node in P .

u

Pu’

v

v’h

Now, if there is a path from u to v via some vertex in P , there is a path of
length at most k in the spanner we are constructing. This is because u and v
are connected to the same hubs as u′ and v′ and, as demonstrated in the proof
of Lemma 1.3, u′ and v′ are connected by a path of length at most k via the
hubs. Now, we can safely remove the paths in the separator and recurse on
the resulting components. To distinguish this recursion from the recursion in
the construction of the TC-spanners of the paths, we call it an outer recursion.
Observe that at each stage of outer recursion we are adding no more edges per
node than in the construction for the line— namely, O(λk(n)) edges. This results
in O(n·λk(n)) edges per stage. Since there are O(log n) stages of outer recursion,
the constructed k-TC-spanner has size O(n · log n · λk(n)).

TC-spanners of hypergrids. The directed hypergrid, denoted Hm,d, has vertex set
[m]d and edge set {(x, y) : ∃i ∈ [d] such that yi − xi = 1 and for j 6= i, yj = xj}.
For the special case m = 2, H2,d is called a hypercube and is also denoted by Hd.

10 Sofya Raskhodnikova

2-TC-spanners of hypergrids are especially relevant for applications in property
testing and property reconstruction. TC-spanners of hypergrids of general stretch
k are used in the application to key management in an access hierarchy. The
following results on TC-spanners of hypergrids are from [16, 14].

As a comparison point for bounds below, note that the obvious bounds on
S2(Hd) are the number of edges in the d-dimensional hypercube, 2d−1d, and the
number of edges in the transitive closure of Hd, which is 3d−2d. (An edge in the
transitive closure of Hd has 3 possibilities for each coordinate: both endpoints
are 0, both endpoints are 1, or the first endpoint is 0 and the second is 1.
This includes self-loops, so we subtract the number of vertices in Hd to get the
desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d−2d. Similarly, the straightforward
bounds on the number of edges in a 2-TC-spanner ofHm,d in terms of the number
of edges in the directed grid and in its transitive closure are dmd−1(m− 1) and(
m2+m

2

)d
−md, respectively.

The following theorem gives upper and lower bounds on S2(Hm,d):

Theorem 3.1 (Hypergrid [16, 14]). Let S2(Hm,d) denote the number of edges
in the sparsest 2-TC-spanner of Hm,d. Then for m ≥ 3,

S2(Hm,d) = Ω

(
md logdm

(2d log logm)d−1

)
and ≤ md logdm.

The upper bound in Theorem 3.1 follows from a general construction of k-TC-
spanners for graph products for arbitrary k ≥ 2. The lower bound is proved by a
reducing the 2-TC-spanner construction for [m]d to that for the [2]× [m]d−1 grid
and then directly analyzing the number of edges required for a 2-TC-spanner
of [2] × [m]d−1. The authors show a tradeoff between the number of edges in
the 2-TC-spanner of the [2] × [m]d−1 grid that stay within the hyperplanes
{1} × [m]d−1 and {2} × [m]d−1 versus the number of edges that cross from one
hyperplane to the other. The proof proceeds in multiple stages. Assuming an
upper bound on the number of edges staying within the hyperplanes, each stage
is shown to separately contribute a substantial number of edges crossing between
the hyperplanes.

Theorem 3.1 is most useful when m is large. When m is small, it is superseded
by another set of bounds on S2(Hm,d), given in [16, 14], which are optimal up
to a factor of d2m. These bounds are formulated in terms of a complicated com-
binatorial expression, but value of this expression can be estimated numerically.
Specifically, S2(Hm,d) = 2cmd poly(d), where c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82
and c5 ≈ 3.24, each significantly smaller than the exponents corresponding to
the transitive closure sizes for the different m. More precisely, for the hyper-
cube, S2(Hd) = O(d32c2d) and Ω(2c2d). The upper bound on S2(Hd) is proved
via a randomized construction of a 2-TC-spanner of the directed hypercube.
Curiously, even though the upper and lower bounds above differ by a factor of
O(d3), it is known that the randomized construction yields a 2-TC-spanner of
Hd of size within O(d2) of the optimal.

Transitive-Closure Spanners: A Survey 11

Steiner TC-spanners of d-dimensional posets. In some applications (in particu-
lar, to access control hierarchies [8, 9, 49, 7]), the shortcuts can use Steiner ver-
tices, that is, vertices not in the original graph G. The resulting spanner is called
a Steiner TC-spanner.

Definition 3.1 (Steiner TC-spanner [17]). Given a directed graph G =
(V,E) and an integer k ≥ 1, a Steiner k-transitive-closure-spanner (Steiner
k-TC-spanner) of G is a directed graph H = (VH , EH) satisfying:

1. V ⊆ VH ;
2. for all vertices u, v ∈ V , if dG(u, v) <∞ then dH(u, v) ≤ k and if dG(u, v) =
∞ then dH(u, v) =∞.

Vertices in VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordi-
nary TC-spanners. Before, our example of a graph with a 2-TC-spanner of size
Ω(n2) was a complete bipartite graph Kn

2 ,
n
2

with n/2 vertices in each part and
all edges directed from the first part to the second. This graph has a Steiner
2-TC-spanner of size n: it is enough to add one Steiner vertex v, edges to v
from all nodes in the left part, and edges from v to all nodes in the right part.
Thus, for Kn

2 ,
n
2

there is a linear gap between the size of the sparsest Steiner
2-TC-spanner and the size of an ordinary 2-TC-spanner.

v

However, Bhattacharyya et al. [17] show that for directed hypergrids, Steiner
vertices do not help: sparsest Steiner TC-spanners have the same size as TC-
spanners with no Steiner vertices.

Lemma 3.1 ([17]). If Hm,d has a Steiner k-TC spanner H, it also has a k-TC
spanner of size |H|.

Proof. We show how to replace one Steiner vertex in H with a grid vertex while
keeping the same number of edges in the Steiner k-TC-spanner. This step can
be repeated to remove all Steiner vertices.

Since Hm,d is acyclic, a cycle in H can contain at most one non-Steiner
vertex, and therefore H will still remain a Steiner k-TC-spanner of Hm,d if this
cycle is contracted to one vertex. Thus, we can assume without loss of generality
that H is acyclic.

Let s be a Steiner vertex in H which does not have any other Steiner vertices
below it. Let s′ be the smallest vertex in Hm,d which is above all vertices v in
Hm,d satisfying v � s. (If there are no such v then s′ is the grid vertex with all
coordinates equal to 1.) Observe that s′ always exists and is unique. Moreover,

12 Sofya Raskhodnikova

every vertex in Hm,d that is above all such v is also above s′. By definition, s′

is above all vertices in Hm,d which have a path to s. It is also below all vertices
in Hm,d which are reachable from s. We replace all edges in H that have s as
an endpoint with the corresponding edges with s′ as an endpoint, and remove s
from H. Every pair of vertices that was connected via a path of length at most
k is still connected via the same path, with s replaced by s′ if necessary. No new
pair (u, v) of vertices in Hm,d got connected via s′ since if u was below s and v
was above s then u � s � v. The number of edges in H has not increased. ut

Atallah et al. [7], De Santis et al. [49] and Bhattacharyya et al. [17] study
Steiner TC-spanners of directed acyclic graphs or, equivalently, partially ordered
sets. Motivated by the application to access control hierarchies (described in
Section 5), they focus on the relationship between the dimension of a poset and
the size of its sparsest Steiner TC-spanner.

Definition 3.2 (Poset dimension). The dimension of a poset G is the small-
est d such that G can be embedded into a d-dimensional hypergrid Hm,d via an
order-preserving embedding. A mapping from a poset G to a poset G′ is called an
order-preserving embedding if it respects the partial order, that is, all x, y ∈ G
are mapped to x′, y′ ∈ G′ such that x �G y iff x′ �G′ y′.

Each poset has a dimension. In particular, each poset with n elements can be
embedded into a hypergrid Hn,d, so that for all i ∈ [d], the ith coordinates of
images of all points are distinct.

Poset dimension is a fundamental and well-studied parameter in poset the-
ory. For instance, Dilworth’s famous chain partitioning theorem was originally
intended as a lemma for proving a theorem about the dimension of distributive
lattices [24]. A survey on poset dimension can be found in Trotter’s monograph
[57]. One important result for the discussion below, proved by Dushnik and Miller
[26], is that that for all m, the hypergrid Hm,d has dimension exactly d. Atal-
lah et al. argue that many access control hierarchies are low-dimensional posets
that come equipped with an embedding demonstrating low dimensionality.

Stretch k Upper Bounds on Sk(G) Lower Bounds on Sk(G) Reference

k = 2 O(n logd n)
Ω

(
n
(

logn
log logn

)d)
[17]

for constant d

constant n logΩ(d) n
[17]

k ≥ 3 for constant d

k = 2t+ 1
O(3d−tt · n logd−1 n log logn) [49]

for t ∈ [d]

Table 1. The size of the sparsest Steiner k-TC-spanners of d-dimensional posets on n
vertices for d ≥ 2

Transitive-Closure Spanners: A Survey 13

Observe that the only poset of dimension 1 is the directed line. Tight bounds
for the size of (Steiner) TC-spanners of directed lines were discussed in the
beginning of Section 3. Table 1 summaries the best bounds for d ≥ 2. The upper
bounds hold for all posets of dimension d. The TC-spanners in the upper bounds
can be constructed efficiently, given an explicit embedding of the poset into a
d-dimensional grid. (Finding such an embedding is NP-hard [59].) Furthermore,
paths of length at most k between all pairs of vertices in the resulting k-TC-
spanners can be found efficiently. This is important for the application to access
control hierarchies.

The lower bounds mean that there exists a poset of dimension d for which
every Steiner k-TC-spanner has the specified number of edges. The lower bound
for Steiner 2-TC-spanners holds for the hypergrid Hm,d and follows from the
lower bound on S2(Hm,d) in Theorem 3.1 and the fact that Steiner vertices do
not help for directed hypergrids (Lemma 3.1). The lower bound on the size of
a Steiner k-TC-spanner for k ≥ 3 holds for a poset obtained by a randomized
construction.

Note that the Steiner vertices used in the constructions for d-dimensional
posets are necessary to obtain sparse TC-spanners. Recall our example of a
bipartite graph Kn

2 ,
n
2

for which every 2-TC-spanners required Ω(n2) edges.
Kn

2 ,
n
2

is a poset of dimension 2, and thus, by the upper bound in [17], has

a Steiner 2-TC spanner of size O(n log2 n). (As we mentioned before, for this
graph there is an even better Steiner 2-TC spanner with O(n) edges.) To see
that Kn

2 ,
n
2

is embeddable into a [n] × [n] grid, map each of the n/2 left ver-
tices of Kn

2 ,
n
2

to a distinct grid vertex in the set of incomparable vertices
{(i, n/2 + 1 − i) : i ∈ [n/2]}, and similarly map each right vertex to a dis-
tinct vertex in the set {(n+ 1− i, i+n/2) : i ∈ [n/2]}. It is easy to see that this
is a proper embedding.

3.2 General TC-spanner Constructions

Graphs that require a large number of shortcuts. We have seen in the beginning
of Section 3 that, in general, TC-spanners can be large. However, in the example
of Kn

2 ,
n
2

we looked at, the graph itself was large and, in fact, we did not have to
add any shortcuts to construct a 2-TC-spanner of that graph. Can one always
construct a TC-spanner by adding a small number of edges to the original graph?
Thorup [52] conjectured that all directed graphs G on n nodes have TC-spanners
with stretch polylogarithmic in n and size at most 2|G|. As mentioned before,
he proved his conjecture for planar graphs [53], but later Hesse [37] gave a
counterexample to Thorup’s conjecture for general graphs. For all small ε > 0,
he constructed a family of graphs with n1+ε edges for which all nε-TC-spanners
require Ω(n2−ε) edges.

2-TC-spanners from 2k-TC-spanners. Berman, Raskhodnikova and Ruan [13]
show how to (efficiently) obtain a 2-TC-spanner of a graph G with diameter at
most 2k by adding O(n1−1/k · |G|) shortcuts. They prove that this relationship
is nearly tight in the following sense: for every sufficiently small positive ε, there

14 Sofya Raskhodnikova

are graphs with 2k-TC-spanners of size n1+1/k and no 2-TC-spanners of size
less than n2−ε. These graphs are obtained by adjusting the parameters in the
construction by Hesse mentioned above.

Moreover, as shown in [13], their upper bound is completely tight for the
transformation from 3-TC-spanners to 2-TC-spanners: the number of added
edges is asymptotically optimal, as evidenced by the 4-layered graph with m2

nodes in layers 1 and 4 and m nodes in layers 2 and 3, where the edges are
directed from smaller to larger layers and are formed as follows. There is a com-
plete bipartite graph between layers 2 and 3. Each node in layer 2 is connected to
m nodes in layer 1, and each node in layer 1 has outdegree 1. The edges between
layers 3 and 4 are constructed in the same manner. The resulting graph has 3m2

edges and is a 3-TC-spanner. A 2-TC-spanner of this graph must connect m4

pairs of vertices in layers 1 and 4 via paths of length at most 2. Each shortcut
edge can be used by at most m such pairs. Therefore, at least m3 shortcuts are
required. Setting n = 2m2 + 2m, we obtain a graph with a 3-TC-spanner of size
O(n), for which every 2-TC-spanner requires Ω(n3/2) edges.

mm

m m m2m2

TC-spanners with large stretch. Improving on the first result in this vein from
[15], Berman, Raskhodnikova and Ruan [13] show that one can obtain a k-TC-
spanner of any graph by adding O(n2/k2) shortcut edges. This construction is
efficient.

TC-spanners of Graphs with Cycles. Here we give a reduction from constructing
TC-spanners of general directed graphs to constructing TC-spanners of directed
acyclic graphs (DAGs).

Lemma 3.2. Let G be a directed graph on n vertices, and G′ be the graph of
strongly connected components of G. Then Sk+2(G) ≤ Sk(G′) +2n. Moreover,
given a k-TC-spanner H ′ of G′, one can efficiently construct a (k + 2)-TC-
spanner H of G with at most |H ′|+ 2n edges.

Proof. For each strongly connected component C of G, pick an arbitrary vertex
vC and call it a representative of C. To construct a (k + 2)-TC-spanner H of
G from a k-TC-spanner H ′ of G′, first connect representatives of connected
components to mimic the structure of H ′: namely, add an edge (vC1

, vC2
) to H

for every edge (C1, C2) in H ′. Second, for every vertex u in the component C,
where u 6= vC , add edges (u, vC) and (vC , u) to H.

Transitive-Closure Spanners: A Survey 15

The resulting H has the same number of edges as H ′ plus at most 2 edges
per vertex, added to connect each vertex to the representative of its strongly
connected component. That is, |H| ≤ |H ′|+ 2n. To see that H is a (k + 2)-TC-
spanner of G, consider vertices u1, u2 in G, where u2 is reachable from u1. Let
v1 and v2 be the representatives of the components of u1 and u2, respectively.
Since H ′ is a k-TC-spanner of G′, there is a path of length at most k from the
component of u1 to the component of u2 in H ′. Therefore, H contains a path of
length at most k from v1 to v2. Since H also contains edges (u1, v1) and (v2, u2),
it contains a path of length at most k + 2 from u1 to u2. ut

4 Overview of Computational Results on Directed
Spanners

The computational problem of finding the size of the sparsest k-TC-spanner of a
given graph, called k-TC-Spanner, was first considered in [15]. k-TC-Spanner
is a special case of a well-studied problem, called Directed k-Spanner, of
finding the size of the sparsest k-spanner of a given (not necessarily transi-
tively closed) directed graph [29, 28, 15, 13]. In this section, we survey approx-
imation algorithms and inapproximability results for these two problems. All
known algorithms on Directed k-Spanner also apply to two other variants,
Client/Server Directed k-Spanner and k-Diameter Spanning Subgraph,
defined by Elkin and Peleg [29].

Problem Stretch k Approximability Previous Work

Directed k-Spanner
k = 2 O(logn) [29]

(and k-TC-Spanner)
k = 3 O(

√
n · logn) [13] [28, 15]

k ≥ 3 O(kn1−1/dk/2e · logn) [13] [15]

k-TC-Spanner only
k ≥ 3 O(n1−1/dk/2e · logn) [13] [15]

k = Ω
(

logn
log logn

)
O(n/k2) [13] [15]

Table 2. Summary: Algorithmic Results on Directed k-Spanner and k-TC-Spanner

Algorithms for Directed k-Spanner and k-TC-Spanner. All algorithms for
Directed k-Spanner immediately yield algorithms for k-TC-Spanner with
the same approximation ratio because k-TC-Spanner on input graph G is
equivalent to Directed k-Spanner on input TC(G). Table 2 summarizes the
best known approximation algorithms for these problems for different stretch k.
Elkin and Peleg [29] gave an O(log n)-approximation algorithm for Directed
2-Spanner. For k = 3, approximation algorithms were proposed in [28, 15, 13]
with the best ratio, O(

√
n · log n), due to [13]. In general, for k > 3, [13] prove

an approximation ratio O(kn1−1/dk/2e · log n), improving the first non-trivial

16 Sofya Raskhodnikova

polynomial time algorithm for this problem, given in [15]. For the special case of
k-TC-Spanner, [13] give a slightly better ratio of O(n1−1/dk/2e ·log n). For large
k, the best approximation ratio is O(n/k2), due to [13], again an improvement
over the first non-trivial algorithm for this range of parameters, proposed in [15].

We briefly describe the two TC-spanner-specific approximation algorithms
from [13]. They are based on the structural results mentioned in Section 3.2.
The first algorithm runs the O(log n)-approximation algorithm from [29] for
Directed 2-Spanner on the transitive closure of the input graph G. The anal-
ysis relies on the construction of 2-TC-spanners from k-TC-spanners, mentioned
in Section 3.2. This construction proves that S2(G) ≤ Sk(G) + O(n1−1/dk/2e ·
TR(G)), where TR(G) denotes the size of a transitive reduction of G. (A tran-
sitive reduction was defined and discussed in Section 2.) Since the algorithm is
guaranteed to output a 2-TC-spanner of size O(log n ·S2(G)) = O(log n ·Sk(G)+
n1−1/dk/2e log n·TR(G)), the result is anO(n1−1/dk/2e log n)-approximation. (Re-
call that TR(G) is a lower bound on the size of a TC-spanner.)

The algorithm for large k is based on an efficient procedure that obtains a
k-TC-spanner by adding O(n2/k2) shortcut edges. It can be run on each weakly
connected component separately. For a weakly connected component with n
nodes, the size of a k-TC-spanner is at least n − 1, so the resulting graph is a
O(n/k2)-approximation.

It is important to note that the algorithm for large k has a better approxi-
mation ratio than the corresponding hardness result for Directed k-Spanner.
That is, k-TC-Spanner is a strictly easier problem for this range of parameters.

Inapproximability of Directed k-Spanner. For completeness, we state the in-
approximability results for Directed k-Spanner, even though they do not
imply anything for k-TC-Spanner. Kortsarz [40] showed that the O(log n) ap-
proximation ratio for Directed 2-Spanner cannot be improved unless P=NP.
For all δ, ε ∈ (0, 1) and 3 ≤ k ≤ n1−δ, it is impossible to approximate Di-

rected k-Spanner within a factor of 2log
1−ε n in polynomial time, assuming

NP6⊆DTIME(npolylogn) [28, 30]. (DTIME(f(n)) denotes the class of languages
decidable deterministically in time f(n).) Thus, according to Arora and Lund’s
classification [38] of NP-hard problems, Directed k-Spanner is in class III, for
k ∈ [3, n1−δ]. Moreover, [30] showed that proving that Directed k-Spanner is
in class IV, that is, inapproximable within nδ for some δ ∈ (0, 1), would resolve
a long standing open question in complexity theory: namely, cause classes III
and IV to collapse into a single class.

Inapproximability of k-TC-Spanner. Table 3 summarizes inapproximability re-
sults for k-TC-Spanner for different values of k. For constant k, the hardness
results are the same as for Directed k-Spanner, even though the reductions
are much more technically involved. Observe that a stronger inapproximabil-
ity result for k > 2 would imply the same inaproximability for Directed-k-
Spanner and, as shown in [30], collapse classes III and IV in Arora and Lund’s
classification. For nonconstant k for which there exists a sufficiently small γ > 0
such that k ≤ n1−γ , we know that the problem is NP-hard, but not much beyond

Transitive-Closure Spanners: A Survey 17

Stretch k Inapproximability Assumption Notes

k = 2 Ω(logn) P6= NP Matches the upper bound

constant Ω(2log1−ε n)
NP6⊆DTIME(npolylogn)

Improvement implies
k ≥ 3 ∀ε ∈ (0, 1) breakthrough

k ≤ n1−δ
Ω(1 + δ) P6= NP∀δ ∈ (0, 1)

Table 3. Summary of Hardness Results on k-TC-Spanner; all results are from [15]

that. This contrasts sharply with the known hardness of Directed k-Spanner,
but, as mentioned previously, k-TC-Spanner is known to be strictly easier for
some (but not all) k in that range.

The 2log
1−ε n-inapproximability of k-TC-Spanner for constant k ≥ 3 in [15]

matches the inapproximability of Directed k-Spanner for the same stretch
in [30]. As is the case for Directed k-Spanner, the reduction is from a prob-
lem called MIN-REP, whose inapproximability Directed k-Spanner inher-
its. However, as illustrated in [15], all known hard instances for Directed k-
Spanner cannot imply anything better than Ω(1)-hardness for k-TC-Spanner.
Intuitively, inapproximability of k-TC-Spanner is harder to prove than inap-
proximability of Directed k-Spanner because an instance of k-TC-Spanner
must be transitively-closed, and thus, have more “shortcut” routes between pairs
of vertices. The construction of hard instances of k-TC-Spanner in [15] uses
so-called generalized butterfly and broom graphs. The paths in these graphs are
well-structured, making it possible to analyze many different routes in the tran-
sitive closure of a hard instance.

The reduction from MIN-REP to k-TC-Spanner in [15] is quite involved.
We briefly describe some of the ideas behind the reduction. An instance of MIN-
REP is a bipartite graph G, where each part consists of n nodes partitioned into
r clusters of size n/r. The clusters in the left part are called A1, . . . ,Ar and the
clusters in the right part are B1, . . . ,Br.

A1

A3

B1

B2

B3

A2

supergraph

18 Sofya Raskhodnikova

Define the supergraph to have nodes A1, . . . ,Ar,B1, . . . ,Br, with a superedge
(Ai,Bj) iff there is a node in Ai adjacent to a node in Bj . A rep-cover is a vertex
set S in the graph such that whenever (Ai,Bj) is an edge in the supergraph,
there is an edge between some u, v ∈ S with u ∈ Ai and v ∈ Bj . A solution to
MIN-REP is a smallest rep-cover. Elkin and Peleg [28] showed that MIN-REP

is 2log
1−ε n-inapproximable.

We now describe generalized butterfly and broom graphs used in the reduction.
Generalized butterflies were defined by Woodruff [58]. Each node in a generalized
butterfly has k coordinates: (a1, . . . , ak−1, i), where a1, . . . , ak−1 ∈ [d] and i ∈ [k].
There is an edge from node (a1, . . . , ak−1, i) to node (b1, . . . , bk−1, i + 1) iff for
all j 6= i, aj = bj .

1
2

. . .

. . .

layer 1 layer i layer i+1 layer k+1

(a1,…,ai,…,ak-1,i)

(b1,…,bi,…,bk-1,i+1)

Since there are d possibilities for bi, each node has outdegree d. Similarly, each
node has indegree d. It is easy to see that there is a unique shortest path of
length k − 1 from any node in layer 1 to any node in layer k. Moreover, any
shortcut is on at most dk−3 such paths because if it connects layer i to layer
i+ ` (where ` ≥ 2) it fixes all but i− 1 coordinates of the first node and all but
k − (i + `) coordinates of the second. Thus, at least dk+1 shortcuts are needed
to reduce the diameter from k − 1 to k − 2.

A broom is a 3-layer graph, where the two leftmost layers form a bipartite
clique, and the right layer consists of degree-1 nodes, attached to nodes in the
middle layer. Each node in the first and second layer has outdegree d. All edges
are directed from left to right.

d
d d

Generalized butterfly Broom

Transitive-Closure Spanners: A Survey 19

Given an instance of MIN-REP, we construct an instance G of k-TC-
Spanner as follows. We attach a disjoint copy of a generalized butterfly of
diameter k− 1 to each Ai in the MIN-REP instance graph; that is, we identify
the vertices in Ai with the vertices in layer k of the butterfly. The parameter
d is determined by the size of Ai and k. (We can add isolated vertices to each
cluster of the given MIN-REP instance to ensure that |Ai| is a (k−1)st power.)
Next, each Bj is identified with the leftmost layer of a disjoint broom graph.
All edges of G are directed towards the rightmost nodes of the brooms. The
resulting graph has diameter k + 2.

A1

A3

B1

B2

B3

A2

MIN-REP
instance

Brooms
3 layers

Butterflies
k layers

A k-TC-spanner H of G is formed as follows. Let O be a minimum rep-cover
of the underlying MIN-REP instance. For each butterfly, include all shortcuts
from layer k−2 to comparable vertices in layer k which are also in O. In addition,
include all shortcuts from vertices in layer k + 1 which are also in O to all
comparable nodes in the last layer. Since O is a rep-cover, H is a k-TC-spanner.
The size of H is |G| + d2|O| because for each vertex in O we add shortcuts to
d2 vertices (in layer k − 2 for vertices in the left clusters of MIN-REP, and in
layer k + 3 for vertices in the right clusters).

IfH were optimal, then approximating its size would approximate a minimum
rep-cover of the original MIN-REP instance within the same factor. To ensure
that H is optimal, [15] carefully modify the original MIN-REP instance and
only then apply the reduction we described.

20 Sofya Raskhodnikova

5 Applications of TC-spanners

We describe four types of applications that use sparse TC-spanners: property
testing, property reconstruction, key management in an access hierarchy and
data structures for computing partial products in a semigroup. For property
testing, we give two applications: to testing monotonicity of functions and to
testing if a function is Lipschitz. All these applications, with the exception of
testing Lipschitz functions and property reconstruction, were pointed out and
described in [15]. The application to Lipschitz functions is from [39]. The appli-
cation to property reconstruction is from [14].

5.1 Applications to Property Testing

We start by describing the application to testing monotonicity of functions.
We also point out the limitations of TC-spanner techniques and related open
questions in the area.

Monotonicity testing. Monotonicity of functions [31, 35, 25, 12, 32, 33, 36, 4, 15,
16, 51] is one of the most widely studied properties in property testing [34, 47].
Fischer et al. [33] prove that testing monotonicity is equivalent to several other
testing problems. Let Vn be a poset of n elements and Gn = (Vn, E) be the
relation graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R is called
monotone if f(x) ≤ f(y) for all (x, y) ∈ E. We say f is ε-far from monotone
if f has to be changed on ≥ ε fraction of the domain to become monotone,
that is, minmonotone g |{x : f(x) 6= g(x)}| ≥ εn. A monotonicity tester on Gn
is an algorithm that, given an oracle for a function f : Vn → R, passes if f
is monotone but fails with probability ≥ 2

3 if f is ε-far from monotone. For
instance, if Gn is a directed line Ln, the tester needs to determine whether
the input sequence, specified by f , is sorted or ε-far from sorted. If Gn is a
2-dimensional grid Hm,2, the goal is to determine whether the input matrix
has non-decreasing rows and columns. The optimal monotonicity tester for the
directed line Ln, proposed by Dodis et al. [25], is based on the sparsest 2-TC-
spanner for that graph. Implicit in the proof of Proposition 9 in [25] is a lemma
relating the complexity of a monotonicity tester for Ln to the size of a 2-TC-
spanner of Ln. Bhattacharyya et al. [15] generalized this lemma by observing
that a sparse 2-TC-spanner for any partial order graph Gn implies an efficient
monotonicity tester on Gn.

Lemma 5.1 ([15]). If a directed acyclic graph Gn has a 2-TC-spanner with s(n)

edges, then there exists a monotonicity tester on Gn that runs in time O
(
s(n)
εn

)
.

Proof. The tester selects 8s(n)
εn edges of the 2-TC-spanner H uniformly at ran-

dom. It queries function f on the endpoints of all the selected edges and rejects
if some selected edge (x, y) is violated by f , that is, f(x) > f(y).

If the function f is monotone on Gn, the algorithm always accepts. The crux
of the proof is to show that functions that are ε-far from monotone are rejected

Transitive-Closure Spanners: A Survey 21

with probability at least 2
3 . Let f : Vn → R be a function that is ε-far from

monotone. It is enough to demonstrate that f violates at least εn
4 edges in H.

Then each selected edge is violated with probability εn
4s(n) , and the lemma follows

by elementary probability theory.
Denote the transitive closure of Gn by TC(Gn). We say a vertex x ∈ Vn is

assigned a bad label by f if x has an incident violated edge in TC(Gn); otherwise,
x has a good label. Let V ′ be a set of vertices with good labels. Observe that
f is monotone on the induced subgraph G′ = (V ′, E′) of TC(Gn). This implies
([33], Lemma 1) that f can be changed into a monotone function by modifying
it on at most |Vn − V ′| vertices. Since f is ε-far from monotone, it shows that
there are at least εn vertices with bad labels.

Every function that is ε-far from monotone has a matching M of at least εn
2

violated edges in TC(Gn) [25]. We will establish a map from the set of edges
in M to the set of violated edges in H, so that each violated edge in H is the
image of at most 2 edges in M . For each edge (x, y) in the matching, consider
the corresponding path from x to y of length at most 2 in the 2-TC-spanner H.
If the path is of length 1, (x, y) is the violated edge in H corresponding to the
matching edge (x, y). Otherwise, let (x, z, y) be a path of length 2 in H. At least
one of the edges (x, z) and (z, y) is violated, and we map (x, y) to that edge.
Since M is a matching, at most 2 edges in M can be mapped to one violated
edge in H. Thus, the 2-TC-spanner H has ≥ εn

4 violated edges, as required. ut

The fact that H is a 2-TC-spanner is crucial for the proof. If it was a k-TC-
spanner for k > 2, the path of length k from x to y might not have any violated
edges incident to x or y, even if f(x) > f(y). Consider G2n = (V2n, E) where
V2n = {x1, . . . , x2n}, E = {(xi, xn) | i < n}∪(xn, xn+1)∪{(xn+1, xj) | j > n+1}.
G2n is a 3-TC-spanner of itself. Now set f(xi) = 1 for i ≤ n and f(xi) = 0
otherwise. Clearly, this function is 1

2 -far from monotone, but only one edge,
(xn, xn+1) is violated in the 3-TC-spanner.

As demonstrated by Lemma 5.1, all the 2-TC-spanner constructions yield
monotonicity testers for functions defined on the corresponding posets. This
lemma led to significant improvements in monotonicity testers for several graph
families, including planar graphs and, in general, H-minor-free graphs [15]. In-
deed, [15] achieve testers with O(log2 n/ε) queries for H-minor-free graphs using
their construction of sparse 2-TC-spanners for this graph family, whereas the
previous tester, due to Fischer et al. [33], worked only for planar graphs and
required Θ(

√
n/ε) queries.

We briefly discuss the limitations of the TC-spanner method for constructing
monotonicity testers. The lower bounds in [16, 14] on the size of the sparsest 2-
TC-spanners for the hypercube and the hypergrid (described in Theorem 3.1)
rule out the TC-spanner approach for improving monotonicity testers on the
hypercube and hypergrid. Currently, the running time of the best tester for
monotonicity of functions of the form f : {0, 1}d → R and, more generally,
f : [m]d → R, where R is an arbitrary range, is O

(
d
ε logm · log |R|

)
[25]. The

best known lower bound (for the hypercube with range R = {0, 1}) is Ω(log log d)
[33]. (There are better bounds for restricted classes of tests in [33] and [51].) Even

22 Sofya Raskhodnikova

though for a fixed d, it is known that the optimal monotonicity tester for the
grid runs in time Θ(logm

ε) [36, 32], bridging the gap between the lower and upper
bounds for arbitrary d has remained elusive. Lemma 5.1 showed that if a 2-TC-
spanner of size o(2dd2) for the hypercube or, more generally, a 2-TC-spanner of
size o(mdd2 log2m) for the hypergrid were found, the monotonicity tester of [25]
would be improved. In the light of the lower bounds for the hypercube and the
hypergrid, a fundamentally new approach is required.

Testing if a function is Lipschitz. In the important special case when Gn is the
directed line, Lemma 5.1 yields an optimal tester for whether a function of the
form f : [n] → R is monotone or, equivalently, of whether a list of n elements
is sorted, that runs in time O(log n/ε). (There is another optimal tester for this
problem that was discovered first [31].) Jha and Raskhodnikova [39] observe that
the test and analysis in Lemma 5.1 apply to any property of a list of numbers if
(a) it can be expressed in terms of pairs of list elements and (b) it is transitive:
namely, for all x ≺ y ≺ z, whenever (x, y) and (y, z) are not violated, (x, z) is
also not violated. In particular, it applies to testing whether a function of the
form f : [n] → R is Lipschitz. A function f : D → R is called Lipschitz if
distR(f(x), f(y)) ≤ distD(x, y) for all x, y in D, where distR and distD denote
the distance functions on the range and domain of f , respectively. Testing the
Lipschitz property has applications to programs with noisy inputs and to data
privacy.

Note that the Lipschitz property was defined in terms of pairs of domain
elements. Consider a function f : [n] → R, where the domain and range are
equipped with distance functions distD(x, y) = |x− y| and distR(f(x), f(y)) =
|f(y)−f(x)|. We say a pair (x, y) is violated if |f(y)−f(x)| > |y−x|. Then if (x, y)
and (y, z) are not violated, it implies that neither is (x, z). Thus, the requirements
(a) and (b) above hold and, using their observation, Jha and Raskhodnikova get
a O(log n/ε) Lipschitz test for functions of the form f : [n]→ R via the optimal
2-TC-spanner construction of the line.

5.2 Application to Property Reconstruction

Property-preserving data reconstruction was introduced by Ailon, Chazelle, Co-
mandur and Liu [3]. In this model, a reconstruction algorithm, called a filter,
sits between a client and a dataset. A dataset is viewed as a function f : D → R.
Client accesses the dataset using queries of the form x ∈ D to the filter. The
filter looks up a small number of values in the dataset and outputs g(x), where
g must satisfy some fixed structural property P. Extending this notion, Saks
and Seshadhri [48] defined local reconstruction. A filter is local if it allows for a
local (or distributed) implementation: namely, if the output function g does not
depend on the order of the queries.

Definition 5.1 (Local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R, and to an auxiliary
random string ρ (the “random seed”), and takes as input x ∈ D. For fixed f

Transitive-Closure Spanners: A Survey 23

and ρ, A runs deterministically on input x to produce an output Af,ρ(x) ∈ R.
As x varies over the domain D, this defines a function g : D → R, where
g(x) = Af,ρ(x). (Note that a local filter has no internal state to store previously
made queries.) The filter must satisfy the following conditions:

– For each f and ρ, the function g output by the filter satisfies P.
– If f satisfies P, then g is identical to f with probability at least 1 − δ, for

some δ ≤ 1/3. The parameter δ is called error probability.

In answering query x ∈ D, the filter A may ask for values of f at domain points
of its choice using its oracle access to f . Each such access made to the oracle
is called a lookup to distinguish it from the client query x. A local filter is non-
adaptive if the set of domain points that the filter looks up to answer an input
query x does not depend on answers given by the oracle.

Saks and Seshadhri also required that g must be sufficiently close to f : With
high probability (over the choice of ρ), Dist(g, f) ≤ B(n)·Dist(f,P), where B(n)
is called the error blow-up. (Dist(g, f) is the number of points in the domain on
which f and g differ. Dist(f,P) is ming∈P Dist(g, f).) If a local filter satisfies
this condition along with Definition 5.1, we call it distance-respecting.

Local Monotonicity Reconstructors. The first property considered in the recon-
struction [3] and local reconstruction [48] models was monotonicity of functions.
(See Section 5.1 for a definition.) A (distance-respecting) filter for monotonicity
can be used, for example, when a program will run correctly only if its input
is sorted. Then, instead of accessing the input directly, the program can access
it via a filter, which will ensure that the program always sees a sorted input,
making small corrections when necessary. A local filter can be implemented in
a distributed manner with an additional guarantee that every program run on
the same not-quite-sorted input will see the same corrected version. This can be
done by supplying the same random string to each copy of the filter.

To motivate monotonicity reconstructors for hypergrids, consider the scenario
of rolling admissions: An admissions office assigns d scores to each application,
such as the applicant’s GPA, SAT results, essay quality, etc. Based on these
scores, some complicated (third-party) algorithm outputs the probability that a
given applicant should be accepted. The admissions office wants to make sure
“on the fly” that strictly better applicants are given higher probability, that is,
probabilities are monotone in scores. A hypergrid monotonicity filter may be used
here. And, as before, if the filter is local, it can be implemented in a distributed
manner, guaranteeing the same results for all filters running in parallel.

Saks and Seshadhri [48] give a distance-respecting local monotonicity filter
for the directed hypergrid, Hm,d, that makes (logm)O(d) lookups per query. No
non-trivial monotonicity filter for the hypercube Hd (performing o(2d) lookups
per query) is known. One of the monotonicity filters in [3] is a local filter for the
directed line Hm,1 with O(logm) lookups per query (but a worse error blow up
than in [48]). As observed in [48], this upper bound is tight. Notably, all known
local filters for monotonicity property are non-adaptive. A lower bound of 2αd,

24 Sofya Raskhodnikova

on the number of lookups per query for a distance-respecting local monotonicity
filter on Hd with error blow-up 2βd, where α, β are sufficiently small constants,
appeared in [48].

[14] show how to construct sparse 2-TC-spanners from local monotonicity
reconstructors with low lookup complexity. These constructions, in conjunction
with lower bounds on the size of 2-TC-spanners of the hypergrid and hyper-
cube, described in Section 3.1, imply lower bounds on lookup complexity of
local monotonicity reconstructors with arbitrary blow-up. The transformations
from non-adaptive and adaptive reconstructors are stated in Theorems 5.1 and
5.2, respectively.

Theorem 5.1 (Transformation from non-adaptive Local Monotonicity
Reconstructors to 2-TC-spanners, [14]). Let Gn = (Vn, E) be a poset on
n nodes. Suppose there is a non-adaptive local monotonicity reconstructor A
for Gn that looks up at most `(n) values to answer any query x ∈ Vn and has
error probability at most δ. Then there is a 2-TC-Spanner of Gn with at most
O(n`(n) · dlog n/ log(1/δ)e) edges.

Proof. Let A be a local reconstructor given by the statement of the theorem.
Let F be the set of pairs (x, y) with x, y in Vn such that x ≺ y. Then, F is of
size at most

(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set {z ∈ Vn : x � z � y}.

Define function f (x,y)(v) to be 1 on all v � x and 0 everywhere else. Also, define
function f (x,y)(v), which is identical to f (x,y)(v) for all v /∈ cube(x, y) and 0 for
v ∈ cube(x, y). Both, f (x,y) and f (x,y), are monotone functions for all (x, y) ∈ F .
Let Aρ be the deterministic algorithm which runs A with the random seed fixed
to ρ. We say a string ρ is good for (x, y) ∈ F if filter Aρ on input f (x,y) returns
g = f (x,y) and on input f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s ≤ d2 log n/ log(1/2δ)e, con-
sisting of strings used as random seeds by A, such that for every (x, y) ∈ F some
string ρ ∈ S is good for (x, y). We choose S by picking strings used as random
seeds uniformly and independently at random. Since A has error probability at
most δ, we know that for every monotone f , with probability at least 1−δ (with
respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed
(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤
(2 · δ)s, which, for s = d2 log n/ log(1/2δ)e, is at most 1/n2 < 1/|F|. By a union
bound over F ,

Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with required properties.
We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described

above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ

Transitive-Closure Spanners: A Survey 25

on query x. For each string ρ ∈ S and each vertex x ∈ Vn, connect x to all
comparable vertices in Nρ(x) (other than itself) and orient these edges according
to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists
(x, y) ∈ F with no path of length at most 2 in H from x to y. Consider ρ ∈ S
which is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all
v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by definition of
f (x,y). For all v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).
All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any points in cube(x, y). Therefore, h is well-defined. Since, ρ
is good for (x, y) and h is identical to f (x,y) for all look ups made on query x,
Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not
monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · ` · s ≤ n` · d2 log n/ log(1/2δ)e. ut

The next theorem applies even to adaptive local monotonicity reconstructors.
It takes into account how many lookups on query x are points incomparable to
x. In particular, if there are no such lookups, then the constructed 2-TC-spanner
is of the same size as in Lemma 5.1.

Theorem 5.2 (Transformation from adaptive Local Monotonicity Re-
constructors to 2-TC-spanners, [14]). Let Gn = (Vn, E) be a poset on
n nodes. Suppose there is a (possibly adaptive) local monotonicity reconstruc-
tor A for Gn that, for any query x ∈ Vn, looks up at most `1(n) vertices
comparable to x and at most `2(n) vertices incomparable to x, and has er-
ror probability at most δ. Then there is a 2-TC-Spanner of Gn with at most
O(n`1(n) · 2`2(n)dlog n/ log(1/δ)e) edges.

Proof. Define F , f (x,y), f (x,y), Aρ and S as in the proof of Theorem 5.1. As
before, for each x ∈ Vn, we define sets Nρ(x), and construct the 2-TC-Spanner
H by connecting each x to comparable points in N (x) for all ρ ∈ S and orienting
the edges according toGn. However, nowNρ(x) is a union of several setsN b,w

ρ (x),

indexed by b ∈ {0, 1} and w ∈ {0, 1}`2(n). (In addition, Nρ(x) contains x.) For

each x ∈ Vn, b ∈ {0, 1} and w ∈ {0, 1}`2(n), let N b,w
ρ (x) ⊆ Vn be the set

of lookups performed by Aρ on query x, assuming that the oracle answers all
lookups as follows. When a lookup y is comparable to x, answer 0 if y ≺ x, b
if y = x, 1 if x ≺ y. Otherwise, if y is the i’th lookup made to an incomparable
point for some i ∈ [`2], answer w[i]. Recall that we set Nρ(x) to be the union of

N b,w
ρ for all b ∈ {0, 1} and all w ∈ {0, 1}`2(n). This completes the description of
Nρ(x) and construction of H.

The argument that H is a 2-TC-spanner proceeds similarly to that in the
proof of Theorem 5.1. The caveat is that an adaptive local filter might choose
lookups based on the answers to previous lookups. The constructed function h
sets all points comparable to x to 0 if they are below x and 1 if they are above x.

26 Sofya Raskhodnikova

However, points incomparable to x might be comparable to y and might be set
to 0 or 1, depending on whether they are above or below y. Since we included
sets of points queried under all these possibilities in Nρ(x), we can now conclude
that Aρ(x) = h(x) = 1. The same applies for y. So, Ah,ρ outputs a non-monotone
function, witnessed the pair (x, y). Contradiction.

We proceed to bound the number of edges EH in H. For each ρ ∈ S, x ∈ Vn,

b ∈ {0, 1}, and w ∈ {0, 1}`2(n), the number of vertices in Nρ
b,w(x) comparable to

x is at most `1(n). Therefore,

|EH | ≤ `1(n) · 2 · 2`2(n) · |S| ≤ O
(
n · `1(n) · 2`2(n)dlog n/ log(1/δ)e

)
. ut

In Theorems 5.1 and 5.2 when δ is sufficiently small the bounds on the 2-TC-
Spanner size become O(n`(n)) and O(n`1(n) · 2`2(n)), respectively. As pointed
out earlier, all known monotonicity reconstructors are non-adaptive. It is an
open question whether it is possible to give a transformation from adaptive local
monotonicity reconstructors to 2-TC-spanners without incurring an exponential
dependence on the number of lookups made to points incomparable to the query
point. It is not known if this dependence is an artifact of the proof or an indi-
cation that lookups to incomparable points might be helpful for adaptive local
monotonicity reconstructors.

Theorems 5.1 and Theorem 5.2 imply the following lower bounds on the
lookup complexity of local monotonicity reconstructors. These lower bounds hold
for any error-blow up.

Corollary 5.1 ([14]). Consider a nonadaptive local monotonicity filter with
constant error probability δ. If the filter is for functions f : Hm,d → R, it must

perform Ω
(

logd−1m
dd(2 log logm)d−1

)
lookups per query. If the filter is for functions f :

Hd → R, it must perform Ω
(
2αd/d

)
lookups per query, where α ≥ 0.1620.

Corollary 5.2 ([14]). Consider an (adaptive) local monotonicity filter with
constant error probability δ, that for every query x ∈ Vn, looks up at most `2
vertices incomparable to x. If the filter is for functions f : Hm,d → R, it must

perform Ω
(

logd−1m
2`2dd(2 log logm)d−1

)
lookups to vertices comparable to x per query x.

If the filter is for functions f : Hd → R, it must perform Ω
(
2αd−`2/d

)
compa-

rable lookups, where α ≥ 0.1620.

Prior to [14], no lower bounds for monotonicity reconstructors on Hm,d with
dependence on both m and d were known. Unlike the bound in [48], the TC-
spanner-based lower bounds hold for any error blow-up. These bounds are tight
for reconstructors that are either non-adaptive or perform the number of in-
comparable lookups that is polylogarithmic in the number of points in the do-
main. Specifically, for the hypergrid Hm,d of constant dimension d, the number
of lookups is (logm)Θ(d), and for the hypercube Hd, it is 2Θ(d) for any error
blow-up.

Transitive-Closure Spanners: A Survey 27

5.3 Application to Key Management in Access Control Hierarchies

Atallah et al. [9] used sparse Steiner TC-spanners to construct efficient key man-
agement schemes for access control hierarchies. An access hierarchy is a partially
ordered set G of access classes. Each user is entitled to access a certain class and
all classes reachable from the corresponding node in G. One approach for de-
vising a cryptographic protocol that enforces the access hierarchy is to have the
users follow a key management scheme [8, 9, 49, 7, 17]. Here, each edge (i, j) has
an associated public key P (i, j), and each node i, an associated secret key ki.
Only users with the secret key for a node have the required permissions for the
associated access class. The public and secret keys are designed so that there
is an efficient algorithm A which takes ki and P (i, j) and generates kj , but for
each (i, j) in G, it is computationally hard to generate kj without knowledge of
ki. Thus, a user can efficiently generate the required keys to access a descendant
class, but not other classes. The number of runs of algorithm A needed to gen-
erate a secret key kv from a secret key ku is equal to the number of edges on
the shortest path from u to v in G. To speed this up, Atallah et al. [7] suggest
adding edges and nodes to G to increase connectivity. To preserve the access
hierarchy represented by G, the new graph H must be a Steiner TC-spanner of
G. The number of edges in H corresponds to the space complexity of the scheme,
while the stretch k of the spanner corresponds to the time complexity.

We note that the time to find the path from u to v is also important in
this application. In the upper bounds from [17] listed in Table 1, this time is
O(d), which for, say, constant d is likely to be much less than 2g(n) or 3g(n),
where g(n) is the time to run algorithm A. This is because algorithm A involves
the evaluation of a cryptographic hash function, which is very expensive: any
hash function secure against poly(n)-time adversaries requires g(n) ≥ polylog n
evaluation time under existing number-theoretic assumptions.

5.4 Application to Computing Partial Products in a Semigroup

Yao [60] and Alon and Schieber [5] study space-efficient data structures for the
following problem: Preprocess elements {s1, . . . , sn} of a semigroup (S, ◦) to be
able to compute partial products si ◦ si+1 ◦ · · · ◦ sj for all i, j ∈ [n] with at
most k queries to a small database of pre-computed partial products. Examples
of a semigroup (S, ◦) include (R,min), the space of real d-dimensional vectors
with operation (x1, . . . , xd) ◦ (y1, . . . , yd) = (min(x1, y1), . . . ,min(xd, yd)), and
the space of real d× d matrices equipped with the multiplication operation.

Bhattacharyya et al. [15] point out that the problem of computing partial
products in a semigroup reduces to finding a sparsest k-TC-spanner for a directed
line Ln+1. If the database stores a product su ◦ · · · ◦ sv for each k-TC-spanner
edge (u, v + 1), every product si ◦ · · · ◦ sj can be computed by multiplying the
products corresponding to the edges on a path of length at most k from i to
j + 1 in the k-TC-spanner for Ln+1.

Chazelle [19] and Alon and Schieber [5] also consider a generalization of the
above problem, where the input is an (undirected) tree T with an element si of

28 Sofya Raskhodnikova

a semigroup associated with each vertex i. The goal is to create a space-efficient
data structure that allows us to compute the product of elements associated
with all vertices on the path from i to j, for all vertices i, j in T . As before, only
k queries to the data structure are allowed for each product computation. The
generalized problem reduces to finding a sparsest k-TC-spanner for a directed
tree T ′ obtained from T by appending a new vertex to each leaf, and then select-
ing an arbitrary root and directing all edges away from it. A k-TC-spanner for
T ′ with s(n) edges yields a preprocessing scheme with space complexity s(n) for
computing products on T with at most 2k queries as follows. The database stores
a product sv1 ◦ · · · ◦ svt for each k-TC-spanner edge (v1, vt+1) if the endpoints of
that edge are connected by the path v1, · · · , vt, vt+1 in T ′. Let LCA(u, v) denote
the lowest common ancestor of u and v in T . To compute the product corre-
sponding to a path from u to v in T , we consider 2 cases: (1) if u is an ancestor
of v (or vice versa) in T , query the products corresponding to the k-TC-spanner
edges on the shortest path from u to a child of v (from v to a child of u, respec-
tively); (2) otherwise, make queries corresponding to the k-TC-spanner edges on
the shortest path from LCA(u, v) to a child of u and on the shortest path from
a child of LCA(u, v) nearest to u to a child of u. This gives a total of at most
2k queries.

Acknowledgment

The author would like to thank Oded Goldreich for persuading her to write this
survey and Adam Smith, Ramesh T.K. and Piotr Berman for useful comments.

References

1. Abraham, I., Gavoille, C.: Object location using path separators. In: PODC. pp.
188–197 (2006)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

3. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-
struction. Algorithmica 51(2), 160–182 (2008)

4. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity
testing in higher dimension. Inf. Comput. 204(11), 1704–1717 (2006)

5. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Tech. Rep. 71/87, Tel-Aviv University (1987)

6. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

7. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 1–43 (2009)

8. Atallah, M.J., Blanton, M., Frikken, K.B.: Key management for non-tree access
hierarchies. In: SACMAT. pp. 11–18 (2006)

9. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: ACM Conference on Computer and Communications
Security. pp. 190–202 (2005)

Transitive-Closure Spanners: A Survey 29

10. Awerbuch, B.: Communication-time trade-offs in network synchronization. In:
PODC. pp. 272–276 (1985)

11. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected Õ(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

12. Batu, T., Rubinfeld, R., White, P.: Fast approximate PCPs for multidimensional
bin-packing problems. Inf. Comput. 196(1), 42–56 (2005)

13. Berman, P., Raskhodnikova, S., Ruan, G.: Finding sparser directed spanners
(2010), manuscript

14. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S.,
Woodruff, D.: Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. In: RANDOM (2010)

15. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:
Transitive-closure spanners. In: SODA. pp. 932–941 (2009)

16. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:
Transitive-closure spanners of the hypercube and the hypergrid (2009), eCCC Re-
port TR09-046

17. Bhattacharyya, A., Grigorescu, E., Raskhodnikova, S., Woodruff, D.: Steiner
transitive-closure spanners of d-dimensional posets (2010), manuscript

18. Bodlaender, H.L., Tel, G., Santoro, N.: Tradeoffs in non-reversing diameter. Nordic
Journal of Computing 1(1), 111 – 134 (1994)

19. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

20. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM J. Comput. 28(1), 210–236 (1998)

21. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected
shortest paths. JACM 47(1), 132–166 (2000)

22. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183
(2001)

23. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J.
Algorithms 50(1), 79–95 (2004)

24. Dilworth, R.P.: A decomposition theorem for partially ordered sets. The Annals of
Mathematics, Second Series 51(1), 161–166 (1950)

25. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,
A.: Improved testing algorithms for monotonicity. In: RANDOM. pp. 97–108 (1999)

26. Dushnik, B., Miller, E.: Concerning similarity transformations of linearly ordered
sets. Bulletin Amer. Math. Soc. 46, 322–326 (1940)

27. Elkin, M.: Computing almost shortest paths. In: PODC. pp. 53–62 (2001)
28. Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In:

ICALP. pp. 636–647 (2000)
29. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to

network design. In: SIROCCO. pp. 117–132 (2001)
30. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory

Comput. Syst. 41(4), 691–729 (2007)
31. Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-

checkers. JCSS 60(3), 717–751 (2000)
32. Fischer, E.: On the strength of comparisons in property testing. Inf. Comput.

189(1), 107–116 (2004)
33. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-

nitsky, A.: Monotonicity testing over general poset domains. In: STOC. pp. 474–483
(2002)

30 Sofya Raskhodnikova

34. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. JACM 45(4), 653–750 (1998)

35. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing
monotonicity. Combinatorica 20(3), 301–337 (2000)

36. Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. In: ICALP.
pp. 721–732 (2004)

37. Hesse, W.: Directed graphs requiring large numbers of shortcuts. In: SODA. pp.
665–669 (2003)

38. Hochbaum, D. (ed.): Approximation Algorithms for NP-hard Problems. PWS Pub-
lishing Company, Boston (1997)

39. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with
applications to data privacy (2010), manuscript

40. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),
432–450 (2001)

41. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics 36(2), 177–189 (1979),
http://www.jstor.org/stable/2100927

42. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (2000)

43. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116
(1989)

44. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.
Comput. 18(4), 740–747 (1989)

45. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables.
JACM 36(3), 510–530 (1989)

46. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. In: SODA. pp. 844–851 (2002)

47. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

48. Saks, M.E., Seshadhri, C.: Parallel monotonicity reconstruction. In: Proceedings of
the 19th Annual Symposium on Discrete Algorithms (SODA). pp. 962–971 (2008)

49. Santis, A.D., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key
assignment schemes. In: MFCS. pp. 371–382 (2007)

50. Seidel, R.: Understanding the inverse Ackermann function (2006), available at
http://cgi.di.uoa.gr/ẽwcg06/invited/Seidel.pdf

51. Soriano, D.G., Matsliah, A., Chakraborty, S., Briet, J.: Monotonicity testing and
shortest-path routing on the cube (2010), eCCC Report TR10-048

52. Thorup, M.: On shortcutting digraphs. In: Graph-Theoretic Concepts in Computer
Science. vol. 657, pp. 205–211 (1993)

53. Thorup, M.: Shortcutting planar digraphs. Combinatorics, Probability & Comput-
ing 4, 287–315 (1995)

54. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23(1), 139–159
(1997)

55. Thorup, M., Zwick, U.: Compact routing schemes. In: ACM Sympo-
sium on Parallel Algorithms and Architectures. pp. 1–10 (2001), cite-
seer.ist.psu.edu/thorup01compact.html

56. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)
57. Trotter, W. (ed.): Combinatorics and Partially Ordered Sets: Dimension Theory.

Johns Hopkins University Press, Baltimore, MD (1992)
58. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In:

FOCS. pp. 389–398 (2006)

Transitive-Closure Spanners: A Survey 31

59. Yannakakis, M.: The complexity of the partial order dimension problem. JMAA
3(3), 351–358 (1982)

60. Yao, A.C.C.: Space-time tradeoff for answering range queries (extended abstract).
In: STOC. pp. 128–136 (1982)

