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Publishing information about graphs

Many types of sensitive data 
can be represented as graphs
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Differential privacy
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Differential privacy [Dwork McSherry Nissim Smith 06]

Intuition: Two datasets are neighbors if they differ in one individual’s data.

 An algorithm is differentially private if its output is roughly the same for 
all pairs of neighbors.

Dataset

Algorithm

Data processing

output

Data release



Two variants of differential privacy for graphs

• Edge differential privacy

Two graphs are neighbors if they differ in one edge.

• Node differential privacy

Two graphs are neighbors if one can be obtained from the other                                                 
by deleting a node and its adjacent edges.

4

G: G′:

G: G′:

image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/



Differential privacy (for graph data)

5

Differential privacy [Dwork McSherry Nissim Smith 06, Nissim Raskhodnikova Smith 07]

An algorithm A is 𝝐, 𝜹 -differentially private if                                                     
for all pairs of neighbors 𝑮, 𝑮′ and all possible sets of outputs S:

Dataset

Algorithm

Data processing

output

Data release

𝐏𝐫 𝑨 𝑮 ∈ 𝑺 ≤ 𝒆𝝐 𝐏𝐫 𝑨 𝑮′ ∈ 𝑺 + 𝜹



Local Privacy Models

• Advantages of the local model: 
‒  private data never leaves 

local devices
‒  no single point of failure
‒  highly distributed
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Local Noninteractive Local (Interactive) Centralized

A𝑅1𝑅2

𝑅3

𝑅𝑛

• Disadvantage of the local model: 

‒ data-thirsty (more data for 
the same accuracy)

𝑅1𝑅2

𝑅3

𝑅𝑛

[Efvimievski Gehrke Srikant 03]

[Kasiviswanathan Lee Nissim Raskhodnikova Smith 11]



Local Privacy Models with Graphs [Qin Yu Yang Khalil Xiao Ren 17]

• Each node in the graph represents a party
• Each party’s input is the subgraph induced by the node and its neighbors

Note: 
each edge is visible to two parties.
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Local Noninteractive Local (Interactive) Centralized

A𝑅1𝑅2

𝑅3

𝑅𝑛

𝑅1𝑅2

𝑅3

𝑅𝑛

Conceptually different from the standard local model, 
where input is partitioned between parties



Prior Work on Local Graph Model

Empirical accuracy for subgraph counting and 
(informally-defined) synthetic graph generation

• [Qin, Yu, Yang, Khalil, Xiao, Ren. CCS 2017;
Gao, Lil, Chen, Zou. Trans. Comp. Soc. Sys. 2018;
Zhang, Wei, Zhang, Hu, Liu, ICCNS 2018; 
Sun, Xiao, Khalil, Yang, Qin, Wang, Yu, CCS 2019;
Ye, Hu, Au, Meng, Xiao. ICDE 2020]

Theoretical guarantees for 

• counting triangles, stars, 4-cycles

[Imola, Murakami, Chaudhuri, USENIX Security 2021 and 2022, CCS 2022]

• other graph summaries (𝑘-core decomposition, densest subgraphs) 

[Dhulipala, Liu, Raskhodnikova, Shi, Shun, Yu. FOCS 2022]
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𝑅1𝑅2

𝑅3

𝑅𝑛



Results: Additive Error of Triangle Counting

• Triangle counting in the local model was first studied by [Imola Murakami Chaudhuri]

• Some upper bounds can also be expressed in terms of the number of 4-cycles
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Model Previous Results Our Results

Noninteractive

Lower bounds Ω 𝑛3/2
   [IMC 21] Ω 𝑛2

Upper bounds O 𝑛2
 (constant 𝜖)      

[IMC 22b]
O

𝑛2

𝜖
+

𝑛3/2

𝜖3

Interactive

Lower Bounds  Ω 𝑛  

(easy)
Ω

𝑛3/2

𝜖

Upper bounds O
𝑛2

𝜖
+

𝑛3/2

𝜖2     [IMC 22a]



Randomized Response [Warner 63]

• Canonical example of a local algorithm

• Invented to help get truthful answers                                                                                        
on sensitive YES/NO survey questions.

• Randomization operator takes 𝑦 ∈ {0,1}:

𝑅𝑅𝜖 𝒚 = ൞
𝒚 𝑤. 𝑝.

𝑒𝜖

𝑒𝜖+1

𝟏 − 𝒚 𝑤. 𝑝.
1

𝑒𝜖+1
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Answer 

truthfully

Answer the 

opposite

ratio is 𝑒𝜖 



Triangle Counting Via Randomized Response

• The variance of ෠𝑇 is O
𝑛4

𝜖2 +
𝑛3

𝜖6
11

Triangle Count (Input: 𝜖 > 0, distributed 𝑛 × 𝑛 adjacency matrix 𝐀)

1. For all 𝑖, 𝑗 ∈
[𝑛]
2

, release 𝑋{𝑖,𝑗} ← 𝑅𝑅𝜖 𝑨𝒊𝒋

2. For all 𝑖, 𝑗 ∈
[𝑛]
2

, set 𝑌{𝑖,𝑗} ←
𝑋{𝑖,𝑗}⋅ 𝑒𝜖 + 1 − 1

𝑒𝜖− 1

3. For all 𝑖, 𝑗, 𝑘 ∈
[𝑛]
3

, set 𝑍{𝑖,𝑗,𝑘} ← 𝑌{𝑖,𝑗} ⋅ 𝑌{𝑗,𝑘} ⋅ 𝑌{𝑖,𝑘}

4. Return ෠𝑇 ← ෍

𝑖,𝑗,𝑘 ∈ [𝑛 ]
3

𝑍{𝑖,𝑗,𝑘}

Release each 𝑨𝒊𝒋 using randomized response

Normalized noisy edge variables so that 

𝔼 𝑌{𝑖,𝑗} = 𝑨𝒊𝒋

𝔼 𝑍{𝑖,𝑗,𝑘} = 𝑨𝒊𝒋 ⋅ 𝑨𝒋𝒌 ⋅ 𝑨𝒊𝒌 = 𝟙{𝑖,𝑗,𝑘}

= ቊ
1 if 𝑖, 𝑗, 𝑘  forms a triangle
0 otherwise

Return an unbiased estimate 

for the triangle count



Main Ideas Behind the 𝛀(𝒏𝟐) Lower Bound

1. We will use a noninteractive local algorithm 𝓐 for counting triangles 
with error 𝑂 𝑛2  to mount a reconstruction attack in the central model.

2. Our dataset has 𝑁 = 𝑛2 bits, so we will answer (a constant fraction of)   
Θ 𝑛2  linear queries with error ±𝑂(𝑛).

3. To avoid invoking 𝓐 separately for each query, we will develop a new 
type of linear queries called outer-product queries.

4. Instead of using 𝓐 as a black box, we will used it as a ``gray box’’
12

Reconstruction attack [Dinur Nissim 03]

If an algorithm answers 𝑁 random linear queries 

on a dataset of 𝑵 bits 

with error ±𝑂 𝑁  

then a large constant fraction of the dataset can be reconstructed.



Outer-Product Queries

Let 𝑋 ∈ 0,1 𝑛×𝑛 be a secret dataset (in the central model).
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An outer-product query to 𝑋 specifies                            
two vectors 𝐴 and 𝐵 of length 𝑛 with entries in {−1,1}   

and returns 𝐴𝑇𝑋𝐵, that is, σ𝑖,𝑗∈ 𝑛 𝐴𝑖𝑋𝑖𝑗𝐵𝑗.



Outer-Product Queries vs. Submatrix Queries

Let 𝑋 ∈ 0,1 𝑛×𝑛 be a secret dataset (in the central model).
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An outer-product query to 𝑋 specifies                            
two vectors 𝐴 and 𝐵 of length 𝑛 with entries in {−1,1}   

and returns 𝐴𝑇𝑋𝐵, that is, σ𝑖,𝑗∈ 𝑛 𝐴𝑖𝑋𝑖𝑗𝐵𝑗.

A submatrix query is the same as an outer-product query,                                               
except that vectors 𝐴 and 𝐵 have entries in {0,1}                                                                

instead of −1,1 .



Outer-Product Queries Can Be Simulated with Matrix Queires
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Main Lemma

• Note: algorithm 𝓐 is specified by 

– a local randomizer 𝑅𝑖 for each vertex 𝑖

– a postprocessing algorithm 𝓟

Answering Outer-product Queries via Triangle Counting

Suppose there is a noninteractive local (𝜖, 𝛿)-DP algorithm 𝓐 that,                                 

for every 3𝑛-node graph, with probability Ω 1  returns the number of triangles ±𝑂(𝑛2).

 

Then there is a (2𝜖, 2𝛿)-DP algorithm 𝓑 in the central model  that,                                 

for every secret dataset 𝑋 ∈ 0,1 𝑛×𝑛 and every set of 𝑘 outer-product queries,         

with probability Ω(1) returns a vector of answers, Ω(𝑘) of which have error ±𝑂(𝑛).

𝑅1𝑅2

𝑅3

𝑅𝑛



Construction of Algorithm 𝓑
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Centralized• Algorithm 𝓑 converts its input dataset dataset 𝑋 ∈ 0,1 𝑛×𝑛        
to two graphs, 𝐺0 and 𝐺1, and runs local randomizers on them.

• After that, 𝓑 does not touch 𝑋.

• It simulates outer-product queries with matrix queries

• For each matrix query 𝐴, 𝐵 , algorithm 𝓑 

– constructs a query graph 𝐺 𝐴,𝐵 ,

– estimates the number of triangles in  𝐺 𝐴,𝐵  by mixing and 

matching the responses of the local randomizers on 𝐺0 and 𝐺1 
and running the postprocessing algorithm 𝓟 on them,

– uses the result to answer the query.

𝓑



Construction of Graphs 𝑮𝟎 and 𝑮𝟏 from Dataset 𝑿

𝑮𝑿

• All graphs will be on 3𝑛 nodes

• Create 3 sets 𝑈, 𝑉, 𝑊 with 𝑛 nodes in each
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• Create a secret bipartite subgraph 𝐺𝑋 on 
𝑈, 𝑉  with edges determined by dataset 𝑋

• The resulting graph is 𝑮𝟎

𝒖𝟏 𝒖𝒊 … 𝒖𝒏

𝒘𝟏
𝒘𝟐

𝒘𝒏

…

𝒗𝟏 𝒗𝒋 … 𝒗𝒏

…

…

𝑿𝒊𝒋

𝑼

𝑽

𝑾

𝑮𝟎



Construction of Graphs 𝑮𝟎 and 𝑮𝟏 from Dataset 𝑿

𝑮𝑿

• All graphs will be on 3𝑛 nodes

• Create 3 sets 𝑈, 𝑉, 𝑊 with 𝑛 nodes in each
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• Create a secret bipartite subgraph 𝐺𝑋 on 
𝑈, 𝑉  with edges determined by dataset 𝑋

• The resulting graph is 𝑮𝟎

• For 𝐆𝟏: add a complete bipartite graph 
between 𝑼 ∪ 𝑽 and 𝑾

𝒖𝟏 𝒖𝒊 … 𝒖𝒏

𝒘𝟏
𝒘𝟐

𝒘𝒏

…

𝒗𝟏 𝒗𝒋 … 𝒗𝒏

…

…

𝑿𝒊𝒋

𝑼

𝑽

𝑾

𝑮𝟏

Algorithm 𝓑 creates 𝐺0 and 𝐺1 from 𝑋,                             
runs local randomizer 𝑅𝑣 for each vertex 𝑣 for both, 
and records the answers as 𝑟0(𝑣) and 𝑟1 𝑣

𝓑 won’t touch 𝑋 after this, so by composition 𝓑 is 2𝜖, 2𝛿 -DP



Construction of Query Graph 𝐺 𝐴,𝐵  for Matrix Query (𝑨, 𝑩)

• Start with 𝐺0

• Each node 𝑢𝑖 ∈ 𝑈 connects to all nodes in 𝑊 
iff 𝐴𝑖 = 1 

• Each node 𝑣𝑗 ∈ 𝑉 connects to all nodes in 𝑊 

iff 𝐵𝑗 = 1 
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The number of triangles in 𝐺 𝐴,𝐵  is

෍

𝑖,𝑗∈ 𝑛

𝑛 𝐴𝑖𝑋𝑖𝑗𝐵𝑗 = 𝑛 ⋅ 𝐴𝑇𝑋𝐵

Each pair 𝑢𝑖 , 𝑣𝑗  contributes 𝑛 

triangles if 𝑋𝑖𝑗 = 𝐴𝑖 = 𝐵𝑗 = 1, 

and no triangles otherwise.

𝑮𝑿

𝒖𝟏 𝒖𝒊 … 𝒖𝒏

𝒘𝟏
𝒘𝟐

𝒘𝒏

…

𝒗𝟏 𝒗𝒋 … 𝒗𝒏

…

…

𝑿𝒊𝒋

𝑼

𝑽

𝑾

𝑮(𝑨,𝑩)
present if 𝐴𝑖 = 1

present if 𝐵𝑗 = 1



Mix-and-Match Strategy to Simulate 𝓐 on Query Graph 𝑮(𝑨,𝑩)

𝑮(𝑨,𝑩)

• For all 𝑢𝑖 ∈ 𝑈:  view𝑢𝑖
𝐺 𝐴,𝐵 = view𝑢𝑖

𝐺𝐴𝑖

• For all 𝑣𝑗 ∈ 𝑉:  view𝑣𝑗
𝐺 𝐴,𝐵 = view𝑣𝑗

𝐺𝐵𝑗
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present if 𝐴𝑖 = 1

present if 𝐵𝑗 = 1

𝒖𝟏 𝒖𝒊 … 𝒖𝒏

𝒘𝟏
𝒘𝟐

𝒘𝒏

…

𝒗𝟏 𝒗𝒋 … 𝒗𝒏

…

…

𝑿𝒊𝒋

𝑼

𝑽

𝑾

𝑮𝑿

Algorithm 𝓑 already ran the local randomizer 

for both possible views for all nodes 𝑣 in 𝑈 ∪ 𝑉
and recorded the answers as 𝑟0(𝑣) and 𝑟1 𝑣

Other nodes do not have access to secret dataset 𝑋



𝓑 runs the triangle-counting algorithm as a gray box 

by mixing and matching the recorded answers            
𝑟0(𝑣) and 𝑟1 𝑣  for different nodes

Answering Most Matrix Queries Accurately

22

• If the triangle-counting algorithm has 
error ±𝑂 𝑛2 ,                                              

then 𝓑 can answer submatrix queries 
with error ±𝑂(𝑛).

• The expected number of queries answered 
inaccurately is small.

𝑮(𝑨,𝑩)
present if 𝐴𝑖 = 1

present if 𝐵𝑗 = 1

𝒖𝟏 𝒖𝒊 … 𝒖𝒏

𝒘𝟏
𝒘𝟐

𝒘𝒏

…

𝒗𝟏 𝒗𝒋 … 𝒗𝒏

…

…

𝑿𝒊𝒋

𝑼

𝑽

𝑾

𝑮𝑿

• Markov inequality guarantees that most are 
answered accurately (with sufficient probability).



We Proved the Main Lemma

𝑅1𝑅2

𝑅3

𝑅𝑛

Answering Outer-product Queries via Triangle Counting

Suppose there is a noninteractive local (𝜖, 𝛿)-DP algorithm 𝓐 that,                                 

for every 3𝑛-node graph, with probability Ω 1  returns the number of triangles ±𝑂(𝑛2).

 

Then there is a (2𝜖, 2𝛿)-DP algorithm 𝓑 in the central model  that,                                 

for every secret dataset 𝑋 ∈ 0,1 𝑛×𝑛 and every set of 𝑘 outer-product queries,         

with probability Ω(1) returns a vector of answers, Ω(𝑘) of which have error ±𝑂(𝑛).



Anti-Concentration for Random Outer-Product Queries

24

Anti-Concentration Theorem

Let 𝑀 be an 𝑛 × 𝑛 matrix with entries in {−1,0,1} 

and 𝑚 be the number of nonzero entries in 𝑀.  

Let 𝐴 and 𝐵 be drawn u.i.r. from {−1,1}𝑛.

If 𝑚 ≥ 𝛾 𝑛2 for some constant 𝛾, then

Pr 𝐴𝑇𝑀 𝐵 >
𝑚

2
≥

𝛾2

16
.

Think of 𝑀 as 𝑋 − 𝑌, where 𝑋 is the 

dataset and 𝑌is potential reconstruction

W.h.p., the outer-product query (𝐴, 𝐵) 

gives sufficiently different answers on 

𝑋 and 𝑌 to rule out 𝑌.

i.e., the number of entries 

on which 𝑋 and 𝑌differ



Anti-Concentration for Random Outer-Product Queries
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• 𝔼 𝑊

• Var 𝑊

= ෍

𝑖,𝑗∈[𝑛]

𝑀𝑖𝑗𝔼(𝑍𝑖𝑗) = 0

= ෍

𝑖,𝑗∈[𝑛]

𝑀𝑖𝑗
2  Var(𝑍𝑖𝑗) = ෍

𝑖,𝑗∈[𝑛]

𝑀𝑖𝑗
2 = 𝑚

Let 𝑍𝑖𝑗 = 𝐴𝑖𝐵𝑗 for 𝑖, 𝑗 ∈ 𝑛

Let 𝑊 = 𝐴𝑇𝑀 𝐵 

𝔼 𝑍𝑖𝑗 = 𝔼 𝐴𝑖 ⋅ 𝔼 𝐵𝑗 = 0

Var 𝑍𝑖𝑗 = 𝔼 𝑍𝑖𝑗
2 = 𝔼 𝐴𝑖

2 ⋅ 𝐵𝑗
2 = 1

by independence of 𝐴𝑖 and 𝐵𝑗

by pairwise independence of 𝑍𝑖𝑗

The theorem is proved by analyzing 𝔼 𝑊4

Understanding individual query entries

= 𝔼 ෍

𝑖,𝑗∈ 𝑛

𝑀𝑖𝑗𝑍𝑖𝑗

= Var ෍

𝑖,𝑗∈ 𝑛

𝑀𝑖𝑗𝑍𝑖𝑗



The Reconstruction Attack with Outer-Product Queries

• When algorithm 𝓑 returns accurate answers, dataset 𝑋 satisfies the requirement, so 
the attack will output a candidate dataset.

• By the Anti-Concentration Theorem and Chernoff bound, all datasets that differ from 
𝑋 on at least 1/9 fraction of the entries are ruled out w.h.p.

• The attack succeeds w.h.p., so an accurate local DP-algorithm for triangle-counting 
does not exist. 26

Attacker (Input: dataset 𝐗 ∈ 𝟎, 𝟏 𝒏×𝒏) 

1. Select  𝑘 = Θ 𝑛2  outer-product queries uniformly at random

2. Run algorithm 𝓑 on dataset 𝑋 and the outer-product queries

3. Call an answer 𝑎 to a linear query 𝑄 inaccurate on dataset 𝑌 if  𝑄 ⋅ 𝑌 − 𝑎 >
𝑛

12

4. Return any dataset 𝑌∗ on which at most 
𝑘

64 answers are inaccurate 



Results: Additive Error of Triangle Counting

• Triangle counting in the local model was first studied by [Imola Murakami Chaudhuri]

27

Model Previous Results Our Results

Noninteractive

Lower bounds Ω 𝑛3/2
   [IMC 21] Ω 𝑛2

Upper bounds O 𝑛2
 (constant 𝜖)      

[IMC 22b]
O

𝑛2

𝜖
+

𝑛3/2

𝜖3

Interactive

Lower Bounds  Ω 𝑛  

(easy)
Ω

𝑛3/2

𝜖

Upper bounds O
𝑛2

𝜖
+

𝑛3/2

𝜖2     [IMC 22a]

Proved by a black-box reduction from computing summation of 𝑛 bits in the local model. 

Summation has additive error Ω 𝑛/𝜖  [Joseph Mao Neel Roth 19]



Summary

• Improved bounds for triangle-counting in the local model

➢ Tight bounds in terms of the number of nodes, 𝑛, for the noninteractive model

• Developed techniques for proving lower bounds for graph problems in the local model

➢ Use of reconstruction attacks in the local model

➢ New type of linear queries (outer-product queries)

➢ mix-and-match strategy that runs the local randomizers with different completions of their 
adjacency lists

• Tight bounds for triangle counting in the local interactive model?

• Better understanding of graph analysis in the local model with edge-DP and node-DP

• What local models make sense in terms of privacy and distribution of input?

28

Open Questions


	Slide 1: Edge Differentially Private Triangle Counting         in the Local Model
	Slide 2: Publishing information about graphs
	Slide 3: Differential privacy
	Slide 4: Two variants of differential privacy for graphs
	Slide 5: Differential privacy (for graph data)
	Slide 6: Local Privacy Models
	Slide 7: Local Privacy Models with Graphs [Qin Yu Yang Khalil Xiao Ren 17]
	Slide 8: Prior Work on Local Graph Model
	Slide 9: Results: Additive Error of Triangle Counting
	Slide 10: Randomized Response [Warner 63]
	Slide 11: Triangle Counting Via Randomized Response
	Slide 12: Main Ideas Behind the bold cap omega open paren bold italic n to the bold 2 close paren  Lower Bound
	Slide 13: Outer-Product Queries
	Slide 14: Outer-Product Queries vs. Submatrix Queries
	Slide 15: Outer-Product Queries Can Be Simulated with Matrix Queires
	Slide 16: Main Lemma
	Slide 17: Construction of Algorithm bold script cap B
	Slide 18: Construction of Graphs bold italic cap G sub bold 0  and bold italic cap G sub bold 1  from Dataset bold italic cap X
	Slide 19: Construction of Graphs bold italic cap G sub bold 0  and bold italic cap G sub bold 1  from Dataset bold italic cap X
	Slide 20: Construction of Query Graph cap G sub , open paren cap A. ,cap B , close paren , end subscript for Matrix Query open paren bold italic cap A. ,bold italic cap B close paren 
	Slide 21: Mix-and-Match Strategy to Simulate bold script cap A. on Query Graph bold italic cap G sub , open paren bold italic cap A. ,bold italic cap B close paren end subscript
	Slide 22: Answering Most Matrix Queries Accurately
	Slide 23: We Proved the Main Lemma
	Slide 24: Anti-Concentration for Random Outer-Product Queries
	Slide 25: Anti-Concentration for Random Outer-Product Queries
	Slide 26: The Reconstruction Attack with Outer-Product Queries
	Slide 27: Results: Additive Error of Triangle Counting
	Slide 28: Summary

