# The Price of Differential Privacy under Continual Observation

#### Sofya Raskhodnikova

Based on joint work with:

Palak Jain, Satchit Sivakumar, and Adam Smith







1900!







### Aggregate Statistics on Sensitive Dynamic Data

#### **COVID Data Tracker**

Daily Update for the United States



CDC | Data as of: October 28, 2022 3:52 PM ET. Posted: October 28, 2022 4:40 PM ET

### $Batch\ Model\ ext{[Dwork McSherry Nissim Smith 06]}$



dataset x

### Continual Release Model [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



mechanism



### Privacy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy:

### Privacy Definition: Neighboring Dataset

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy:

Two datasets x, x' are **neighbors** if they differ in one person's data.

### Privacy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',  $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$ 

### Privacy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### **Batch Model** [Dwork, McSherry Nissim Smith 06]



$$(\epsilon, \delta)$$
-Differential Privacy: For all neighbors  $x, x'$ ,  $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$ 

### Privacy Definition: Neighboring Datasets

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### **Batch Model** [Dwork, McSherry Nissim Smith 06]



$$(\epsilon, \delta)$$
-Differential Privacy: For all neighbors  $x, x'$ ,  $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$ 

### Privacy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',  $\mathcal{A}(x_1, ..., x_t, ..., x_n) \approx_{\epsilon, \delta} \mathcal{A}(x_1, ..., x_t', ..., x_n)$ 

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

### Accuracy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

 $\alpha$ -Accuracy:

### Accuracy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



### $ERR_f[\mathcal{A}(\mathbf{x})] = |\mathcal{A}(\mathbf{x}) - f(\mathbf{x})|$

#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

 $\alpha$ -Accuracy: For all datasets,

$$[ERR_f[\mathcal{A}(x_1, ..., x_T)] \le \alpha \quad w.p. \ge 2/3$$

### Accuracy Definition

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### **Batch Model** [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

 $\alpha$ -Accuracy: For all datasets,

$$ERR_f[\mathcal{A}(x_1,...,x_T)] \le \alpha \quad w.p. \ge 2/3$$

$$MAX(ERR_f[\mathcal{O}_1], \dots, ERR_f[\mathcal{O}_T]) \le \alpha \quad w.p. \ge 2/3$$

$$ERR_f[\mathcal{O}_t] = |\mathcal{O}_t - f(\mathbf{x}_{1,\dots,t})|$$

### Privacy and Accuracy Definitions

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



 $(\epsilon, \delta)$ -Differential Privacy: For all neighbors x, x',

$$\begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t,\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t,\ldots,\mathcal{O}_T) \end{array} \approx_{\epsilon,\delta} \begin{array}{ll} \mathcal{M}(x_1,\ldots,x_t',\ldots,x_T) \\ = (\mathcal{O}_1,\ldots,\mathcal{O}_t',\ldots,\mathcal{O}_T') \end{array}$$

α-Accuracy: For all datasets,  $MAX(ERR_f[\mathcal{O}_1], ..., ERR_f[\mathcal{O}_T]) \le \alpha$   $w.p. \ge 2/3$ 

### Example Function: Summation

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### Batch Model [Dwork, McSherry Nissim Smith 06]



Each person's data:  $x_i \in \{0,1\}$  $sum(x_1, ..., x_n) = \sum_{i \in [n]} x_i$ 

• Batch model: error  $O\left(\frac{1}{\epsilon}\right)$  using Laplace mechanism.

### Example Function: Summation

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



**Batch Model** [Dwork, McSherry Nissim Smith 06]



Each person's data:  $x_i \in \{0,1\}$  $sum(x_1, ..., x_n) = \sum_{i \in [n]} x_i$ 

- *Batch model:* error  $O\left(\frac{1}{\epsilon}\right)$  using Laplace mechanism.
- Continual release: error  $O\left(\frac{\log^2 T}{\epsilon}\right)$  using tree mechanism [Dwork et al., Chan et al.]

### Tree Mechanism [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### *Mechanism* $\mathcal{M}$ *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I} - \text{noise } Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$$

• Postprocess to estimate the sum  $\sum_{i=1}^{t} x_i$  at time t:

### Tree Mechanism [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



#### *Mechanism* $\mathcal{M}$ *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I}$$
 noise  $Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$ 

**Postprocess** 

to estimate the sum  $\sum_{i=1}^{t} x_i$  at time t:

- Represent [1, t] as the sum of at most  $\log T$ intervals I and add estimates  $\tilde{X}_I$ 

#### Accuracy Analysis:

- Each output is the sum of  $\leq \log T$  noisy sums  $X_I$
- Its error is the sum of  $\leq \log T$  independent Laplace RVs with variance  $O\left(\frac{\log^2 T}{\epsilon^2}\right)$  each.

  • Variance  $\sigma^2 = O\left(\frac{\log^3 T}{\epsilon^2}\right)$ , so  $\sigma = O\left(\frac{\log^{1.5} T}{\epsilon}\right)$ • It can be shown: max error is  $O\left(\frac{\log^2 T}{\epsilon}\right)$

### Tree Mechanism: Analysis



#### *Mechanism* $\mathcal{M}$ *for Summation*

• For each interval *I* in the tree, publish

$$\tilde{X}_{I} = \sum_{t \in I} x_{t} + Y_{I}$$
 noise  $Y_{I} \sim Lap\left(\frac{\log_{2} T}{\epsilon}\right)$ 

Postprocess

to estimate the sum  $\sum_{i=1}^{t} x_i$  at time t:

- Represent [1, t] as the sum of at most  $\log T$  intervals I and add estimates  $\tilde{X}_I$ 

#### Privacy Analysis:

- ullet Each  $x_t$  participates in  $\log T$  noisy sums  $ilde{X_I}$
- The vector of interval sums has sensitivity  $\log T$
- By properties of Laplace mechanism and postprocessing,  $\mathcal M$  is  $\epsilon$ -differentially private

### Summary of Results for Summation

#### Continual Release Model

[Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]



Each person's data: 
$$x_i \in \{0,1\}$$
  
 $sum(x_1,...,x_n) = \sum_{i \in [n]} x_i$ 

- *Batch model:* error  $O\left(\frac{1}{\epsilon}\right)$  using Laplace mechanism.
- Continual release: error  $O\left(\frac{\log^2 T}{\epsilon}\right)$  using tree mechanism [Dwork et al., Chan et al.]
  - error  $\Omega\left(\frac{\log T}{\epsilon}\right)$  is necessary [Dwork et al.]

The overhead in the error in the continual release model is only polylog(T)

- Tree mechanism has been used to solve many problems, some of which don't look related to summation.
- But some problems that are closely related to summation remained unsolved.

### Key Contributions of [Jain Raskhodnikova Sivakumar Smith]

 $T^{1/3}$  (from log T)

Algorithms for these tasks are key ingredients in DP solutions to more complex problems (e.g., synthetic data generation and high-dimensional optimization)

- First strong lower bounds for the continual release model
- > Tight bounds for two fundamental problems
- New sequential embedding technique

- Related to summation, but with inputs  $x_1, ..., x_n \in \{0,1\}^d$
- MaxSum: largest sum in one coordinate
- SumSelect:
  index of the coordinate with largest sum

> Formalization of the continual release model with adaptively selected inputs

#### Related Work

• Introduced the continual release model, designed the tree mechanism for summation [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10]

#### Applications of the tree mechanism

- differentially private online learning [Jain Kothari Thakurta 12, Smith Thakurta 13, Agarwal Singh 17,...]
- weighted sums and sums of real-valued data [Bolot Fawaz Muthukrishnan Nikolov Taft 13, Perrier Asghar Kaafar 19]
- interval and rectangle queries, refinement of the binary tree mechanism [Dwork Naor Reingold Rothblum 15]

#### Alternatives to the tree mechanism

 Applications to (practical) online learning [Kairouz McMahan Song Thakkar Thakurta Xu 21, Denisov McMahan Rush Smith Thakurta 22] • graph problems [Fichtenberger Henzinger Ost '21]

## Variants of MaxSum/SumSelect in different DP models

- Central model [Steinke Ullman 17, Durfee Rogers 19]
- Local model [Kasiviswanathan Lee Nissim Raskhodnikova Smith 08, Duchi Jordan Wainwright 13, Ullman 17, Edmonds Nikolov Ullman 20,...]
- Shuffle and pan-private models
   [Cheu Ullman 21]
- Continual release (SumSelect, focusing on empirical performance) [Cardoso Rogers 22]

### Error Bounds in [Jain Raskhodnikova Sivakumar Smith]

| /             | (1)                          | 6/  |  |
|---------------|------------------------------|-----|--|
| $(1, \alpha)$ | $\left(\frac{\pi}{2}\right)$ | -DP |  |
| ( -, -        | $\backslash T I J$           |     |  |

|              |                                       | Continual Release                                   |                                                                          |  |
|--------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|--|
|              | Batch Model                           | LOWER BOUNDS                                        | UPPER BOUNDS                                                             |  |
| Summation    | Θ(1) [Dwork McSherry Nissim Smith 06] | Ω(log T)<br>[Dwork Naor Pitassi Rothblum 10]        | O(log <sup>2</sup> T) [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10] |  |
| MaxSum(d)    | Θ(1) [Dwork McSherry Nissim Smith 06] | $\widetilde{\Omega}(\min(T^{1/3},\sqrt{d}))$        | $\widetilde{O}(\min(T^{1/3}, \sqrt{d} \log T))$                          |  |
| SumSelect(d) | $\Theta(\log d)$ [McSherry Talwar 07] | $\widetilde{\Omega}(\min(T^{1/3}\log d, \sqrt{d}))$ | $\widetilde{O}(\min(T^{1/3}\log d, \sqrt{d}\log T))$                     |  |

- 1. Lower bounds hold for nonadaptively selected inputs
- 2. Matched by algorithms that work against adaptively selected inputs
  - Formalization of continual release model with adaptively selected inputs
- 3. Techniques work for pure DP and approximate DP

### MaxSum: Example

| $\begin{array}{c} x \xrightarrow{x_1} \\ x \xrightarrow{x_2} \end{array}$ | 1 | 1 | 0 | 0 |
|---------------------------------------------------------------------------|---|---|---|---|
| $\chi \xrightarrow{\chi_2}$                                               | 1 | 0 | 1 | 1 |
|                                                                           | 0 | 0 | 0 | 0 |
|                                                                           | 0 | 0 | 1 | 1 |
|                                                                           | 0 | 0 | 1 | 0 |
|                                                                           | 0 | 0 | 0 | 0 |
| •                                                                         | 0 | 1 | 0 | 0 |
| •                                                                         | 0 | 1 | 0 | 0 |
| ·                                                                         | 0 | 1 | 0 | 0 |
|                                                                           | 0 | 1 | 0 | 0 |
|                                                                           | 0 | 0 | 0 | 1 |
|                                                                           | 0 | 0 | 0 | 1 |
|                                                                           | 0 | 0 | 0 | 1 |
| $\mathbf{x} \xrightarrow{x_T}$                                            | 0 | 0 | 0 | 1 |
|                                                                           | 2 | 5 | 3 | 6 |

Each person's data:  $x_i \in \{0,1\}^d$ 

$$MaxSum(x_1, ..., x_n) = \max_{j \in [d]} \sum_{i \in [n]} x_i^j$$

MaxSum = 6







| <b>1</b> | 1                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
|----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b> | 0                                              | 1                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | $\xrightarrow{MaxSum}$ 2                                                                                                        |
| 0        | 0                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 0                                              | 1                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 0                                              | 1                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | $\xrightarrow{MaxSum}$ 3                                                                                                        |
| 0        | 0                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 1                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 1                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 1                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 14 0                                                                                                                            |
| 0        | 1                                              | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | $\stackrel{\textit{MaxSum}}{\Longrightarrow} 5$                                                                                 |
| 0        | 0                                              | 0                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 0                                              | 0                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 0                                              | 0                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| 0        | 0                                              | 0                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
|          | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | → 1 0   0 0   0 0   0 0   0 1   0 1   0 1   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0   0 0 | 1       0       1         0       0       0         0       0       1         0       0       0         0       1       0         0       1       0         0       1       0         0       1       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0 | 1 0 1 1   0 0 0 0   0 0 1 1   0 0 0 0   0 1 0 0   0 1 0 0   0 1 0 0   0 0 0 1   0 0 0 1   0 0 0 1   0 0 0 1   0 0 0 1   0 0 0 1 |

|                   | $\mathbf{x} \xrightarrow{x_1}$    | 1 | 1 | 0 | 0 |                                                 |
|-------------------|-----------------------------------|---|---|---|---|-------------------------------------------------|
| $\bigcirc t = 2$  | $\mathbf{x} \xrightarrow{x_2}$    | 1 | 0 | 1 | 1 | $\stackrel{\textit{MaxSum}}{\Longrightarrow} 2$ |
|                   | :                                 | 0 | 0 | 0 | 0 |                                                 |
|                   | •                                 | 0 | 0 | 1 | 1 |                                                 |
| $\bigcirc t = 5$  | $\mathbf{x} \xrightarrow{x_5}$    | 0 | 0 | 1 | 0 | $\xrightarrow{MaxSum}$ 3                        |
|                   |                                   | 0 | 0 | 0 | 0 |                                                 |
|                   | •                                 | 0 | 1 | 0 | 0 |                                                 |
|                   | :                                 | 0 | 1 | 0 | 0 |                                                 |
|                   |                                   | 0 | 1 | 0 | 0 | M C                                             |
| $\bigcirc t = 10$ | $\mathbf{x} \xrightarrow{x_{10}}$ | 0 | 1 | 0 | 0 | $\xrightarrow{MaxSum}$ 5                        |
|                   |                                   | 0 | 0 | 0 | 1 |                                                 |
|                   | :                                 | 0 | 0 | 0 | 1 |                                                 |
|                   |                                   | 0 | 0 | 0 | 1 | ManCare                                         |
| $\bigcirc t = 14$ | $\mathbf{x} \xrightarrow{x_{14}}$ | 0 | 0 | 0 | 1 | $\xrightarrow{MaxSum}$ 6                        |
|                   |                                   |   |   |   |   |                                                 |

### Key Contributions of [Jain Raskhodnikova Sivakumar Smith]

 $T^{1/3}$  (from log T)

- > First strong lower bounds for the continual release model
- > Tight bounds for two fundamental problems
- > New sequential embedding technique

Related to summation, but with inputs  $x_1, ..., x_n \in \{0,1\}^d$ 

- MaxSum: largest sum in one coordinate
- SumSelect:
  index of the coordinate with largest sum

> Formalization of the continual release model with adaptively selected inputs

### Lower Bound: Key Idea

Design a reduction from releasing all coordinate sums in the batch model to releasing MaxSum in the continual release model.

### Releasing All Coordinates Sums is Hard in the Batch Model

| $\mathbf{x} \xrightarrow{x_1}$               | 1 | 1 | 0 | 0 |
|----------------------------------------------|---|---|---|---|
| $\begin{array}{c} x_1 \\ x_2 \\ \end{array}$ | 1 | 0 | 1 | 1 |
|                                              | 0 | 0 | 0 | 0 |
|                                              | 0 | 0 | 1 | 1 |
|                                              | 0 | 0 | 1 | 0 |
|                                              | 0 | 0 | 0 | 0 |
| •                                            | 0 | 1 | 0 | 0 |
| •                                            | 0 | 1 | 0 | 0 |
| •                                            | 0 | 1 | 0 | 0 |
|                                              | 0 | 1 | 0 | 0 |
|                                              | 0 | 0 | 0 | 1 |
|                                              | 0 | 0 | 0 | 1 |
|                                              | 0 | 0 | 0 | 1 |
| $\mathbf{x}^{-x_n}$                          | 0 | 0 | 0 | 1 |
| · •                                          | 2 | 5 | 3 | 6 |

$$ERR[\mathcal{A}] = \left| \mathcal{A}(\mathbf{x}_{1,\dots,n}) - \sum_{i \in [n]} x_i \right|_{\infty}$$

#### Theorem [Bun Ullman Vadhan 18]

Every  $\left(1, o\left(\frac{1}{n}\right)\right)$ -DP algorithm for  $CoordSums_d$  has error at least  $\Omega(\min(\sqrt{d}, n))$ .

### Lower Bound: Key Idea

Goal: Algorithm for CoordSums<sub>d</sub>
using continual release
mechanism M for MaxSum

Design a reduction
from
releasing CoordSums in the batch model
to
releasing MaxSum in the continual release model.

- We embed an instance of *CoordSums* in an instance of *MaxSum*
- Then add to the stream to ensure we can extract one coordinate sum at a time

### Overview of the Reduction



Goal: Algorithm for CoordSums<sub>d</sub>

### Lower Bound for MaxSum



$$d = T^{2/3}, n = T^{1/3}$$
Error  $\alpha = \Omega(T^{1/3})$ 

#### Error Bounds in [Jain Raskhodnikova Sivakumar Smith]

| /      | (4)               | 6/  |
|--------|-------------------|-----|
| (1, o) | $(\frac{1}{2})$   | -DP |
| (1,0   | $\setminus_T J J$ |     |

|              |                                       | Continual Release                                                |                                                                          |  |
|--------------|---------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|              | Batch Model                           | LOWER BOUNDS                                                     | UPPER BOUNDS                                                             |  |
| Summation    | Θ(1) [Dwork McSherry Nissim Smith 06] | Ω(log T) [Dwork Naor Pitassi Rothblum 10]                        | O(log <sup>2</sup> T) [Dwork Naor Pitassi Rothblum 10, Chan Shi Song 10] |  |
| MaxSum(d)    | Θ(1) [Dwork McSherry Nissim Smith 06] | $\widetilde{\Omega}(\min(T^{1/3},\sqrt{d}))$                     | $\widetilde{O}(\min(T^{1/3}, \sqrt{d}\log T))$                           |  |
| SumSelect(d) | $\Theta(\log d)$ [McSherry Talwar 07] | $\left(\widetilde{\Omega}(\min(T^{1/3}\log d, \sqrt{d}))\right)$ | $\widetilde{O}(\min(T^{1/3}\log d, \sqrt{d}\log T))$                     |  |

- 1. Lower bounds hold for nonadaptively selected inputs
- 2. Matched by algorithms that work against adaptively selected inputs
  - Formalization of continual release model with adaptively selected inputs
- 3. Techniques work for pure DP and approximate DP

### Open Questions and Directions

- Can we characterize problems in terms of how much harder they are in the continual release model than in the batch model?
  - Which sensitivity-1 functions require poly(d) error in the continual release model?
- Do our lower bounds for SumSelect imply hardness for online learning?
- Are there connections between continual release and learning that do not go via online learning?
- Better understanding of continual release with adaptively selected streams.



