Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation

Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, Adam Smith

Privacy in Streaming Settings

Continual Observation Model of Differential Privacy:

- Introduced by [Dwork Naor Pitassi Rothblum '10] & [Chan Shi Song '10].
- Formalizes privacy in streaming settings where statistics change over time and need to be monitored continuously.

A mechanism in this setting receives inputs continuously over time and at each time produces an output.

Additive error of mechanism \mathcal{M} for CountDistinct:

 $\max_{t \in [T]} |\mathcal{O}_t| - \text{CountDistinct}(t)| \le \alpha$ $w.p. \ge 0.99$

Privacy of mechanism \mathcal{M} for CountDistinct:

Let $\mathcal{M}(x)$ be the **entire list of outputs** of \mathcal{M} on input stream x. A mechanism \mathcal{M} is (ε, δ) -differentially private if for all pairs x, x' of **neighboring streams** and all events S in the output space of \mathcal{M} $\Pr[\mathcal{M}(x) \in S] \le e^{\varepsilon} \cdot \Pr[\mathcal{M}(x') \in S] + \delta.$

Two common definitions of neighboring streams yield two different levels of privacy protection:

We study the achievable accuracy of differentially private mechanisms for counting distinct elements in turnstile streams

- Privacy is a central challenge for systems that learn from sensitive data
- Even more challenging when the system's outputs are continuously updated
- Counting the number of distinct elements is a fundamental task - e.g., counting the number of distinct accounts logged into a streaming service

Problem Definition: Counting Distinct Elements

OUR CONTRIBUTIONS

- Design an item-level private mechanism for counting distinct elements in the 0 turnstile model, under continual observation. Identify a stream parameter called **maximum flippancy** that is low for many 0
- > Use the sequential embedding technique of [Jain Raskhodnikova Sivakumar Smith '23]
- \succ Rely on deletions to embed multiple instances of base problems into a stream.

	Gap <i>w</i>	fα ∈
Ins	erti	or (
Т	ūrn	st

IVERSITY