
1

Sublinear-Time Algorithms
Lecture 1

Sofya Raskhodnikova

Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Properties of graphs. Sublinear approximation.

Lecture 3. Properties of functions. Monotonicity and linearity
testing.

Lecture 4. Techniques for proving hardness. Other models for
sublinear computation.

Motivation for Sublinear-Time Algorithms

Massive datasets

• world-wide web

• online social networks

• genome project

• sales logs

• census data

• high-resolution images

• scientific measurements

Long access time

• communication bottleneck (dial-up connection)

• implicit data (an experiment per data point)

3

Some material in this lecture is based on slides by Ronitt Rubinfeld:

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

What Can We Hope For?

• What can an algorithm compute if it

– reads only a sublinear portion of the data?

– runs in sublinear time?

• Some problems have exact deterministic solutions

• For most interesting problems algorithms must be

– approximate

– randomized

4

A Sublinear-Time Algorithm

5

approximate answer

sublinear-time algorithm

Quality of

approximation
vs.

Resources
� number of queries

� running time

? B? A ? L ? L

B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

Types of Approximation

Classical approximation

• need to compute a value

� output is close to the desired value

� examples: average, 90th percentile

• need to compute the best structure

� output is a structure with “cost” close to optimal

� examples: furthest pair of points, minimum spanning tree

Property testing

• need to answer YES or NO

� output is a correct answer for a given input,

or at least some input close to it

6

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: � points, described by a distance matrix �

– ��� is the distance between points � and �

– � satisfies triangle inequality and symmetry

(Note: input size is �	 = 	�2)

Let �, � be indices that maximize ��� .

Maximum ���	 is the diameter.

• Output: (�, ℓ) such that ��ℓ			≥	���	/2

8

Algorithm and Analysis

1. Pick � arbitrarily

2. Pick ℓ to maximize ��ℓ
3. Output (�, ℓ)

• Approximation guarantee

��� ≤ ��� + ��� (triangle inequality)

≤ ��ℓ + ��ℓ	(choice of ℓ + symmetry of �)

	≤ 2��ℓ

• Running time: �(�) 	= 	�(� = �) �

�

�

ℓ

A rare example of a deterministic

sublinear-time algorithm

Algorithm (�,�)

9

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property

or is it far from satisfying it?
• sometimes it is the right question (probabilistically checkable proofs (PCPs))

• as good when the data is constantly changing (WWW)

• fast sanity check to rule out inappropriate inputs (airport security questioning)

11

12

Property Tester

Close to YES

Far from

YES

YES

Reject with

probability 2/3

Don’t care

Accept with

probability ≥ �/�

≥

Property Tester Definition [Rubinfeld Sudan, Goldreich Goldwasser Ron]

Randomized Algorithm

YES Accept with

probability ≥ �/�

Reject with

probability 2/3

NO

≥

far = differs in many places�- (≥ � fraction of places)

				�

Randomized Sublinear
Algorithms

Toy Examples

Test (�, �)

Property Testing: a Toy Example

Input: a string � ∈ 0,1 �

Question: Is � = 00…0?

Requires reading entire input.

Approximate version: Is � = 00…0	or

does it have ≥ �� 1’s (“errors”)?

1. Sample � = 2/� positions uniformly and independently at random

2. If 1 is found, reject; otherwise, accept

Analysis: If � = 00…0, it is always accepted.

If � is �-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − � ! ≤ "#$! = "#% <
'

(

If a test catches a witness with probability ≥),

then s =
%

+
iterations of the test catch a witness with probability ≥ 2/3.	

14

1 − . ≤ "#/Used: 1 − . ≤ "#/

Witness Lemma

0 0 0 1 … 0 1 0 0

Randomized Approximation: a Toy Example

Input: a string � ∈ 0,1 �

Goal: Estimate the fraction of 1’s in � (like in polls)

It suffices to sample � = 1 ⁄ �% positions and output the average to get

the fraction of 1’s ±� (i.e., additive error �) with probability≥ 2/3

Y3 = value of sample �. Then E[Y]= ∑
!

�5'
E[Y3] = � ⋅ (fraction of 1’s in �)

Pr (sample average)	 − fraction	of	1′s	in	� ≥ � = Pr Y − E Y ≥ ��

≤ 2e#%($!)
E/! ≤ 2e#%$

E! = 2"#% < 1/3

15

Let Y', … , YF be independently distributed random variables in [0,1] and

let Y = ∑
!

�5'
Y3 (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e#%H

E/!.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

I = ��Apply Hoeffding Bound with I = �� � = 1 ⁄ �%substitute � = 1 ⁄ �%

Property Testing

Simple Examples

Testing Properties of Images

17

Pixel Model

18

Query: point (�', �%)

Answer: color of (�', �%)

Input: � × � matrix of pixels

(0/1 values for black-and-white pictures)

Testing if an Image is a Half-plane [R03]

A half-plane or

�-far from a half-plane?

O(1/�) time

19

Half-plane Instances

20

A half-plane '

K
-far from a half-plane

Half-plane Instances

21

A half-plane '

K
-far from a half-plane

Half-plane Instances

22

A half-plane '

K
-far from a half-plane

Half-plane Instances

23

A half-plane '

K
-far from a half-plane

Half-plane Instances

24

A half-plane '

K
-far from a half-plane

Half-plane Instances

25

A half-plane '

K
-far from a half-plane

Half-plane Instances

26

A half-plane '

K
-far from a half-plane

Strategy

“Testing by implicit learning” paradigm

• Learn the outline of the image by querying a few pixels.

• Test if the image conforms to the outline by random sampling, and

reject if something is wrong.

27

Half-plane Test

28

Claim. The number of sides with different

corners is 0, 2, or 4.

Algorithm

1. Query the corners.

? ?

? ?

Half-plane Test: 4 Bi-colored Sides

29

Claim. The number of sides with different

corners is 0, 2, or 4.

Analysis

• If it is 4, the image cannot be a half-plane.

Algorithm

1. Query the corners.

2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

30

Claim. The number of sides with different

corners is 0, 2, or 4.

Analysis

• If all corners have the same color, the image is a

half-plane if and only if it is unicolored.

Algorithm

1. Query the corners.

2. If all corners have the same color L, test if all pixels have color L
(as in Toy Example 1).

?

?

?
?

?

?

Half-plane Test: 2 Bi-colored Sides

31

Claim. The number of sides with different

corners is 0, 2, or 4.

Algorithm

1. Query the corners.

2. If # of sides with different corners is 2, on both sides find 2 different pixels

within distance ��/2 by binary search.

3. Query 4/� pixels from N ∪ P
4. Accept iff all Npixels are white and all P pixels are black.

Analysis

• The area outside of N ∪P	 has ≤ ��%/2 pixels.

• If the image is a half-plane, W contains only white

pixels and B contains only black pixels.

• If the image is �-far from half-planes, it has

≥ ��%/2 wrong pixels in N ∪P.
• By Witness Lemma, 4/� samples suffice to catch a

wrong pixel.

? ?
��/2

??
��/2

N

P

Testing if an Image is a Half-plane [R03]

A half-plane or

�-far from a half-plane?

O(1/�) time

32

Other Results on Properties of Images

• Pixel Model

Convexity [R03]

Convex or �-far from a half-plane?

O(1/�%) time

Connectedness [R03]

Connected or �-far from connected?

O(1/�K) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or or �-far?

time independent of image size

• Properties of sparse images [Ron Tsur 10]

33

Testing if a List is Sorted

Input: a list of n numbers x1 , x2 ,..., xn

• Question: Is the list sorted?

Requires reading entire list: Ω(n) time

• Approximate version: Is the list sorted or ε-far from sorted?

(An ε fraction of xi ’s have to be changed to make it sorted.)

[Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/ε) time

Ω(log n) queries

• Attempts:

1. Test: Pick a random i and reject if xi > xi+1 .

Fails on: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ← 1/2-far from sorted

2. Test: Pick random i < j and reject if xi > xj.

Fails on: 1 0 2 1 3 2 4 3 5 4 6 5 7 6 ← 1/2-far from sorted

34

