
A Sublinear Algorithm for Weakly Approximating Edit
Distance
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ABSTRACT
We show how to determine whether the edit distance be-
tween two given strings is small in sublinear time. Specifi-
cally, we present a test which, given two n-character strings
A and B, runs in time o(n) and with high probability re-
turns “CLOSE” if their edit distance is O(nα), and “FAR” if
their edit distance is Ω(n), where α is a fixed parameter less
than 1. Our algorithm for testing the edit distance works
by recursively subdividing the strings A and B into smaller
substrings and looking for pairs of substrings in A, B with
small edit distance. To do this, we query both strings at
random places using a special technique for economizing on
the samples which does not pick the samples independently
and provides better query and overall complexity. As a re-

sult, our test runs in time Õ
“

nmax{α
2

,2α−1}
”

for any fixed

α < 1. Our algorithm thus provides a trade-off between
accuracy and efficiency that is particularly useful when the
input data is very large.

We also show a lower bound of Ω(nα/2) on the query com-
plexity of every algorithm that distinguishes pairs of strings
with edit distance at most nα from those with edit distance
at least n/6.

∗Supported by ARO DAAD 19-01-1047 and NSF CCR01-
05337.
†Supported by ONR grant N00014-01-1-0795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity

General Terms
Algorithms, Theory

Keywords
String matching, sublinear algorithms, approximation

1. INTRODUCTION
Let A,B be two strings over a fixed alphabet Σ. The edit

distance between A and B is defined as the minimum number
of character insertions, deletions and substitutions required
to transform A to B, or vice versa. It ca be verified that
this measure provides a symmetric distance. This measure
of string similarity is widely used in areas such as computa-
tional biology, text processing, and web searching. The edit
distance is a well studied measure, and can be computed in
slightly under quadratic time [5]. The task of computing or
approximating edit distance significantly faster has gained a
lot of attention, especially in the bioinformatics community,
where the data is very large and and thus fast algorithms
are highly desired.

In addition to providing a faster way of estimating the edit
distance, a rough approximation algorithm can be used as
a preliminary elimination step in conjunction with a slower,
more accurate algorithm. In many applications, given many
strings, one is interested in computing the edit distance only
for pairs of close strings. For string pairs where the distance
is above a certain threshold, the actual value of the distance
is irrelevant. Thus, a weak approximation algorithm that
works in sublinear time can be used as a part of an exact
algorithm for quickly distinguishing pairs of strings that are
similar from those that are highly dissimilar. The slower,
more accurate (or exact) algorithm can then focus on a small



fraction of the input strings, while the amortized running
time over all the given strings stays low.

Our results
We show that if one is willing to accept a weaker quality

of approximation, one can solve the edit distance problem
surprisingly quickly. In fact, we give (to our knowledge)
the first sublinear time algorithm for approximating the edit
distance in the following sense. We show that one can dis-
tinguish w.h.p. pairs of strings of length n which have edit
distance nα from those which have edit distance Ω(n) in

Õ(nα/2) time for α ≤ 2/3. For any constant 1 > α > 2/3,

our running time is Õ(n2α−1), which is still sublinear. At
the core of our algorithm is a sublinear-time procedure which
constructs a useful implicit representation of all locations in
A at which there are approximate copies of a specific sub-
string of B.

Finally, we prove that every algorithm that distinguishes
pairs of strings with edit distance nα from strings with edit
distance at least n/6 requires Ω(nα/2) queries. To achieve
this, we show a lower bound which applies to every algorithm
that distinguishes a pair (A,B) of random strings from a pair
(A′, B′) where A′ is random and B′ is a right shift of A′ by t
positions for a random t ∈ [nα/2, nα]. This implies the lower
bound for the edit distance problem, since two random n-bit
strings have edit distance at least n/6 with high probability.

Related work
The edit distance problem is closely related to the longest

common subsequence (LCS) and sequence alignment prob-
lems: computing the LCS exactly is the same as computing
the edit distance. (An analogous statement cannot be made
for approximate computations.) The fastest algorithm for
computing the LCS of two strings of size n, with no as-
sumptions on the strings or their distance, is due to Masek
and Paterson [5], and runs in time O(n2/ log n). 1 The com-
putation of LCS becomes most expensive when the common
substring is of linear length. A similar problem under a dif-
ferent model is investigated in [3], where the communication
complexity of the estimation of the edit and LZ distances
(the latter a slightly different measure that involves certain
block moves) is considered and a low-distortion embedding
of the LZ distance into Hamming distance is given.

There is a significant body of related work on the slightly
different problem of approximate string matching, where one
would like to find all substrings of the text string of size
n which match the pattern string of size m with edit dis-
tance at most k (insertions, deletions and substitutions of
one character). We mention here a small sample of these
works. Landau and Vishkin [4] give an O(nk) algorithm
for this problem. Chang and Lawler [1] consider the case
when the text string is random and errors are not too fre-
quent. For this case, they give an algorithm which runs in
sublinear expected time, namely O((n/m)k log m) time for
k < m/ log m+O(1). Myers [6] improves on their result but
requires linear-time preprocessing on one of the two strings.
The first subquadratic time algorithm for general approxi-
mate string matching was given by Sahinalp and Vishkin [7],
running in time O(n·(1+poly(k)·1/m log n)). Cole and Har-
iharan [2] improved the running time to O((nk4/m)+n+m).

1The strings need not be be of different length; we present
the equal-length case for simplicity.

To put our work in perspective, we note that when the
two strings are assumed to be close, dynamic programming
restricted to the relevant fraction of the matrix can be ap-
plied, saving considerable time and space. In our setting
this translates to an immediate O(n1+α) algorithm. Our al-
gorithm is much more efficient, but not surprisingly uses the
idea behind this naive saving as one of its components.

Our techniques
Our techniques are based on the observation that, if two

strings have small edit distance, they will have many almost
identical (with small Hamming distance) substrings whose
locations in the respective strings are similar. We exploit
this property by dividing one of the strings into blocks and
determining whether most of these blocks occur in similar
locations in the other string. In order to detect substrings
that match a block with small Hamming distance, it suf-
fices to randomly sample from both strings. To reduce our
query (sample) complexity, we use a procedure that we call
a “ruler” that collects a sublinear pool of samples from both
strings, and then builds a structure containing all matching
pairs of the form (location in A, block in B). In addition, we
make use of recursion while subdividing our blocks, which al-
lows us to further improve the complexity of the algorithm.
Finally, we “quantize” the locations in the strings gener-
ated by the matching process for two substrings; that is, we
round the “shifts” between two substrings to a multiple of a
suitably-chosen parameter. This results in many fewer cases
to consider (and, more importantly, to store) when specify-
ing where a block of one string is located in the other.

Overview of paper
The rest of this paper is structured as follows: Section 2

defines the edit distance testing problem. In Section 3 we
develop a sublinear time algorithm for this problem: In Sec-
tions 3.1-3.4, we describe our basic techniques, in Section 3.5
we show how to match the blocks in one string to substrings
in the other, and in Section 3.6 we present our main algo-
rithm that uses these techniques to estimate the edit dis-
tance. In Section 4, we give a lower bound on the query
complexity for this problem.

2. PRELIMINARIES
The strings we consider consist of n characters over a fixed

alphabet Σ. We usually denote the input strings by A,B.
The notation A[i] refers to the ith character of string A,
and A[i . . . j] refers to the substring of A delimited by the
characters at positions i and j.

D(A, B), the edit distance between two binary strings A
and B, is the minimal number of character insertions, dele-
tions, or replacements required to generate B from A, or
vice versa.

For simplicity and without loss of generality, we will as-
sume a binary alphabet Σ = {0, 1} and use the terms ”bit”
and ”character” interchangeably. Our definitions, opera-
tions, and techniques involving bit strings extend in the ob-
vious way to character strings.

The edit distance testing problem
We wish to devise an algorithm to distinguish pairs of n-

bit strings A, B that are close to each other from pairs that
are far from each other in terms of their edit distance. The



required behavior from this algorithm on input A, B, and
parameters α, C, 0 < α < 1, C > 1, is as follows.

• if D(A, B) ≤ nα, output CLOSE with probability at
least 2/3.

• if D(A, B) > n/C, output FAR with probability at
least 2/3.

The output of is unspecified for nα < D(A, B) ≤ n/C. We
treat C as a fixed constant and do not analyze the depen-
dence of our algorithm on C.

3. A TEST FOR EDIT DISTANCE
We now describe a recursive algorithm to check whether

the edit distance between two n-bit strings A and B is small
(≤ nα) or large (Ω(n)). We arbitrarily designate A to be
the reference string, against which B is matched. On the
highest level, our algorithm is based on the standard di-
vide and conquer paradigm: B is broken up into substrings,
which are recursively matched against A. The matching
for these local patches is pieced together to form a matching
(alignment) for the larger string. However, since it would be
too expensive to look at all the subintervals, we randomly
sample a small number of them and rely on the statistical
properties of these matchings. We then analyze the effect
of the statistical uncertainties that arise as a result of the
sampling.

We start by discussing the relationship between the edit
distance of two strings and the similarity of their substrings.

3.1 Approximate matchings and coordinated
matchings

A matching of B against A describes how A can be ob-
tained from B. In particular, it gives an alignment between
the matching portions of A and B. Consider how a subin-
terval I = B[s . . . e] corresponds to A. We may think of I as
being matched against a substring A[s′ . . . e′]; the matching
involves a sequence of operations on A[s′ . . . e′] that trans-
form it into I. In general, s 6= s′; we refer to the quantity
s′ − s as the shift of I. The shift is due to external edits re-
quired to match the earlier portions of A and B. We refer to
the number of edit operations needed to transform A[s′, e′]
to I as the internal edit distance.2 Note that there may be
many possible low-edit matchings of I against A.

We are interested in matchings in which the internal edit
distance is a small fraction of the total number of characters
being matched.

Definition 1. An interval I = B[s . . . e] has a (t, E)-
(approximate) matching with respect to A if for some inter-
val A[s′ . . . e′], s′ = s + t and D(A[s′ . . . e′], I) ≤ E.

If D(A, B) is small, it is apparent that most subintervals in
B will have an approximate matching somewhere in A. Fur-
ther, these matching subintervals must have similar shifts,
because a change in the shift value can only arise from an
edit (specifically, insert or delete) operation. This leads us
to consider coordinated matchings:

2This is no longer a distance function. The corresponding
matching of the internal edit distance is also described in
the bioinformatics literature as local alignment.

Definition 2. Let I = (I1, . . . , Ik)be a collection of in-
tervals. We say that I has a (t, σ, E, D)-coordinated match-
ing with A if for all but D of the intervals Ii ∈ I, Ii has a
(ti, E)-matching with A, where |t − ti| ≤ σ.

We can decompose an interval I of size S into k disjoint
contiguous subintervals, I = (I∞, . . . , I‖), each of size S′ =
S/k (we assume that k|S). The existence of a coordinated
matching of I indicates that most of the intervals therein
are well matched with similar shifts in A. Lemma 1 says
that if these subintervals have a coordinated matching with
suitable parameters then I has an approximate matching.

Lemma 1. Let A, I, I1,. . . , Ik, S and S′ be as above. If
(I1, . . . , Ik) has a (t, σ, εS′, δk)-coordinated matching with A,
then I has a (t, βS)-approximate matching with A, where

β =

„

2σ

S′
+ ε + δ

«

.

Proof. (Sketch) We construct a matching for I by stitch-
ing together the matchings for I1, . . . , Ik, correcting for gaps,
overlaps and unmatching subintervals.

Let I = B[s . . . e] and Ii = B[si . . . ei]. If Ii has a (ti, ε)-
approximate matching, we denote by I ′i = A[s′i . . . e′i] the
substring of A that is transformed into Ii (choosing arbi-
trarily if there are multiple matches). I ′i can be transformed
into Ii using εS′ edit operations. If Ii does not have a (ti, ε)-
matching (for ti ∈ [t − σ, t + σ]), we define ti = t and I ′i to
be A[si + t . . . ei + t], i.e., the region obtained by translating
the interval [si . . . ei] by t. We can trivially transform I ′i to
Ii using S′ edit operations.

We transform the interval A[s + t . . . e′k] into I as follows.
If s′1 = s + t, then we simply transform I ′1 into I1 using the
same edit operations as for that matching. If s′1 < s + t,
then the s + t − s′1 first characters of I ′ are missing from
A[s+t . . . ek]; we add these to the beginning of A[s+t . . . e′k]
using s+t−s′1 insert operations, and then proceed as before.
Similarly, if s′1 > s+ t, we trim the first s′1 − s− t characters
from A[s + t . . . e′k] and proceed as before. We are left with
the remaining portion of A[s + t . . . e′k] (A[e′1 + 1 . . . e′k]),
which must be transformed into the remaining portion of I
(B[e1 + 1 . . . ek]).

To complete the transformation, we transform I ′i into Ii,
for i = 2, . . . , k, in the same manner, yielding I. At each
stage, we trim or add to the remaining string so that I ′i is a
prefix, and then perform the transformation from I ′i to Ii.

It remains to compute the number of edits required by this
transformation. The number of edits required to transform
I ′i to Ii, for all i for which there are is an approximate match,
is at most εS′k. For at most δk intervals, I ′i and Ii don’t
have a good match; the trivial transformation costs at most
S′ · δk = δS′k.

We must also account for the |s′i − (s+ t)| edit operations
required prior to transforming I ′1 and the |s′i−(e′i−1)+1| edit-
ing operations required to align the remaining string prior
to transforming Ii, for i > 1. By the definition of a coordi-
nated matching, |s′i − (s + t)| ≤ σ. Since s′i = si + ti we can
write,

|s′i − (e′i−1 + 1)|
= |(si + ti) − (s′i−1 + (e′i−1 − s′i−1) + 1)|
= |(si + ti) − (si−1 + ti−1 + (e′i−1 − s′i−1) + 1)|
≤ |ti − ti−1| + |(e′i−1 − s′i−1 + 1) − (si − si−1)|.



It follows from the definition of a coordinated matching that
|ti − ti−1| ≤ 2σ. The latter term is simply the absolute
difference between the length of Ii−1 (si − si−1) and the
length of |I ′i−1| (e′i−1 − s′i−1 +1). If I ′i−1 can be transformed
into Ii−1 using εS′ edit operations, this difference cannot be
more than εS′, and if no such matching exists, then I ′i−1 will
have the same length as Ii−1 by definition. Thus, at most
2σ + εS′ operation are required per interval, giving at most
2σk + εS′k operations in all.

Recalling that S = S′k, we have at most
`

2σ
S′ + ε + δ

´

S
edits required, implying the lemma.

2

Lemma 2 shows that if a good matching for an interval ex-
ists then there must be a coordinated matching of its subin-
tervals.

Lemma 2. Let A, I,I = (I1, . . . , Ik), S and S′ be defined
as above. Let c > 1 and S > cE. If I has a (t, E)-matching
with A then I has a (t, E, cE/k, k/c)-coordinated matching
with A.

Proof. (Sketch) Let I = B[s . . . e]. We consider the
matching from A[s+t . . . q] to I that has edit distance E. For
each Ii, we consider the smallest interval I ′i of A containing
all the characters that are matched to characters in Ii. If
no such characters exist, we do not assign Ii. We claim that
this correspondence induces a (t, E, cE/k, k/c)-coordinated
matching.

First, we note that the I ′is are disjoint, since our edit
operations do not change the ordering of the characters of
A that are matched. The edit operations that transform
A[s + t . . . q] into I also transform each I ′i into Ii. Each
edit operation affects only one (I ′i, Ii) pair or unassigned
Ii - either it deletes a character from at most one I ′i or it
inserts a character into exactly one Ii. Hence, the sum of
edit distances between I ′i and I along with the sum of edits
assigned to unassigned Ii is at most E. If more than k/c had
edit distance greater than cE/k, or were unassigned (with
an edit cost of S′ > cE/k), this would cause the sum to be
greater than E, a contradiction.

It remains to show that the translation (shift) ti between
each I ′i and Ii satisfies |ti − t| ≤ E. Now, consider what
happens if we edit A[s+ t . . . q] to obtain I, first by deleting
the unmatched characters, one by one, and then inserting
the new characters, one by one. At each step, we can recom-
pute the matchings and hence the shifts for each (I ′i, Ii) pair.
Each operation can change any ti by at most 1 each way.
However, at the end of this process, when A[s + t . . . q] = I,
ti = t, so the original values of ti could not be more than E
away from t. 2

A special case of this lemma is the existence of coordinated
matchings where the intervals have no internal edit distance
at all.

Lemma 3. Let A, I, I1, . . . , Ik, S and S′ be as above. If I
has a (t,E)-matching with A, and k ≥ E, then (I1, . . . , Ik)
has a (t, E, 0, E)-coordinated matching with A.

We use Lemmata 1 and 2 in concert to detect good match-
ings. Suppose string A and B have a good matching. We
break B up into subintervals and use Lemma 2 to argue that
these intervals have a good coordinated matching. In the

next section we show how to efficiently detect a good coor-
dinated matching. Once a coordinated matching is detected,
we use Lemma 1 to infer the existence of a good matching
between A and B. There might be a better matching than
the inferred one, but what we get is sufficiently good to dis-
tinguish between the two cases we consider.

To obtain the strongest result, we apply this technique re-
cursively, taking care that the degradation in the guarantee
does not grow too large.

3.2 Detecting coordinated matchings via sam-
pling

Our algorithm aims to detect a coordinated matching with
a very few queries. Given a set of intervals I = (I1, . . . , Ik),
we would like to determine for which t, I has a (t, σ, E, D)-
coordinated matching. We actually accomplish an approx-
imate version of this task: For all t, if I has a (t, σ, E, D)-
coordinated matching we detect with high probability that
it has a (t, σ, E, D + εk)-coordinated matching, for any con-
stant ε > 0.

In designing our detection routine, coord-matches, as-
sume for now that we have a subroutine, matches(A, I, E),
that determines for which t, I has a (t,E)-matching with A.
We will later implement matches recursively using coord-

matches. Our actual subroutines only approximate this be-
havior; we later adapt our technique to accommodate this
approximation.

A crucial observation is that a randomly selected set of
O(log n) subintervals will approximate the behavior of the
entire set. We use the following simple consequence of the
Chernoff bound.

Lemma 4. For any positive ε and c, there exists d such
that the following is true. Suppose that a randomly chosen
element of a set S (such that |S| = n) has some property
Z with probability p. If we uniformly sample (with replace-
ment) d log n elements from S, the fraction p′ of these sam-
ples with property Z satisfies p − ε/2 ≤ p′ ≤ p + ε/2 with
probability 1 − 1/nc.

We give the sampling procedure coord-matches in Fig-
ure 1. The parameters A, I and σ are as in Definition 2.
The parameters ε and c control the accuracy and reliability
of the estimate, as analyzed in Lemma 5.

Lemma 5. With probability 1 − 1/nc−1 over the random
coins of coord-matches, the output T of coord-matches

(A, I, σ, E, D, ε, c) has the following two properties:

1. If I has a (t, σ, E, D)-coordinated matching then t ∈ T .

2. If t ∈ T then I has a (t, σ, E, D + εk)-coordinated
matching.

Proof. For any t, if at most D intervals Ii do not have a
(ti, E)-matching where |ti − t| ≤ σ then by Lemma 4, with
probability at least 1−1/nc at most a D/k + ε/2 fraction of
the Iij

s do not have such a matching, in which case t ∈ T .
Similarly, if more than D+εk intervals do not have a (ti, E)-
matching with |ti − t| ≤ σ, then with probability at least
1 − 1/nc at least a (D/k + ε) − ε/2 fraction of the Iij

s do
not have such a matching, in which case t 6∈ T . Thus, for
both types of errors, the probability of making a mistake is
thus at most 1/nc. Since there are at most n possible errors
possible (for each t the number of non-matches can be either
too big or too small, but not both), the lemma follows from
the union bound. 2



coord-matches(A, I, σ, E,D, ε, c)

1. Let d be as in Lemma 4 for the given ε and c, and l = d log n. Choose i1, . . . , il uniformly and independently from [1 . . . k].

2. For each Iij
, compute Tj = matches(A, Iij

, E).

3. Return T = merge(T1, . . . , Tl, σ, ∆), where ∆ = (D/k + ε/2)l and merge is defined below.

merge(T1, . . . , Tl, σ, ∆)

1. Return the set T , where t ∈ T iff Tj ∩ [t − σ . . . t + σ] = ∅ for at most ∆ sets Tj .

Figure 1: Sampling algorithm for (approximately) finding coordinated matches.

3.3 Quantizing shifts
Our matches and coord-matches algorithms may con-

ceivably give an output set T consisting of n elements. While
not affecting the query complexity, this by itself is more time
than we wish to take. Further, observe that for detecting
strings with the edit distance of at most nα, we may restrict
the allowed shifts to [−nα . . . + nα]. However, to achieve
a o(nα) running time, we must further restrict the set of
possible outputs. We do this by specifying a quantization
parameter, Q, which governs the precision of the output.

Definition 3. A Q-quantization of t is a value tQ such
that tQ = kQ for some integer k and |t− tQ| < Q. A set SQ

is a Q-quantization of a set S if for every t ∈ S, t has a Q-
quantization tQ ∈ SQ. If an interval has a (t, E)-matching
with A, we say that it has a (tQ, E)-quantized matching
with A. We say that a set of intervals, I has a (t, σ, E, D)-
quantized coordinated matching with A if Q|t and for all but
D of the intervals Ii ∈ I, Ii has a (ti, E)-quantized match-
ing with A, where |t− ti| ≤ σ. We denote by t[Q] the unique
value kQ satisfying −Q/2 < t− kQ ≤ Q/2, and by S[Q] the
minimal set containing t[Q] for every t ∈ S.

Thus, if t = Qk, it has a single quantization, Qk, and if
Q(k − 1) < t < Qk, then t has two quantizations, Q(k − 1)
and Qk. When we explicitly quantize a value t, we choose
its closest quantization, t[Q]. However, at times rounding
errors may cause us to instead obtain the other possible
quantization.

The key observation to make is that coordinated match-
ings already allow for some “wiggle room,” in the shifts al-
lowed for the intervals. Adding moderate amounts of quanti-
zation doesn’t change this wiggle room significantly. Propo-
sition 1 quantifies this relationship; its proof follows imme-
diately from the fact that t[Q] differs from t by at most Q/2
and any quantization tQ differs from t by at most Q.

Proposition 1. Let I be a family of intervals. If I has
a (t, σ, E, D)-coordinated matching with respect to A then it
has a (t[Q], σ + Q/2, E, D)-quantized coordinated matching
with A. If I has a (t, σ, E, D)-quantized coordinated match-
ing with A then it has a (t, σ+Q,E, D)-coordinated matching
with A.

Intuitively, if we don’t make the quantization factor too
large then we can make qualitatively the same inferences
using quantized shifts as we can using unquantized shifts.

3.4 Recursively using coordinated matches
Our coord-matches algorithm makes calls to matches,

which has to find good matches for individual intervals; we

now describe how the matches procedure is implemented.
Using Lemma 1, we can detect a good match for an interval I
by breaking I into subintervals, detecting good coordinated
matchings for these intervals, and inferring the existence
of good matches for I. That is, we call coord-matches

using a suitable decomposition of I and using suitable error
tolerances. While running coord-matches, we make calls
to matches on a subset of these subintervals, which are
approximated via a call to coord-matches on a suitable
decomposition of these subintervals, and so on. This process
yields a multi-stage algorithm in which matches found in a
given stage are used recursively to generate matches in the
earlier stage.

At each stage, we match smaller intervals, and require that
the matches have smaller internal edit distances. Eventually,
we seek (t, E) matches in which E < 1 (hence, E might as
well be 0). But note that if an interval I has a (t, 0)-matching
with respect to A, then A must contain interval I unchanged
except for a translation or shift by t positions. In this case,
we compute the set of allowable t values directly, using the
algorithm shifts described below; this forms the final stage
of the recursion. We now turn to the description of this
algorithm.

3.5 Finding approximate block shifts using the
ruler procedure

This subsection describes an algorithm to efficiently find
substrings in A that match a block (interval) in B approx-
imately. This procedure is at the core of our edit distance
testing algorithm.

The approximate matching problem is as follows. Given
a block I = B[s . . . e] of length b = e − s + 1 in B; and a
constant c2 > 1, find all indices s′ such that A[s′ . . . (s′ +
b − 1)] matches I, in the sense that the two substrings have
Hamming-distance at most b/c2. Note that, if D(A, B) <
nα, it is enough to consider s′ ∈ [s − nα, s + nα].

Thus, we now need to solve the following. Given a string
I of length b, and a string A′ = A[(s − nα) . . . (s + nα +
b − 1)], we want to find all shifts t of I within A′, such that
A′[t + 1 . . . t + b] matches I. That is, we want to find all
length b substrings of A′ with Hamming distance at most
b/c2 from I. Naively, we can randomly sample O(log n)
indices i to determine (with high probability) if the substring
A′[(t+1) . . . (t+ b)] matches I, for a given t, and try all 2nα

possible shifts t. This requires Ω(nα) queries to A. Below
we reduce the number of queries by a “ruler” procedure.

Suppose we would like to compare pairs of characters
A′[i], I[j] such that some pairs A′[i], I[j] are checked for
every i − j from 0 to u = 2nα. Here is how to achieve
this with

√
u queries to each string, provided that b >>



√
u: In A′, character positions divisible by

√
u are queried:

A′[
√

u], A′[2
√

u], . . . , A′[u]. In I,
√

u consecutive positions
are queried: I[1 . . .

√
u]. Intuitively, queries to A′ act as

“centimeter” marks on the ruler, and queries to I act as
“millimeter” marks. For every t = 0, 1, . . . , u, there is a
pair of queried positions A′[i], I[j] with i − j = t. Let
cen = bt/√uc and mil = t mod

√
u. Then A[cen · √u] and

B[
√

u − mil] are queried positions exactly distance t apart.
We can extend this idea to test whether the entire block

matches with shift l, using the random sampling idea men-
tioned earlier: Pick l = Θ(log n) numbers m1, m2, . . . , ml

randomly from the range [0, b − √
u]. For each tick mark

on the ruler, construct a fingerprint by querying at l offsets
instead of just 1; for example, in A′, the fingerprint of the
centimeter mark

√
u is the sequence of l bits

(A′[
√

u + m1], A
′[
√

u + m2], . . . , A
′[
√

u + ml]).

Now, we can detect with high probability whether the block
matches with shift t by comparing the fingerprints of cen
and mil as defined above.

Up to this point we have assumed b >>
√

u. We use
the same idea when b ≤ √

u; the only difference is that
we need to make the ruler asymmetric. In this case, we
can have only O(b) millimeter tick marks, and so we need
Ω(u/b) centimeter tick marks. Thus, in general we can find
all matching shifts l by using O(max{√u, u/b} log n) queries.

Efficient implementation of the ruler

We now describe a data structure that allows us to effi-
ciently execute the ruler procedure. Recall that we want to
detect when a tick mark i in A′ has the same fingerprint as
a tick mark j in I. To do this, we maintain a binary search
tree, with a leaf corresponding to each fingerprint f encoun-
tered thus far. (In practice, a hash tree may be better, but
it does not change the asymptotic performance.) Each leaf
contains pointers to two linked lists: the A-list contains in-
dices i (in A′) that resulted in fingerprint f , and the B-list
contains indices j (in I) that yielded f . It takes O(log n)
time per tick mark, and thus O(max{√u, u/b} log n) time
overall, to build up this data structure.

When all tick marks have been processed, the data struc-
ture contains an implicit representation of all shifts t such
that I matches A′[t + 1 . . . t + b], in the following sense: for
each fingerprint f , every combination of an index i from
f ’s A-list and j from f ’s B-list describe a matching shift
t = j − i. However, it is still potentially expensive to go
from this to an explicit list of all matching t values. The
problem is simply that there may be Ω(u) such values.

If we need to know each individual t value precisely, there
is no way to avoid this problem. To get around this, the
algorithm described in Section 3.6 only uses quantized shift
values, i.e., values of t rounded to multiples of some inte-
ger Q. Reporting distinct multiples of Q for which some
t matched, reduces the worst-case size of the output list
to Ω(u/Q). It is easy to take advantage of this reduction
with our data-structure: first replace the B-list by its Q/4-
quantization, B[Q/4], and similarly replace A by A[Q/4]
(eliminating duplicates in each list). We compute all values
j′−i′ for i′ ∈ A[Q/4] and j′ ∈ B[Q/4], and output the set of
Q-quantized values, t′ = (j′ − i′)[Q], eliminating duplicates.

We observe that the resulting rounding errors do not grow
too large, and hence that for any t that would have been
output in the unquantized case, a Q-quantization of t is

output by the above algorithm. Let t = j − i, i′ = i[Q/4],
j′ = j[Q/4] and t′ = (j′− i′)[Q]. We have |i′− i| ≤ Q/8 and
|j′ − j| ≤ Q/8, implying that |(j′ − i′)− (j − i)| ≤ Q/4. We
also have that |(j′ − i′)[Q] − (j′ − i′)| ≤ Q/2, from which it
follows that

|t′ − t| = |(j′ − i′)[Q] − (j − i)| ≤ 3Q/4 < Q.

Thus, t′ is a Q-quantization of t.
The final algorithm is shown in Figure 2. The following

theorem summarizes the performance of this algorithm:

Theorem 1. Procedure shifts finds all quantized shifts
t of interval I in A′, with high probability. It runs in time
O(max{√u, u/b, u/Q} log n), where u = |A′| − b.

Proof. If t is a shift corresponding to an exact match,
then the preceding discussion of the ruler shows that the
corresponding quantized shift value will be found. If t is a
shift corresponding to a Hamming distance of greater than
2b/c2, then at least b/c2 of the Hamming errors must occur
after the first g characters of I. Hence, any one mi will find
a mismatch with probability at least 1/c2. Setting d = 2,
the probability of the fingerprints matching for t is then at
most 1

n2 . There are less than n possible shift values, and
so the probability of finding any incorrect shift t is at most
1
n
. Higher values of d can be used to obtain error bounds

of at most 1
nc for any constant c, hence the high probability

result. The running time bound follows by taking the sum
of the time to construct the implicit representation of all
shifts, and the time to produce the output. 2

3.6 The edit distance testing algorithm
We now have all the tools we need to build our algorithm

for testing edit distance. The algorithm is shown in Figure 3.
The top-level procedure is a routine decide that takes as in-
put the two strings A and B, and the parameter α. decide

calls matches to search for a match of B in A with edit dis-
tance at most nα; if such a match is found, CLOSE is output,
otherwise FAR is output. matches is a recursive procedure,
recursing through the procedure coord-matches. The re-
cursion terminates when the required internal edit distance
in each block is less than 1; in this case, matches uses shifts

to directly find the matches.

Depth of recursion:
At each level of the recursive decomposition, the size of

the interval input to matches goes down by a factor of
Ω(nα−1). Thus for any constant α < 1, there is a constant
number r of levels of recursion required to reach a state in
which the intervals have size O(n1−α); at this point, E < 1
and hence shifts will be called, terminating the recursion.

We assign a height to each call to procedure matches

as follows: the final invocation that calls shifts has height
0, the level above that has height 1, and so on till we get
that the height of the top-level invocation of matches is
r. We also define the height of an invocation of coord-

matches to be the height of the matches procedure that
invoked it.

Correctness of the algorithm
We need to show that with a suitable choice of constants c1

and ε (perhaps dependent on α), procedure decide correctly
solves the edit distance testing problem. We first prove that
if D(A, B) ≤ nα, the algorithm outputs CLOSE.



shifts(A′, I,Q, c2)
/* Find all shifts of I in A′ with Hamming distance < 2|I|/c2, quantized in multiples of Q */

1. Let b = |I|, u = |A′| − b, and g = min{b/c2,
√

u}.
2. Let l = d · log n/(− log(1 − 1/c2)), for some constant d > 2. Choose integers m1,m2, . . . ,ml independently and uniformly

at random in [0, b − g].

3. Initialize the fingerprint search tree.

4. For i = g, 2g, . . . , u do

– Compute fingerprint f(i) = (A′[i + m1], . . . , A′[i + ml]).

– Locate f(i) in the search tree, creating a new leaf if necessary.

– Add i to the A-list for f(i).

5. For j = 1, 2, . . . , g do

– Compute fingerprint f(j) = (I[j + m1], . . . , I[j + ml]).

– Locate f(j) in the search tree, creating a new leaf if necessary.

– Add j to the B-list for f(j).

6. Quantizing: For each fingerprint f , scan the B-list for f and round each j value to the nearest multiple of Q/4, deleting
repeated values; also scan the A-list for f and round each i value to the nearest multiple of Q/4, deleting repeated values.

7. For each fingerprint f , each (rounded) i′ in f ’s A[Q/4] list, and each (rounded) j′ in f ’s B[Q/4] list, output t = (j′− i′)[Q]
(that is, (j′ − i′) rounded to the nearest multiple of Q).

Figure 2: “Ruler” procedure for finding approximate block shifts.

decide(A,B, α, C)

0. Choose sufficiently small ε, and sufficiently large c1 (for the given α and C).

1. Let quantization parameter Q = ε · min{n1−α, nα/2}.
2. Set T = matches(A, B, nα).

3. If T is nonempty, then output CLOSE, else output FAR.

matches(A, I,E)

1. If E < 1, use shifts to compute T .

2. If E ≥ 1,

2a. Set k = min{εn1−α, 2c1E}.
2b. Decompose I into a set I of contiguous disjoint intervals of size |I|/k.

2c. Compute T = coord-matches(A, I, E, c1E/k,k/c1).

3. Return T .

Figure 3: The Edit Distance Testing Algorithm



Lemma 6. If D(A, B) ≤ nα, then the algorithm outputs
CLOSE with high probability, for any parameter values ε < 1
and c1 > 1.

Proof. (Sketch) Note that it is sufficient to prove that
if there is a (quantized) (t, E)-matching of B with respect
to A, the top-level invocation of matches will find it, with
high probability. We prove this statement by induction on
the height h of the invocation of matches. For h = 0, this is
true because of the correctness of the shifts procedure. As-
suming it is true for height (h−1), we show that it is true for
height h as well: Let matches(A, I, E) be a height h invoca-
tion, and suppose that I has a (t, E)-matching with respect
to A. Then, by Lemma 2, there exists a coordinated match-
ing with the parameters specified in Step (2c) of matches.
Then, using a variant of Lemma 4, we see that most of the
sampled intervals have some match with translation ti close
to t. Now, consider the recursive calls to matches made by
coord-matches. By the inductive assumption, they will
report these matches ti with high probability. Now, using
Lemma 5, we know that they will find these translations
ti, and hence coord-matches will report t among its out-
put T . Hence, the translation t is the output of the level h
matches, with high probability. 2

It remains to show that the algorithm outputs FAR with
high probability when D(A, B) > n/C, for an appropriate
choice of constants.

Lemma 7. There exist values for the constants ε and c1

(dependent only on α and C), such that if the algorithm
outputs CLOSE then D(A, B) < n/C with high probability.

Proof. (Sketch) First, as the quantization is at most ε
times the size of the smallest interval size in the recursion,
it alters the constants but not the qualitative matching re-
sults (see Proposition 1). Second, as long as the underly-
ing shifts algorithm and interval sampling procedures take
sufficiently many samples (O(log n)), the effects of their im-
precision can be reduced to ε amounts as well. For the rest
of the discussion, we ignore these issues.

The other potential source of error is in inferring the ex-
istence of a matching from a coordinated matching, at each
level of the recursion. We use Lemma 1 to bound this error;
this involves a careful analysis of the β factors that arise at
each level of the recursion.

We consider the values of S′, σ, E, and (D/k) in each
invocation of coord-matches. Let λ = ε · n1−α. In each of
the first r − 2 levels, matches subdivides the interval into
λ intervals. At height r (the top level), we have

S′ =
n

λ
, σ = nα, E = nα · c1

λ
, (D/k) =

1

c1

Now, let us write βh for the factor β in Lemma 1, corre-
sponding to the values of S′, σ, E, and (D/k) at height h.
We have

βr =
2nαλ

n
+ ε +

1

c1
= 3ε +

1

c1

Proceeding in this manner, we find at level 2,

S′ =
n

λr−1
, σ = nα · ( c1

λ
)r−2, E = nα · ( c1

λ
)r−1, (D/k) =

1

c1

β2 =
2nαcr−2

1 λ

n
+ ε +

1

c1

= 2cr−2
1 · ε + ε +

1

c1

At this level, we must have 2c1E < λ, or else the recursion
would not terminate at level r. Hence, the pattern changes
here. However, since σ reduces by a factor of λ/c1 and S′

reduces by a factor 2c1E < λ, we have that σ/S′ can increase
by at most another factor of c1, and so we have

β1 ≤ 2cr−1
1 · ε + ε +

1

c1

Note that as r is fixed (by α), we can pick values of c1 and
ε to achieve β1 as small as we wish: we first select a suitable
value of c1, and then select ε based on the chosen c1. In
particular, we can pick values such that β1 < 1

rC
. Further,

observe that βr, . . . , β2 < β1.
Now, suppose algorithm decide outputs CLOSE. This

means that at each level of the recursion, we have a coordi-
nated matching. Consider an instance of coord-matches

at height 1, and apply Lemma 1. This says that the corre-
sponding interval at height 2 has a matching with additional
edit distance at most β1 times the length of the interval.
Adding up the edits over all intervals in a level, and over all
levels of recursion, we see that the total edit distance of A
from B is less than β1n.r < n

C
. 2

Combining Lemma 6 and 7, we get the following theorem:

Theorem 2. For any fixed α < 1, we can choose con-
stants ε and c1 such that procedure decide solves the edit
distance testing problem with high probability.

3.7 Running time analysis
In this section, we provide the running time analysis of our

algorithm. The analysis is based on three cases, depending
on the value of α.

Case (i): α < 1/2

In this case, there will only be one level of recursion. At
the top level, B will be broken into intervals of size O(nα);
the expected number of edits per interval is less than 1, and
so in the next level the shifts procedure will be used to find
the matches of these intervals. Thus, there are d log n calls
to shifts; for the specified Q, each call takes O(nα/2 log n)
time. In addition, there is one call to qmerge, which takes
O(nα/2 log n) time, thus giving us a total running time of

O(nα/2 log2 n).

Case (ii): 1/2 < α < 2/3

When 1/2 < α < 2/3, there will be two levels of recursion.
At the top level, we break B into intervals of size c1n

α. In
the second level, each selected interval is further broken into
subintervals of size nα/2. Finally, we find matches for these
subintervals using shifts. Thus, there are O(log2n) calls

to shifts; again, each call takes O(nα/2 log n) time. There
are also O(log n) calls to qmerge. All together, the running

time is O(nα/2 log3 n).

Case (iii): α > 2/3

We now consider the general case, when there are r > 2
levels of recursion. We point out that there are two sources
of degradation in this recursive algorithm. First, we in-
cur a time and query overhead of (log n)r+O(1) because of
the random sampling at each level of recursion. The sec-
ond degradation, which is more significant, comes from the
shifts procedure at the final stage of the recursion. Each



invocation of shifts has to find all (quantized) shifts in the
range [−nα . . . nα] of a block of size O(n1−α). However, for
α > 2/3, we have n1−α <

√
nα, and so the ruler used in the

shifts procedure has to be asymmetric. As a result, the
running time of each invocation is O(n2α−1 log n). Thus,
the edit distance testing algorithm has an overall running
time of Õ

`

n2α−1
´

.

4. A LOWER BOUND ON QUERY COM-
PLEXITY

This section proves a query-complexity lower bound for
the edit distance problem defined in Section 2:

Theorem 3. Any probabilistic algorithm for the edit dis-
tance problem requires Ω(nα/2) queries.

In fact, we show a Ω(nα/2) lower bound for the possibly
easier problem of distinguishing a pair (A, B) of random
strings from a pair (A, B) where A is random and B is a right
shift of A by t positions for a random t ∈ [nα/2, nα]. Since
two random strings have a linear edit distance, Theorem 3
follows.

Lemma 8. With probability at least 1− o(1), two random
n-bit strings have edit distance ≥ n/6.

Proof. It is enough to show that for a fixed n-bit string
X, the fraction of strings within edit distance n/6 of X is
o(1). A string that is at most d away from X is obtained by
choosing d locations, and for each of the locations, picking
one for the deletion, replacement, insertion of a new bit, or
no-edit operation. Thus, the number of strings within edit
distance d from X is at most

`

n
d

´

· 5d. Substituting d = n/6

and using the fact that
`

n
βn

´

≤ 2H2(β)n where H2(p) is the

binary entropy function −p log p− (1− p) log(1− p), we get
that the number of strings obtained from X with at most
n/6 edit operations is at most

 

n

n/6

!

5n/6 ≤ 2(H2(1/6)+1/2)n = o(2n).

2

We define two distributions F and C on pairs of strings.
Let F be a distribution on pairs of random n-bit strings. Let
C be a distribution on pairs of n-bit strings (A, B) where A
is random, and B is obtained from A by appending a t-bit
random string at the beginning and deleting t bits at the
end, for a randomly chosen t ∈ [nα/2, nα]. By Lemma 8,
with high probability, F produces a pair of strings with edit
distance at least n/6 while C is over pairs of strings with edit
distance at most nα. The following lemma together with
Lemma 8 and Yao’s minmax principle proves Theorem 3.

Lemma 9. Let q < nα/2. Then for every q-query deter-
ministic algorithm A,

˛

˛

˛
Pr

x←F
[A(x) = 1] − Pr

x←C
[A(x) = 1]

˛

˛

˛
≤ 1

2
.

Proof. Consider the event R when the input to A comes
from the distribution F and the queries of A reveal the shift
t between the two strings, namely A queries a location i in A
and i + t in B. Notice that when event R does not happen,

all the bits A sees are random and so it cannot possibly
distinguish between the distributions C and F . Therefore

˛

˛

˛
Pr

x←F
[A(x) = 1] − Pr

x←C
[A(x) = 1]

˛

˛

˛
≤ Pr[R].

Similarly, as long as a shift of t was not revealed by A, the
bits it sees are random; when such a shift is revealed, event
R occurs. This means that the probability of R is unaltered
when we deprive A of its adaptive behaviour. We therefore
assume that A queries q locations (in either strings) at once.
Such a selection reveals at most (q/2)2 shifts and now, since
t is randomly chosen among nα/2 values, we have that

Pr[R] ≤ (q/2)2

nα/2
≤ 1/2.

2
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