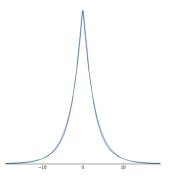
The Price of Differential Privacy under Continual Observation

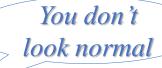
Sofya Raskhodnikova

Based on joint work with:

Palak Jain, Satchit Sivakumar, and Adam Smith

1900!





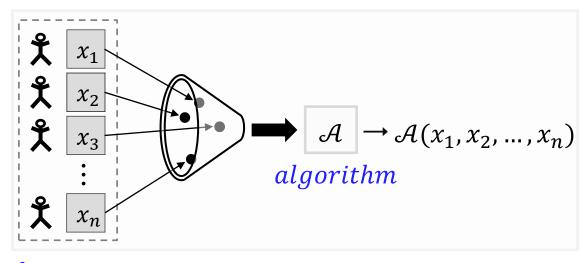
Aggregate Statistics on Sensitive Dynamic Data

COVID Data Tracker

Daily Update for the United States

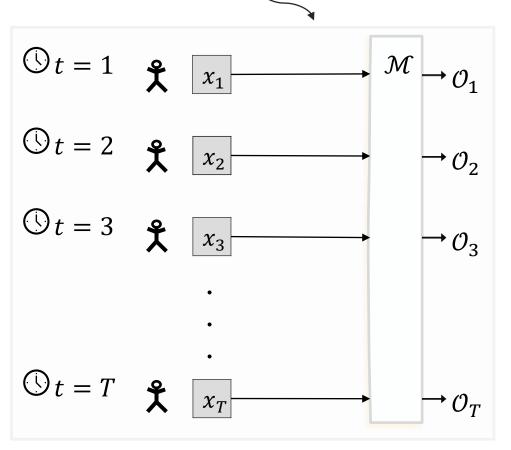
CDC | Data as of: October 28, 2022 3:52 PM ET. Posted: October 28, 2022 4:40 PM ET

$Batch\ Model\ ext{[Dwork McSherry Nissim Smith 06]}$

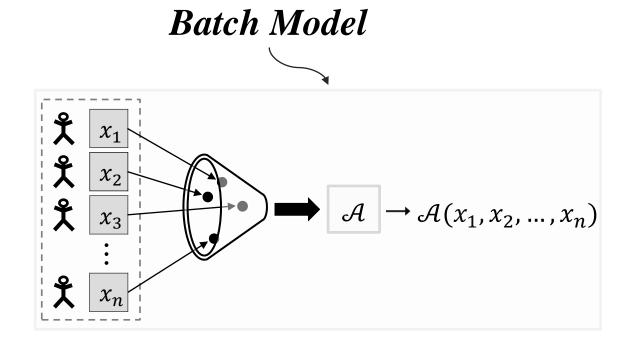


dataset x

Continual Release Model [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



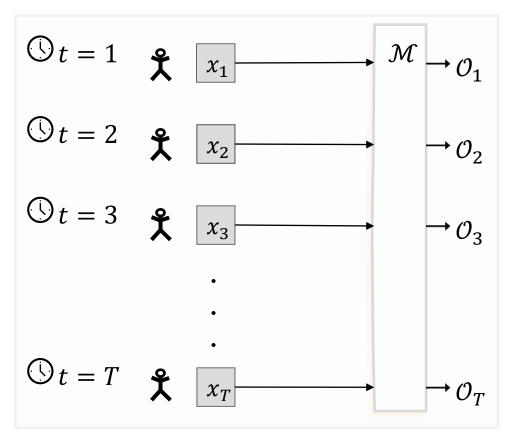
mechanism



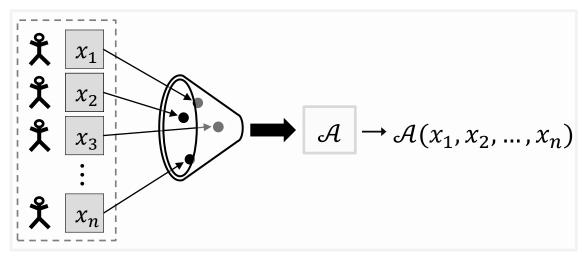
Privacy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]

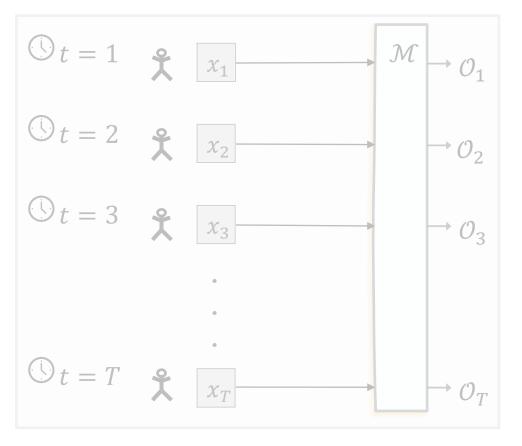


 (ϵ, δ) -Differential Privacy:

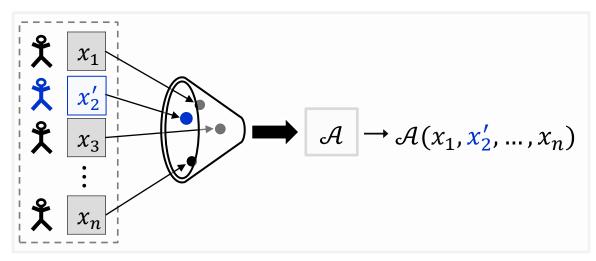
Privacy Definition: Neighboring Dataset

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



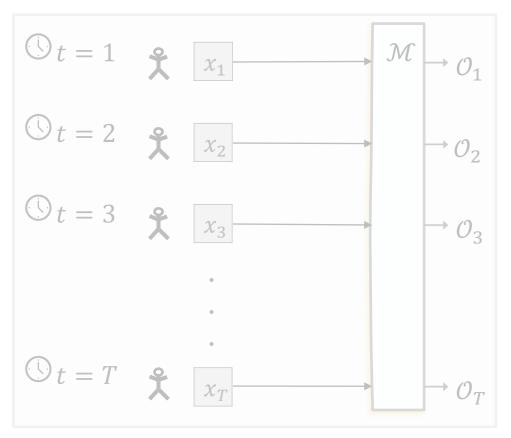
 (ϵ, δ) -Differential Privacy:

Two datasets x, x' are **neighbors** if they differ in one person's data.

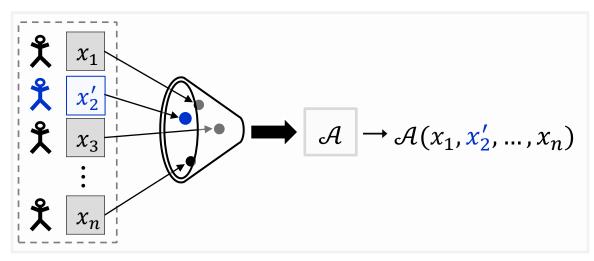
Privacy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]

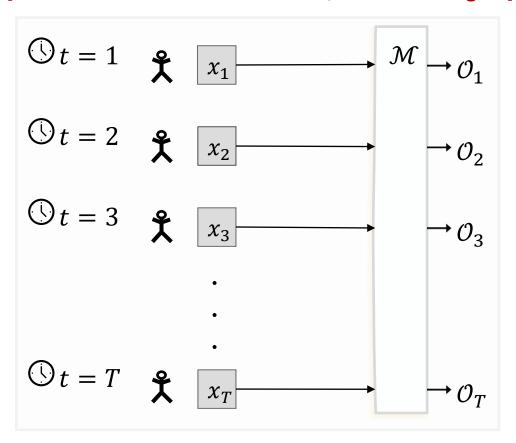


 (ϵ, δ) -Differential Privacy: For all neighbors x, x', $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$

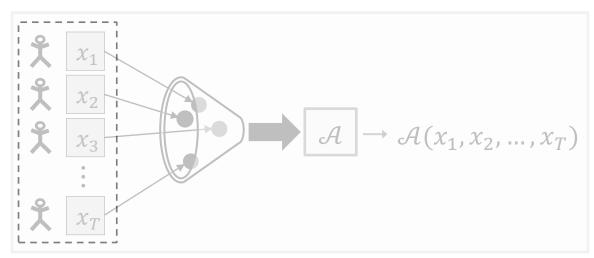
Privacy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]

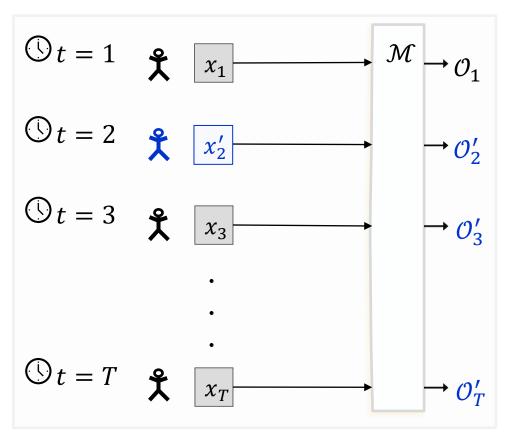


$$(\epsilon, \delta)$$
-Differential Privacy: For all neighbors x, x' , $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$

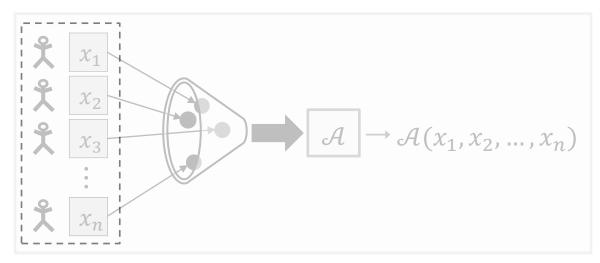
Privacy Definition: Neighboring Datasets

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]

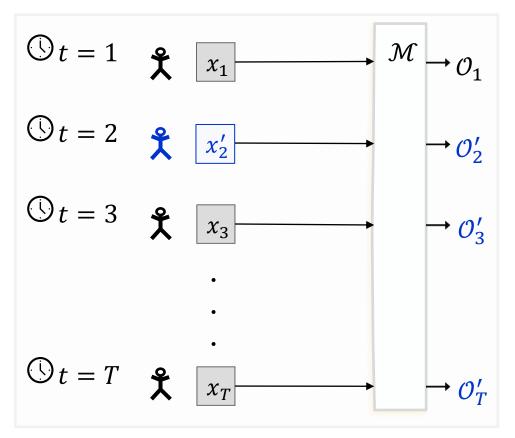


$$(\epsilon, \delta)$$
-Differential Privacy: For all neighbors x, x' , $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$

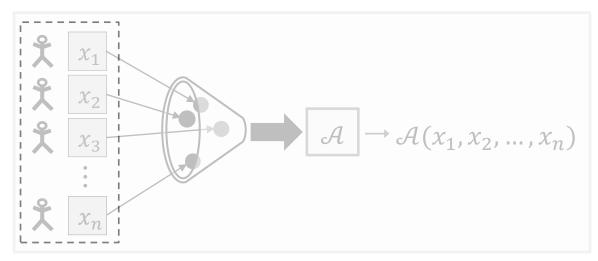
Privacy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



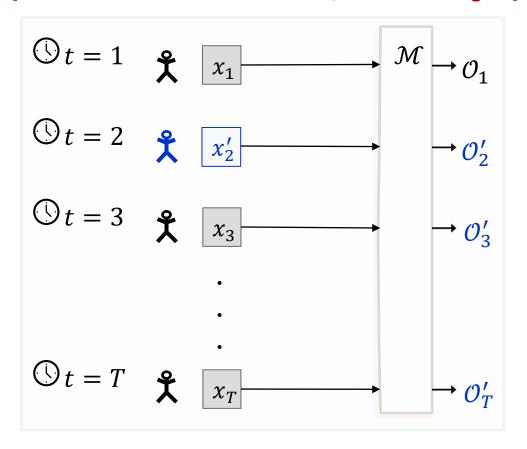
 (ϵ, δ) -Differential Privacy: For all neighbors x, x', $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

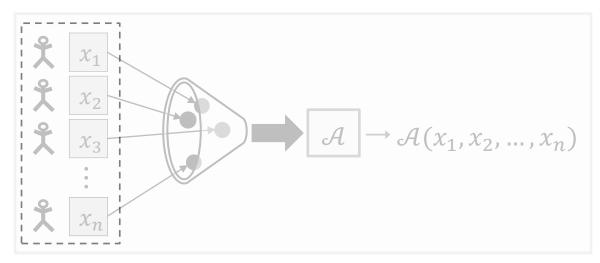
Accuracy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



 (ϵ, δ) -Differential Privacy: For all neighbors x, x',

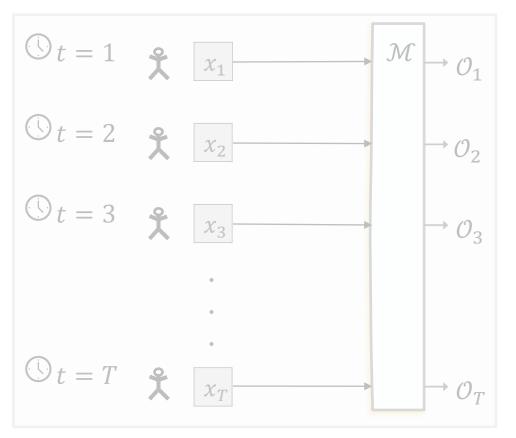
$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

 α -Accuracy:

Accuracy Definition

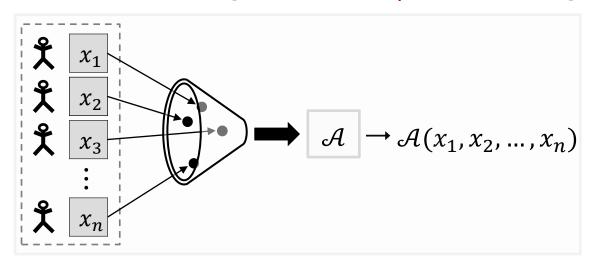
Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



$ERR_f[\mathcal{A}(\mathbf{x})] = |\mathcal{A}(\mathbf{x}) - f(\mathbf{x})|$

Batch Model [Dwork, McSherry Nissim Smith 06]



 (ϵ, δ) -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

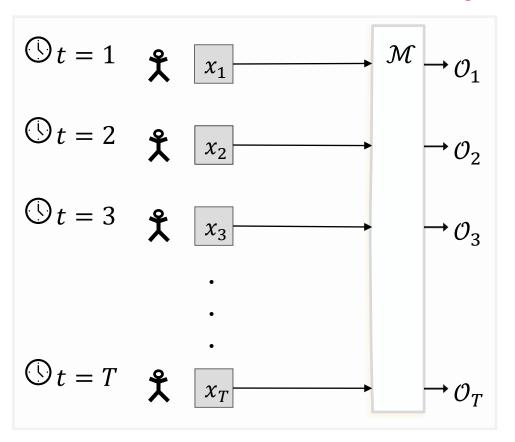
 α -Accuracy: For all datasets,

$$[ERR_f[\mathcal{A}(x_1, ..., x_T)] \le \alpha \quad w.p. \ge 2/3$$

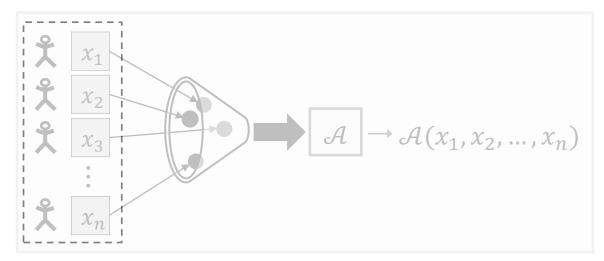
Accuracy Definition

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



 (ϵ, δ) -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

 α -Accuracy: For all datasets,

$$ERR_f[\mathcal{A}(x_1,...,x_T)] \le \alpha \quad w.p. \ge 2/3$$

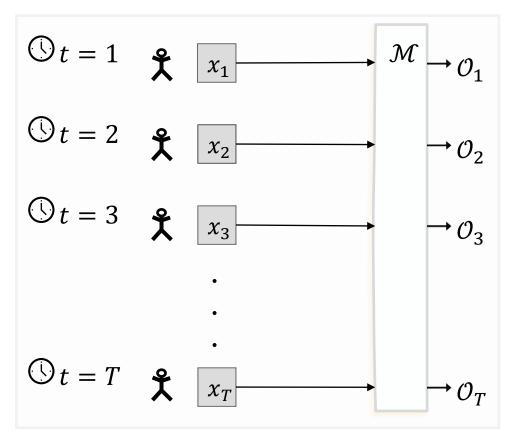
$$MAX(ERR_f[\mathcal{O}_1], \dots, ERR_f[\mathcal{O}_T]) \le \alpha \quad w.p. \ge 2/3$$

$$ERR_f[\mathcal{O}_t] = |\mathcal{O}_t - f(\mathbf{x}_{1,\dots,t})|$$

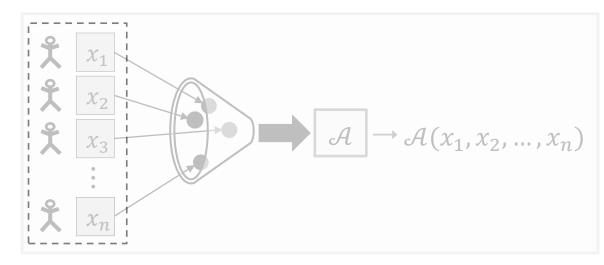
Privacy and Accuracy Definitions

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



 (ϵ, δ) -Differential Privacy: For all neighbors x, x',

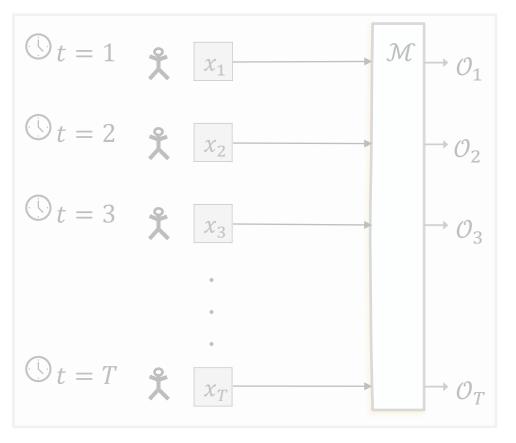
$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

α-Accuracy: For all datasets, $MAX(ERR_f[\mathcal{O}_1], ..., ERR_f[\mathcal{O}_T]) \le \alpha$ $w.p. \ge 2/3$

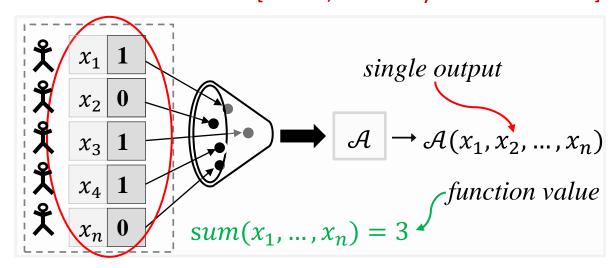
Example Function: Summation

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Batch Model [Dwork, McSherry Nissim Smith 06]



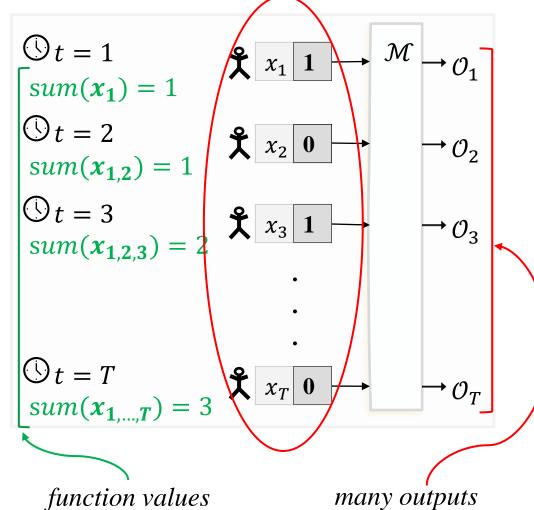
Each person's data: $x_i \in \{0,1\}$ $sum(x_1, ..., x_n) = \sum_{i \in [n]} x_i$

• Batch model: error $O\left(\frac{1}{\epsilon}\right)$ using Laplace mechanism.

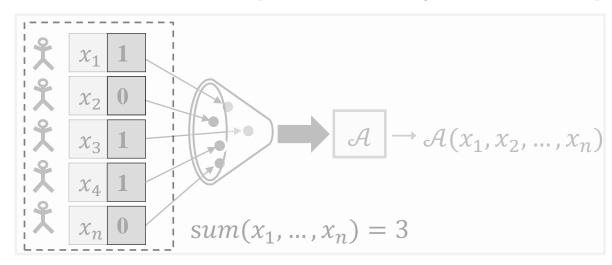
Example Function: Summation

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



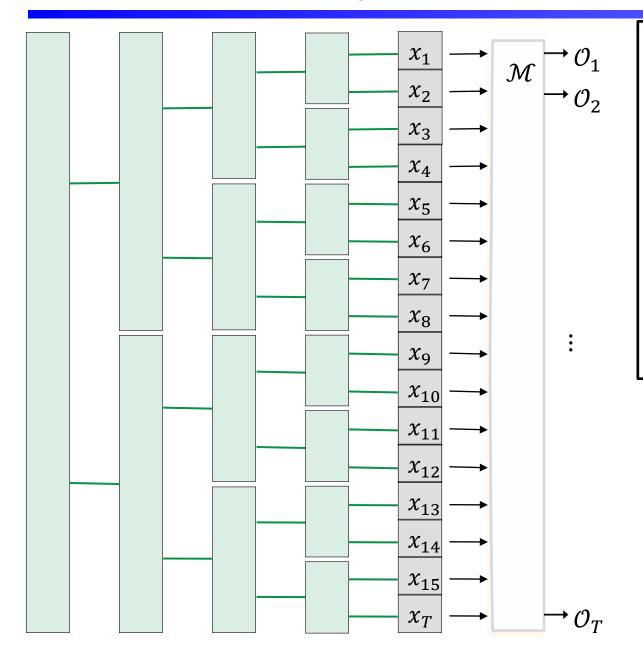
Batch Model [Dwork, McSherry Nissim Smith 06]



Each person's data: $x_i \in \{0,1\}$ $sum(x_1, ..., x_n) = \sum_{i \in [n]} x_i$

- *Batch model:* error $O\left(\frac{1}{\epsilon}\right)$ using Laplace mechanism.
- Continual release: error $O\left(\frac{\log^2 T}{\epsilon}\right)$ using tree mechanism [Dwork et al., Chan et al.]

Tree Mechanism [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



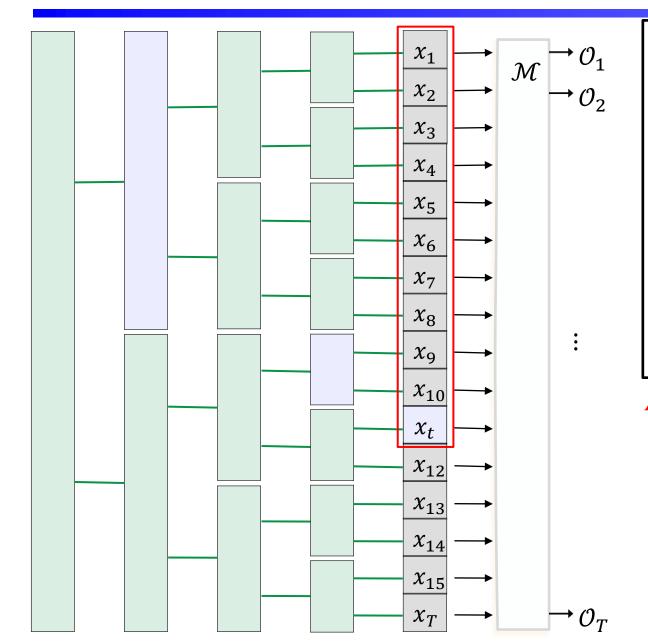
Mechanism \mathcal{M} *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I} - \text{noise } Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$$

• Postprocess to estimate the sum $\sum_{i=1}^{t} x_i$ at time t:

Tree Mechanism [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Mechanism \mathcal{M} *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I}$$
 noise $Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$

Postprocess

to estimate the sum $\sum_{i=1}^{t} x_i$ at time t:

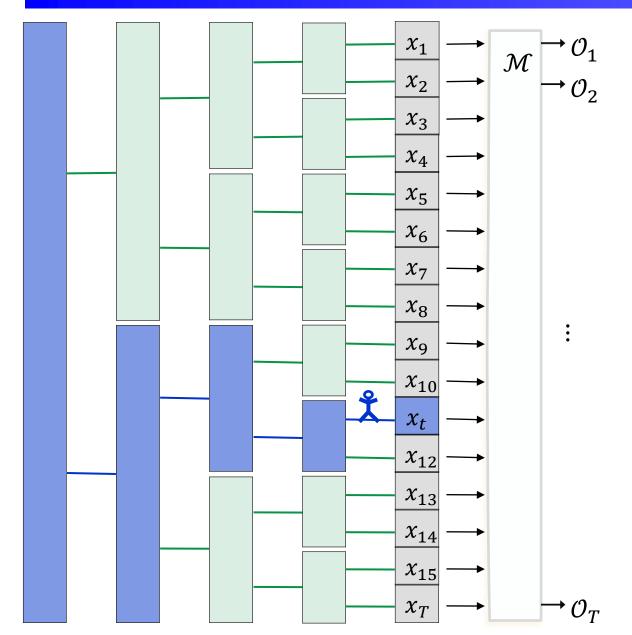
- Represent [1, t] as the sum of at most $\log T$ intervals I and add estimates \tilde{X}_I

Accuracy Analysis:

- Each output is the sum of $\leq \log T$ noisy sums X_I
- Its error is the sum of $\leq \log T$ independent Laplace RVs with variance $O\left(\frac{\log^2 T}{\epsilon^2}\right)$ each.

 • Variance $\sigma^2 = O\left(\frac{\log^3 T}{\epsilon^2}\right)$, so $\sigma = O\left(\frac{\log^{1.5} T}{\epsilon}\right)$ • It can be shown: max error is $O\left(\frac{\log^2 T}{\epsilon}\right)$

Tree Mechanism: Analysis



Mechanism \mathcal{M} *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I}$$
 noise $Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$

Postprocess

to estimate the sum $\sum_{i=1}^{t} x_i$ at time t:

- Represent [1, t] as the sum of at most $\log T$ intervals I and add estimates \tilde{X}_I

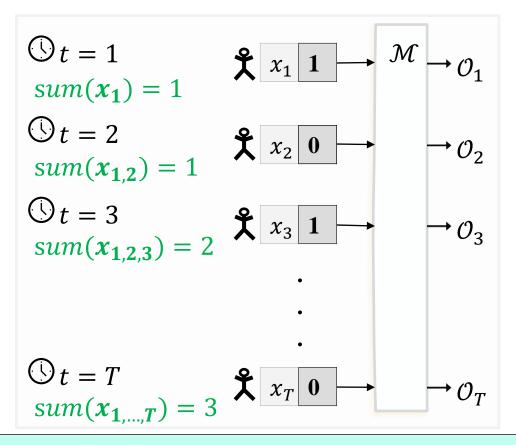
Privacy Analysis:

- ullet Each x_t participates in $\log T$ noisy sums $ilde{X_I}$
- The vector of interval sums has sensitivity $\log T$
- By properties of Laplace mechanism and postprocessing, $\mathcal M$ is ϵ -differentially private

Summary of Results for Summation

Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Each person's data:
$$x_i \in \{0,1\}$$

 $sum(x_1,...,x_n) = \sum_{i \in [n]} x_i$

- *Batch model:* error $O\left(\frac{1}{\epsilon}\right)$ using Laplace mechanism.
- Continual release: error $O\left(\frac{\log^2 T}{\epsilon}\right)$ using tree mechanism [Dwork et al., Chan et al.]
 - error $\Omega\left(\frac{\log T}{\epsilon}\right)$ is necessary [Dwork et al.]

The overhead in the error in the continual release model is only polylog(T)

- Tree mechanism has been used to solve many problems, some of which don't look related to summation.
- But some problems that are closely related to summation remained unsolved.

Key Contributions of [Jain Raskhodnikova Sivakumar Smith]

 $T^{1/3}$ (from log T)

Algorithms for these tasks are key ingredients in DP solutions to more complex problems (e.g., synthetic data generation and high-dimensional optimization)

- First strong lower bounds for the continual release model
- > Tight bounds for two fundamental problems
- New sequential embedding technique

- Related to summation, but with inputs $x_1, ..., x_n \in \{0,1\}^d$
- MaxSum: largest sum in one coordinate
- SumSelect:
 index of the coordinate with largest sum

> Formalization of the continual release model with adaptively selected inputs

Related Work

• Introduced the continual release model, designed the tree mechanism for summation [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]

Applications of the tree mechanism

- differentially private online learning [Jain Kothari Thakurta 12, Smith Thakurta 13, Agarwal Singh 17,...]
- weighted sums and sums of real-valued data [Bolot Fawaz Muthukrishnan Nikolov Taft 13, Perrier Asghar Kaafar 19]
- interval and rectangle queries, refinement of the binary tree mechanism [Dwork Naor Reingold Rothblum 15]

Alternatives to the tree mechanism

 Applications to (practical) online learning [Kairouz McMahan Song Thakkar Thakurta Xu 21, Denisov McMahan Rush Smith Thakurta 22] • graph problems [Fichtenberger Henzinger Ost '21]

Variants of MaxSum/SumSelect in different DP models

- Central model [Steinke Ullman 17, Durfee Rogers 19]
- Local model [Kasiviswanathan Lee Nissim Raskhodnikova Smith 08, Duchi Jordan Wainwright 13, Ullman 17, Edmonds Nikolov Ullman 20,...]
- Shuffle and pan-private models
 [Cheu Ullman 21]
- Continual release (SumSelect, focusing on empirical performance) [Cardoso Rogers 22]

Error Bounds in [Jain Raskhodnikova Sivakumar Smith]

/	(1)	6/	
$(1, \alpha)$	$\left(\frac{\pi}{2}\right)$	-DP	
(-, -	$\backslash T I J$		

		Continual Release		
	Batch Model	LOWER BOUNDS	UPPER BOUNDS	
Summation	Θ(1) [Dwork McSherry Nissim Smith 06]	Ω(log T) [Dwork Naor Pitassi Rothblum 10]	O(log ² T) [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]	
MaxSum(d)	Θ(1) [Dwork McSherry Nissim Smith 06]	$\widetilde{\Omega}(\min(T^{1/3},\sqrt{d}))$	$\widetilde{O}(\min(T^{1/3}, \sqrt{d} \log T))$	
SumSelect(d)	$\Theta(\log d)$ [McSherry Talwar 07]	$\widetilde{\Omega}(\min(T^{1/3}\log d, \sqrt{d}))$	$\widetilde{O}(\min(T^{1/3}\log d, \sqrt{d}\log T))$	

- 1. Lower bounds hold for nonadaptively selected inputs
- 2. Matched by algorithms that work against adaptively selected inputs
 - Formalization of continual release model with adaptively selected inputs
- 3. Techniques work for pure DP and approximate DP

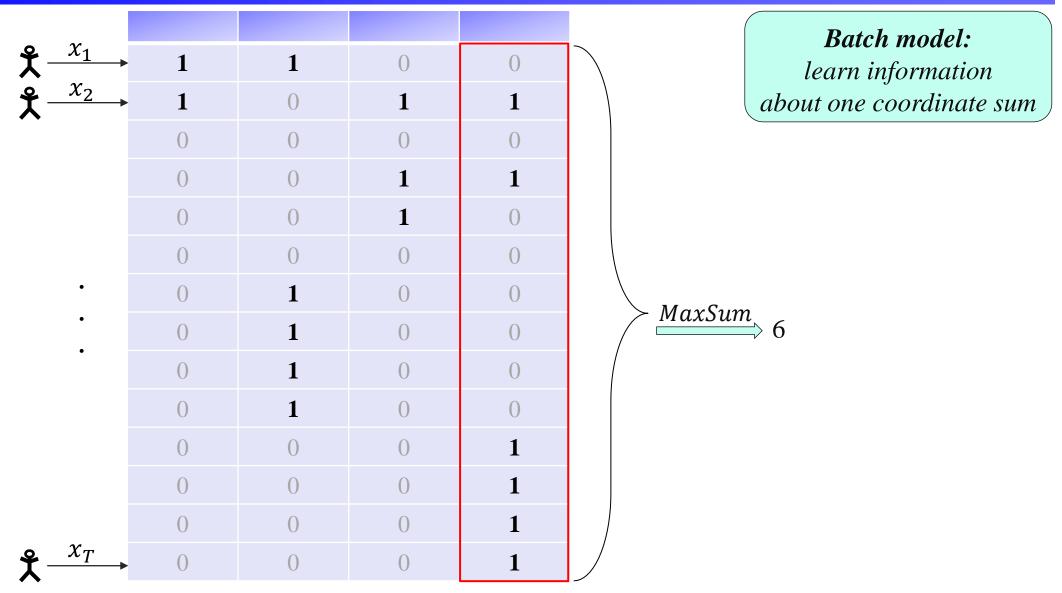
MaxSum: Example

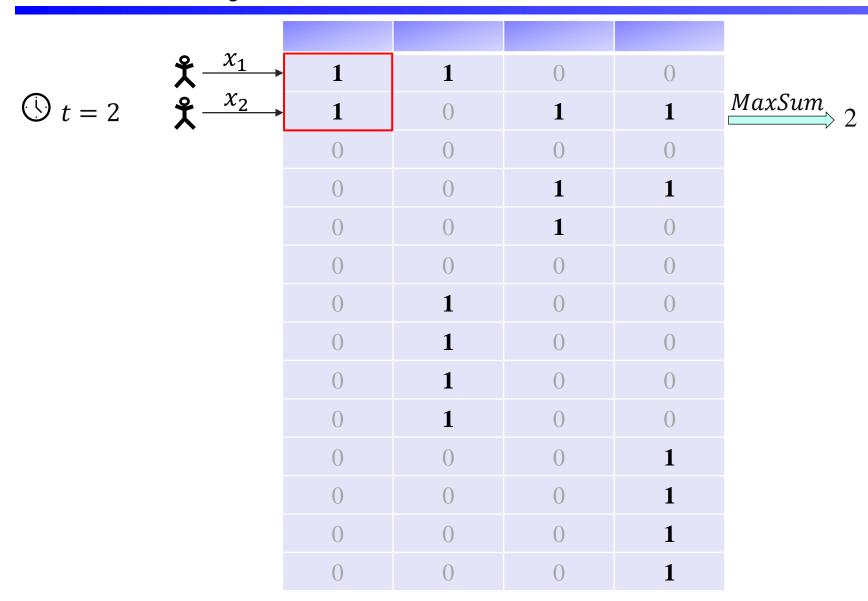
$\begin{array}{c} x \xrightarrow{x_1} \\ x \xrightarrow{x_2} \end{array}$	1	1	0	0
$\chi \xrightarrow{\chi_2}$	1	0	1	1
	0	0	0	0
	0	0	1	1
	0	0	1	0
	0	0	0	0
•	0	1	0	0
•	0	1	0	0
·	0	1	0	0
	0	1	0	0
	0	0	0	1
	0	0	0	1
	0	0	0	1
$\mathbf{x} \xrightarrow{x_T}$	0	0	0	1
	2	5	3	6

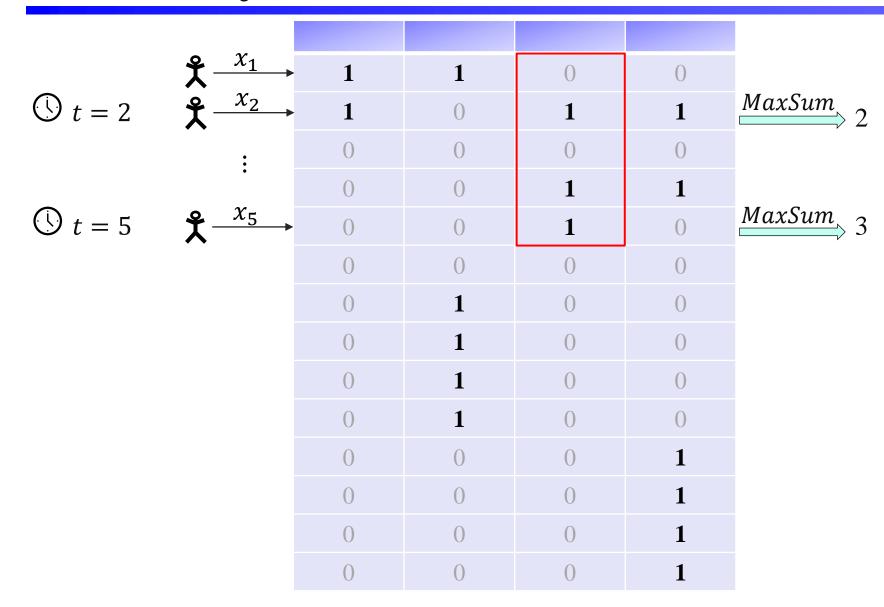
Each person's data: $x_i \in \{0,1\}^d$

$$MaxSum(x_1, ..., x_n) = \max_{j \in [d]} \sum_{i \in [n]} x_i^j$$

MaxSum = 6







1	1	0	0	
1	0	1	1	\xrightarrow{MaxSum} 2
0	0	0	0	
0	0	1	1	
0	0	1	0	\xrightarrow{MaxSum} 3
0	0	0	0	
0	1	0	0	
0	1	0	0	
0	1	0	0	14 0
0	1	0	0	$\stackrel{\textit{MaxSum}}{\Longrightarrow} 5$
0	0	0	1	
0	0	0	1	
0	0	0	1	
0	0	0	1	
	1 0 0 0 0 0 0 0 0 0	→ 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

	$\mathbf{x} \xrightarrow{x_1}$	1	1	0	0	
$\bigcirc t = 2$	$\mathbf{x} \xrightarrow{x_2}$	1	0	1	1	$\stackrel{\textit{MaxSum}}{\Longrightarrow} 2$
	:	0	0	0	0	
	•	0	0	1	1	
$\bigcirc t = 5$	$\mathbf{x} \xrightarrow{x_5}$	0	0	1	0	\xrightarrow{MaxSum} 3
		0	0	0	0	
	•	0	1	0	0	
	:	0	1	0	0	
		0	1	0	0	M C
$\bigcirc t = 10$	$\mathbf{x} \xrightarrow{x_{10}}$	0	1	0	0	\xrightarrow{MaxSum} 5
		0	0	0	1	
	:	0	0	0	1	
		0	0	0	1	ManCare
$\bigcirc t = 14$	$\mathbf{x} \xrightarrow{x_{14}}$	0	0	0	1	\xrightarrow{MaxSum} 6

Key Contributions of [Jain Raskhodnikova Sivakumar Smith]

 $T^{1/3}$ (from log T)

- > First strong lower bounds for the continual release model
- > Tight bounds for two fundamental problems
- > New sequential embedding technique

Related to summation, but with inputs $x_1, ..., x_n \in \{0,1\}^d$

- MaxSum: largest sum in one coordinate
- SumSelect:
 index of the coordinate with largest sum

> Formalization of the continual release model with adaptively selected inputs

Lower Bound: Key Idea

Design a reduction from releasing all coordinate sums in the batch model to releasing MaxSum in the continual release model.

Releasing All Coordinates Sums is Hard in the Batch Model

$\mathbf{x} \xrightarrow{x_1}$	1	1	0	0
$\begin{array}{c} x_1 \\ x_2 \\ \end{array}$	1	0	1	1
	0	0	0	0
	0	0	1	1
	0	0	1	0
	0	0	0	0
•	0	1	0	0
•	0	1	0	0
•	0	1	0	0
	0	1	0	0
	0	0	0	1
	0	0	0	1
	0	0	0	1
\mathbf{x}^{-x_n}	0	0	0	1
· •	2	5	3	6

$$ERR[\mathcal{A}] = \left| \mathcal{A}(\mathbf{x}_{1,\dots,n}) - \sum_{i \in [n]} x_i \right|_{\infty}$$

Theorem [Bun Ullman Vadhan 18]

Every $\left(1, o\left(\frac{1}{n}\right)\right)$ -DP algorithm for $CoordSums_d$ has error at least $\Omega(\min(\sqrt{d}, n))$.

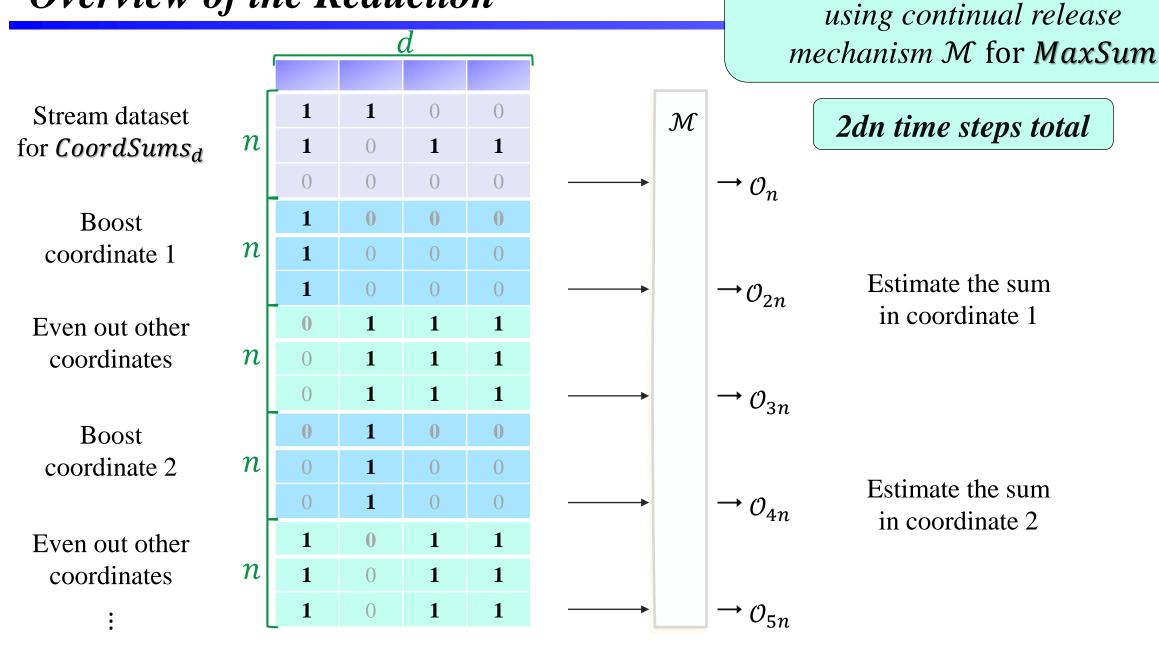
Lower Bound: Key Idea

Goal: Algorithm for CoordSums_d
using continual release
mechanism M for MaxSum

Design a reduction
from
releasing CoordSums in the batch model
to
releasing MaxSum in the continual release model.

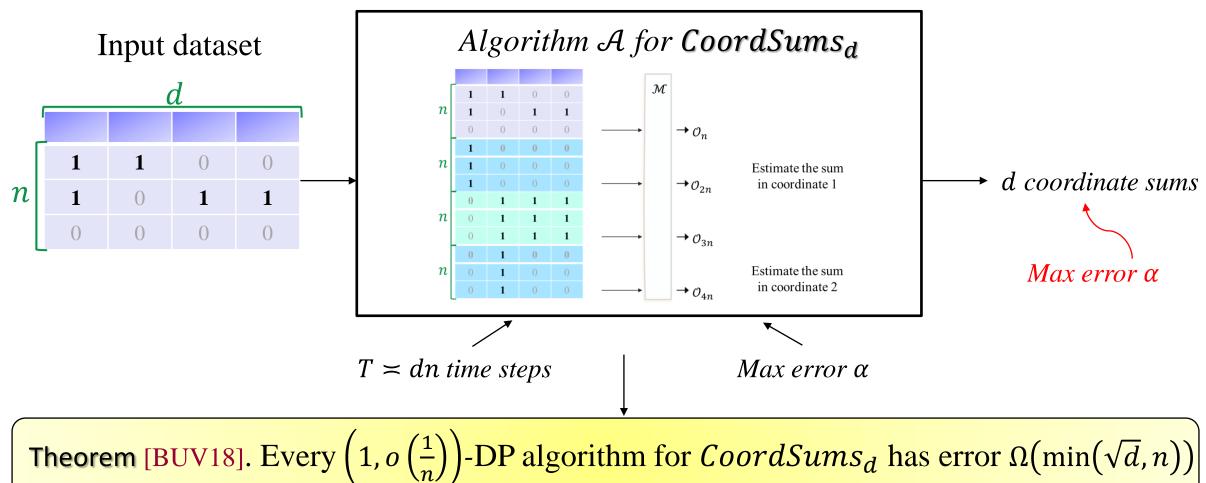
- We embed an instance of *CoordSums* in an instance of *MaxSum*
- Then add to the stream to ensure we can extract one coordinate sum at a time

Overview of the Reduction



Goal: Algorithm for CoordSums_d

Lower Bound for MaxSum



$$d = T^{2/3}, n = T^{1/3}$$
Error $\alpha = \Omega(T^{1/3})$

Error Bounds in [Jain Raskhodnikova Sivakumar Smith]

/	(4)	6/
(1, o)	$(\frac{1}{2})$	-DP
(1,0	$\setminus_T J J$	

		Continual Release		
	Batch Model	LOWER BOUNDS	UPPER BOUNDS	
Summation	Θ(1) [Dwork McSherry Nissim Smith 06]	Ω(log T) [Dwork Naor Pitassi Rothblum 10]	O(log ² T) [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]	
MaxSum(d)	Θ(1) [Dwork McSherry Nissim Smith 06]	$\widetilde{\Omega}(\min(T^{1/3},\sqrt{d}))$	$\widetilde{O}(\min(T^{1/3}, \sqrt{d}\log T))$	
SumSelect(d)	$\Theta(\log d)$ [McSherry Talwar 07]	$\left(\widetilde{\Omega}(\min(T^{1/3}\log d, \sqrt{d}))\right)$	$\widetilde{O}(\min(T^{1/3}\log d, \sqrt{d}\log T))$	

- 1. Lower bounds hold for nonadaptively selected inputs
- 2. Matched by algorithms that work against adaptively selected inputs
 - Formalization of continual release model with adaptively selected inputs
- 3. Techniques work for pure DP and approximate DP

Open Questions and Directions

- Can we characterize problems in terms of how much harder they are in the continual release model than in the batch model?
 - Which sensitivity-1 functions require poly(d) error in the continual release model?
- Do our lower bounds for SumSelect imply hardness for online learning?
- Are there connections between continual release and learning that do not go via online learning?
- Better understanding of continual release with adaptively selected streams.

