Edge Differentially Private Triangle Counting in the Local Model

Sofya Raskhodnikova
Boston University

Joint work with

Talya Eden
Bar-Ilan University

Quanquan Liu
Northwestern University

Adam Smith
Boston University
Many types of sensitive data can be represented as graphs
Differential privacy

Intuition: Two datasets are neighbors if they differ in one individual’s data. An algorithm is differentially private if its output is roughly the same for all pairs of neighbors.
Two variants of differential privacy for graphs

• **Edge** differential privacy

Two graphs are *neighbors* if they differ in *one edge*.

• **Node** differential privacy

Two graphs are *neighbors* if one can be obtained from the other by deleting *a node and its adjacent edges*.

[Images of graphs illustrating edge and node differential privacy]
Differential privacy (for graph data)

An algorithm A is (ϵ, δ)-differentially private if for all pairs of neighbors G, G' and all possible sets of outputs S:

$$
\Pr[A(G) \in S] \leq e^\epsilon \Pr[A(G') \in S] + \delta
$$
Local Privacy Models

Advantages of the local model:
- private data never leaves local devices
- no single point of failure
- highly distributed

Disadvantage of the local model:
- data-thirsty (more data for the same accuracy)

[Efimievski Gehrke Srikant 03]
[Kasiviswanathan Lee Nissim Raskhodnikova Smith 11]
Local Privacy Models with Graphs [Qin Yu Yang Khalil Xiao Ren 17]

Each node in the graph represents a party
Each party’s input is the subgraph induced by the node and its neighbors

Note:
- each edge is visible to two parties.

Conceptually different from the standard local model, where input is partitioned between parties
Prior Work on Local Graph Model

Empirical accuracy for subgraph counting and (informally-defined) synthetic graph generation

Theoretical guarantees for

- counting triangles, stars, 4-cycles

 [Imola, Murakami, Chaudhuri, USENIX Security 2021 and 2022, CCS 2022]

- other graph summaries (k-core decomposition, densest subgraphs)

 [Dhulipala, Liu, Raskhodnikova, Shi, Shun, Yu. FOCS 2022]
Triangle counting in the local model was first studied by [Imola Murakami Chaudhuri]

<table>
<thead>
<tr>
<th>Model</th>
<th>Previous Results</th>
<th>Our Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninteractive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower bounds</td>
<td>$\Omega\left(n^{3/2}\right)$ [IMC 21]</td>
<td>$\Omega(n^2)$</td>
</tr>
<tr>
<td>Upper bounds</td>
<td>$O(n^2)$ (constant ϵ) [IMC 22b]</td>
<td>$O\left(\frac{n^2}{\epsilon} + \frac{n^{3/2}}{\epsilon^3}\right)$</td>
</tr>
<tr>
<td>Interactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bounds</td>
<td>$\Omega(n)$ (easy)</td>
<td>$\Omega\left(\frac{n^{3/2}}{\epsilon}\right)$</td>
</tr>
<tr>
<td>Upper bounds</td>
<td>$O\left(\frac{n^2}{\epsilon} + \frac{n^{3/2}}{\epsilon^2}\right)$ [IMC 22a]</td>
<td></td>
</tr>
</tbody>
</table>

Some upper bounds can also be expressed in terms of the number of 4-cycles.
Randomized Response [Warner 63]

• Canonical example of a local algorithm

• Invented to help get truthful answers on sensitive YES/NO survey questions.

• Randomization operator takes $y \in \{0,1\}$:

$$RR_\epsilon(y) = \begin{cases} y & \text{w. p. } \frac{e^\epsilon}{e^\epsilon+1} \\ 1-y & \text{w. p. } \frac{1}{e^\epsilon+1} \end{cases}$$

ratio is e^ϵ
Triangle Counting Via Randomized Response

Triangle Count (Input: $\epsilon > 0$, distributed $n \times n$ adjacency matrix A)

1. For all $\{i, j\} \in \binom{n}{2}$, release $X_{\{i, j\}} \leftarrow RR_\epsilon(A_{ij})$

2. For all $\{i, j\} \in \binom{n}{2}$, set $Y_{\{i, j\}} \leftarrow \frac{X_{\{i, j\}} \cdot (e^\epsilon + 1) - 1}{e^\epsilon - 1}$

3. For all $\{i, j, k\} \in \binom{n}{3}$, set $Z_{\{i, j, k\}} \leftarrow Y_{\{i, j\}} \cdot Y_{\{j, k\}} \cdot Y_{\{i, k\}}$

4. Return $\hat{T} \leftarrow \sum_{\{i, j, k\} \in \binom{n}{3}} Z_{\{i, j, k\}}$

- The variance of \hat{T} is $O\left(\frac{n^4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$

Release each A_{ij} using randomized response

Normalized noisy edge variables so that $\mathbb{E}[Y_{\{i, j\}}] = A_{ij}$

$\mathbb{E}[Z_{\{i, j, k\}}] = A_{ij} \cdot A_{jk} \cdot A_{ik} = \mathbb{1}_{\{i, j, k\}}$

$= \begin{cases} 1 & \text{if } \{i, j, k\} \text{ forms a triangle} \\ 0 & \text{otherwise} \end{cases}$

Return an unbiased estimate for the triangle count
Main Ideas Behind the $\Omega(n^2)$ Lower Bound

1. We will use a noninteractive local algorithm \mathcal{A} for counting triangles with error $O(n^2)$ to mount a reconstruction attack in the central model.

 Reconstruction attack [Dinur Nissim 03]

 If an algorithm answers N random linear queries on a dataset of N bits with error $\pm O(\sqrt{N})$

 then a large constant fraction of the dataset can be reconstructed.

2. Our dataset has $N = n^2$ bits, so we will answer (a constant fraction of) $\Theta(n^2)$ linear queries with error $\pm O(n)$.

3. To avoid invoking \mathcal{A} separately for each query, we will develop a new type of linear queries called outer-product queries.

4. Instead of using \mathcal{A} as a black box, we will used it as a ``gray box’’
Outer-Product Queries

Let $X \in \{0,1\}^{n\times n}$ be a secret dataset (in the central model).

An outer-product query to X specifies two vectors A and B of length n with entries in $\{-1,1\}$ and returns $A^T XB$, that is, $\sum_{i,j \in [n]} A_i X_{ij} B_j$.
Outer-Product Queries vs. Submatrix Queries

Let $X \in \{0,1\}^{n \times n}$ be a secret dataset (in the central model).

An outer-product query to X specifies two vectors A and B of length n with entries in $\{-1,1\}$ and returns $A^T X B$, that is, $\sum_{i,j \in [n]} A_i X_{ij} B_j$.

A submatrix query is the same as an outer-product query, except that vectors A and B have entries in $\{0,1\}$ instead of $\{-1,1\}$.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

$A \otimes B$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Outer-Product Queries Can Be Simulated with Matrix Queries

\[
\begin{pmatrix}
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
\end{pmatrix}
\begin{pmatrix}
1 \ldots 1 \\
0 \ldots 0 \\
1 \ldots 1 \\
\end{pmatrix}
= 2 \cdot
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
-
\begin{pmatrix}
1 \ldots 1 \\
0 \ldots 0 \\
1 \ldots 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \ldots 1 \\
1 \ldots 1 \\
1 \ldots 1 \\
\end{pmatrix}
\]
Main Lemma

Answering Outer-product Queries via Triangle Counting

Suppose there is a noninteractive local \((\varepsilon, \delta)\)-DP algorithm \(\mathcal{A}\) that, for every \(3n\)-node graph, with probability \(\Omega(1)\) returns the number of triangles \(\pm O(n^2)\).

Then there is a \((2\varepsilon, 2\delta)\)-DP algorithm \(\mathcal{B}\) in the central model that, for every secret dataset \(X \in \{0,1\}^{n \times n}\) and every set of \(k\) outer-product queries, with probability \(\Omega(1)\) returns a vector of answers, \(\Omega(k)\) of which have error \(\pm O(n)\).

- **Note:** algorithm \(\mathcal{A}\) is specified by
 - a local randomizer \(R_i\) for each vertex \(i\)
 - a postprocessing algorithm \(\mathcal{P}\)
Construction of Algorithm \mathcal{B}

- Algorithm \mathcal{B} converts its input dataset dataset $X \in \{0,1\}^{n \times n}$ to two graphs, G_0 and G_1, and runs local randomizers on them.
- After that, \mathcal{B} does not touch X.
- It simulates outer-product queries with matrix queries.
- For each matrix query (A, B), algorithm \mathcal{B}
 - constructs a query graph $G_{(A,B)}$,
 - estimates the number of triangles in $G_{(A,B)}$ by mixing and matching the responses of the local randomizers on G_0 and G_1 and running the postprocessing algorithm \mathcal{P} on them,
 - uses the result to answer the query.
Construction of Graphs G_0 and G_1 from Dataset X

- All graphs will be on $3n$ nodes
- Create 3 sets U, V, W with n nodes in each
- Create a secret bipartite subgraph G_X on (U, V) with edges determined by dataset X
- The resulting graph is G_0
Construction of Graphs G_0 and G_1 from Dataset X

- All graphs will be on $3n$ nodes
- Create 3 sets U, V, W with n nodes in each
- Create a *secret* bipartite subgraph G_X on (U, V) with edges determined by dataset X
- The resulting graph is G_0
- For G_1: add a complete bipartite graph between $U \cup V$ and W

Algorithm \mathcal{B} creates G_0 and G_1 from X, runs local randomizer R_v for each vertex v for both, and records the answers as $r_0(v)$ and $r_1(v)$

\mathcal{B} won’t touch X after this, so by composition \mathcal{B} is $(2\epsilon, 2\delta)$-DP
Construction of Query Graph $G_{(A,B)}$ for Matrix Query (A, B)

- Start with G_0
- Each node $u_i \in U$ connects to all nodes in W iff $A_i = 1$
- Each node $v_j \in V$ connects to all nodes in W iff $B_j = 1$

Each pair (u_i, v_j) contributes n triangles if $X_{ij} = A_i = B_j = 1$, and no triangles otherwise.

The number of triangles in $G_{(A,B)}$ is

$$\sum_{i,j \in [n]} n A_i X_{ij} B_j = n \cdot A^T XB$$
Mix-and-Match Strategy to Simulate \(\mathcal{A} \) on Query Graph \(G_{(A,B)} \)

- For all \(u_i \in U \): \(\text{view}_{u_i}(G_{(A,B)}) = \text{view}_{u_i}(G_{A_i}) \)
- For all \(v_j \in V \): \(\text{view}_{v_j}(G_{(A,B)}) = \text{view}_{v_j}(G_{B_j}) \)

Algorithm \(\mathcal{B} \) already ran the local randomizer for both possible views for all nodes \(v \) in \(U \cup V \) and recorded the answers as \(r_0(v) \) and \(r_1(v) \)

Other nodes do not have access to secret dataset \(X \)
\mathcal{B} runs the triangle-counting algorithm as a gray box by mixing and matching the recorded answers $r_0(v)$ and $r_1(v)$ for different nodes.

- If the triangle-counting algorithm has error $\pm O(n^2)$, then \mathcal{B} can answer submatrix queries with error $\pm O(n)$.

- The expected number of queries answered inaccurately is small.

- Markov inequality guarantees that most are answered accurately (with sufficient probability).
We Proved the Main Lemma

Answering Outer-product Queries via Triangle Counting

Suppose there is a noninteractive local \((\epsilon, \delta)\)-DP algorithm \(\mathcal{A}\) that, for every \(3n\)-node graph, with probability \(\Omega(1)\) returns the number of triangles \(\pm O(n^2)\).

Then there is a \((2\epsilon, 2\delta)\)-DP algorithm \(\mathcal{B}\) in the central model that, for every secret dataset \(X \in \{0,1\}^{n \times n}\) and every set of \(k\) outer-product queries, with probability \(\Omega(1)\) returns a vector of answers, \(\Omega(k)\) of which have error \(\pm O(n)\).
Ant-Concentration for Random Outer-Product Queries

Anti-Concentration Theorem

Let M be an $n \times n$ matrix with entries in $\{-1,0,1\}$ and m be the number of nonzero entries in M. Let A and B be drawn u.i.r. from $\{-1,1\}^n$. If $m \geq \gamma n^2$ for some constant γ, then

$$\Pr \left[|A^T M B| > \frac{\sqrt{m}}{2} \right] \geq \frac{\gamma^2}{16}.$$

Think of M as $X - Y$, where X is the dataset and Y is potential reconstruction i.e., the number of entries on which X and Y differ

W.h.p., the outer-product query (A, B) gives sufficiently different answers on X and Y to rule out Y.

Anti-Concentration for Random Outer-Product Queries

Anti-Concentration Theorem

Let M be an $n \times n$ matrix with entries in $\{-1,0,1\}$ and m be the number of nonzero entries in M.

Let A and B be drawn u.i.r. from $\{-1,1\}^n$.

If $m \geq \gamma n^2$ for some constant γ, then

\[
\Pr \left[|A^T M B| > \frac{\sqrt{m}}{2} \right] \geq \frac{\gamma^2}{16}.
\]

Let $W = A^T M B$

\[
\begin{align*}
\mathbb{E}(W) &= \mathbb{E} \left(\sum_{i,j \in [n]} M_{ij} Z_{ij} \right) = \sum_{i,j \in [n]} M_{ij} \mathbb{E}(Z_{ij}) = 0 \\
\text{Var}(W) &= \text{Var} \left(\sum_{i,j \in [n]} M_{ij} Z_{ij} \right) = \sum_{i,j \in [n]} M_{ij}^2 \text{Var}(Z_{ij}) = \sum_{i,j \in [n]} M_{ij}^2 = m
\end{align*}
\]

The theorem is proved by analyzing $\mathbb{E}(W^4)$

Understanding individual query entries

Let $Z_{ij} = A_i B_j$ for $i,j \in [n]$

by independence of A_i and B_j

\[
\mathbb{E}(Z_{ij}) = \mathbb{E}(A_i) \cdot \mathbb{E}(B_j) = 0
\]

\[
\text{Var}(Z_{ij}) = \mathbb{E}(Z_{ij}^2) = \mathbb{E}(A_i^2 \cdot B_j^2) = 1
\]
The Reconstruction Attack with Outer-Product Queries

<table>
<thead>
<tr>
<th>Attacker (Input: dataset $X \in {0, 1}^{n \times n}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select $k = \Theta(n^2)$ outer-product queries uniformly at random</td>
</tr>
<tr>
<td>2. Run algorithm B on dataset X and the outer-product queries</td>
</tr>
<tr>
<td>3. Call an answer a to a linear query Q inaccurate on dataset Y if $</td>
</tr>
<tr>
<td>4. Return any dataset Y^* on which at most $\frac{k}{64}$ answers are inaccurate</td>
</tr>
</tbody>
</table>

- When algorithm B returns accurate answers, dataset X satisfies the requirement, so the attack will output a candidate dataset.
- By the Anti-Concentration Theorem and Chernoff bound, all datasets that differ from X on at least $1/9$ fraction of the entries are ruled out w.h.p.
- The attack succeeds w.h.p., so an accurate local DP-algorithm for triangle-counting does not exist.
Results: Additive Error of Triangle Counting

- Triangle counting in the local model was first studied by [Imola Murakami Chaudhuri]

<table>
<thead>
<tr>
<th>Model</th>
<th>Previous Results</th>
<th>Our Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninteractive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower bounds</td>
<td>$\Omega\left(n^{3/2}\right)$ [IMC 21]</td>
<td>$\Omega\left(n^2\right)$</td>
</tr>
<tr>
<td>Upper bounds</td>
<td>$O\left(n^2\right)$ (constant ϵ) [IMC 22b]</td>
<td>$O\left(\frac{n^2}{\epsilon} + \frac{n^{3/2}}{\epsilon^3}\right)$</td>
</tr>
<tr>
<td>Interactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bounds</td>
<td>$\Omega\left(n\right)$ (easy)</td>
<td>$\Omega\left(\frac{n^{3/2}}{\epsilon}\right)$</td>
</tr>
<tr>
<td>Upper bounds</td>
<td>$O\left(\frac{n^2}{\epsilon} + \frac{n^{3/2}}{\epsilon^2}\right)$ [IMC 22a]</td>
<td></td>
</tr>
</tbody>
</table>

Proved by a black-box reduction from computing summation of n bits in the local model. Summation has additive error $\Omega\left(\sqrt{n}/\epsilon\right)$ [Joseph Mao Neel Roth 19]
Summary

- Improved bounds for triangle-counting in the local model
 - Tight bounds in terms of the number of nodes, \(n \), for the noninteractive model
- Developed techniques for proving lower bounds for graph problems in the local model
 - Use of reconstruction attacks in the local model
 - New type of linear queries (outer-product queries)
 - Mix-and-match strategy that runs the local randomizers with different completions of their adjacency lists

Open Questions

- Tight bounds for triangle counting in the local interactive model?
- Better understanding of graph analysis in the local model with edge-DP and node-DP
- What local models make sense in terms of privacy and distribution of input?