Sublinear Algorithms

Lecture 4

Sofya Raskhodnikova
Penn State University

Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time
approximation for graph problems.

Lecture 3. Testing properties of functions. Linearity testing.

Lecture 4. Techniques for proving hardness. Other models for
sublinear computation.

Query Complexity

e Query complexity of an algorithm is the maximum number of queries the
algorithm makaes.

— Usually expressed as a function of input length (and other parameters)

— Example: the test for sortedness (from Lecture 2) had query complexity O(log
n) for constant .

— running time = query complexity

e Query complexity of a problem P, denoted q(P), is the query
complexity of the best algorithm for the problem.

— What s g(testing sortedness)? How do we know that there is no better
algorithm?

Today: Two techniques for proving lower bounds on g(P).

Yao's Principle

A Method for Proving Lower Bounds

A Lower Bound Game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

(Gamel \
LMove 1. Al selects a randomized algorithm for the problem. J

Move 2. Lola selects an input on which the algorithm is as slow as possible.

/ Game?2 I

Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a deterministic algorithm which works on Lola’s distribution as
fast as possible.

N /

Yao’s Minimax Principle (easy direction): Lola can perform in Gamel at least
as well as she can perform in Game2.

A Lower Bound for Testing Sortedness

Input: a list of n numbers x,, x,,..., X,

Question: Is the list sorted or e-far from sorted?

Already saw: two different O((log n)/&) time testers.

Known [Ergiin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

(2(log n) queries are required for all constant ¢ < 1/2
Today: Q(log n) queries are required for all constant ¢ < 1/2

for every 1-sided error nonadaptive test.

/e

A test has 1-sided error if it always accepts all
YES instances.

A test is nonadaptive if its queries that do not
depend on answers to previous queries.

~

1-sided Error Property Tester

YES

A

| €

Far from

/

|:> Don’t care

:> pro

Reject with
bability > 2/3

1-Sided Error Tests Must Catch “Mistakes”

* Apair (x;,x;) is violated if x; < x;

[Claim. A 1-sided error test can reject only if it finds a violated pair.]

Proof: Every sorted partial list can be extended to a sorted list.

1?2?24 |..]7(|? 7?19

le Game [Jha]

incip

Yao’s Pr

Lola’s distribution is uniform over the following log n lists:

o ., — @ N ., S
) ., — @ on ., |O|0||.|
c¢ —¢ <o ce
=y — @ <o ._./l.-
¢ o & e
¢ ~é e e
o6 o e - <o
c® @ 6 e

—4 <6 -~ e
— @ =y — @ .A._...O-
6 ¢ ~& . ~ne
— @ =y QN J .o.J...-
e -6 oe —¢
— @ — @ =y .a./...‘-
— @ — @ |H.|.. ||||||||||| |O| |.!
— @ — @ — @ |“|‘|

<

i QN ™ o0
Qo Qo Qo o
S

[Claim 1. All lists above are 1/2-far from sorted.

[Claim 2. Every pair (x;, x;) is violated in exactly one list above.

Yao’s Principle Game: Al’s Move

Al picks a set Q = {ay, ay, ..., a|g|} of positions to query.

a, a, . Cl|Q|

e His test must be correct, i.e., must find a violated pair with probablllty >2/3
when input is picked according to Lola’s distribution.

e (@ contains a violated pair & (a;, a;;1) is violated for some i

-1
Pr [(a;, a;,+1) for some i is vilolated in list #] < ol
¢<Lola’s distribution Tlogn
o If|Q| < %logn then this probability is < % By the Union Bound

* So, Q| = Q(logn)
e By Yao’s Minimax Principle, every randomized 1-sided error nonadawe test
for sortedness must make ()(logn) queries.

Communication Complexity

A Method for Proving Lower Bounds (ziais

Brody Matulef 11]

Use known lower bounds

(Randomized) Communication Complexity

Shared random string

Alice |1101000101110101110101010110... Bob
/ 0100 \ ’
® g 11 ¢ @ ///
001 ,p
0011

Input: x \ Input: y

Compute C(x,y)

Goal: minimize the number of bits exchanged.

e Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

e Communication complexity of a function C, denoted R((), is the communication
complexity of the best protocol for computing C.

11

Example: Set Disjointness DISJ,

Input:S € [ﬁ], S| = k\

Alice 1101000101110101110101010110...

v N

Bob

s oV @
i

Y 4

&

|

Input: T € [n], |T| =k

Compute DIS]; (S, T)

_ {accept ifSNT =0
~ (reject otherwise
4))
Theorem [Hastad Wigderson 07]
R(DIS],) = Q(k) forallk < =.
N . J

12

k-Parity Functions

Recall: f : {0,1}* = {0,1}is linear if f(xq, ..., xXn) = ;e X; for some S € [n].
Last time: linearity is testable in 0(1/¢) time.

/k-Parity Functions A
A function f : {0,1}" — {0,1} is a k-parity if
f(x) = xs(x) = Xiesxi
_for some set S € [n] of size [S]| = k.)

13

Testing if a Boolean Function is a k-Parity

Input: Boolean function f:{0,1}" — {0,1} and an integer k
Question: Is the function a k-parity or e-far from a k-parity
(= £2™ values need to be changed to make it a k-parity)?

Time:
O(min(k log k, (TL — k) log(n — k)) n)) [Chakraborty Garcia—-Soriano Matsliah]
Q(min(k,n — k)) [Blais Brody Matulef 11]
e Today: Q(k)fork <n/2

JjToday's bound implies Q(min(k,n — k))

14

Reduction from DIS]y, to Testing k-Parity

e LetT be the best tester for the k-parity property fore = 1/2
— query complexity of T is q(testing k—parity).
* We will construct a communication protocol for DIS] 2 that runs T
and has communication complexity 2 - g(testing k—parity).

holds for CC of every
protocol for DISJ, [Hastad Wigderson 07]
e Then 2 - g(testing k—parity) = [%(DIS]R/Z) = Q(Ai/Z)
U

q(testing k-parity) = Q(k)

15

Reduction from DIS]y, to Testing k-Parity

S

1101000101110101110101010110...

"
l’:éf+g(m0d2)

h(x)? l f(x)+ g(x) mod 2
&

accept/reject

v
=

s
Input:S <€ [n], |S| = k/2. Input: T € [n], |T| = k/2

Compute: f = xg Compute: g = yr

Output T's answer

e T receives its random bits from the shared random string.

16

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T
Correctness:

e h=f+g(mod?2)=xs+ xr (mod2) = xsar

e |SAT|=|S|+|T|-2|SNT]

(kK if SNT=0

ISAT] _{Sk—z if SNT # @
- {k—parity if SNT =0
5 k’N—parity where k' #k if SNT = @

1/2-far from every k-parity

e Recall that two different linear functions disagree on half of the values:
(xs, xt) = 1 — 2 - (fraction of disagreementsbetween ys and yr) =0 for S # T

Summary: q(testing k-parity) = Q.(k) fork < n/2

17

Summary of Lower Bounds

e Yao’s Principle
— testing sortedness

e Reductions from communication complexity problems
— testing if a function is a k-parity

18

Other Models of Sublinear
Computation

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

-~

YES |:> Accept with
probability > 2/3

NO . .
|:> Reject with
probability >2/3

Tolerant Property Tester

~

YES

|:> Accept with

probability > 2/3

O-close to YES

E-far from |:> Reject with
YES probability >2/3

20

Sublinear-Time “Restoration” Models

Local Decoding
Input: a slightly corrupted codeword
Requirement: recover a given bit of the closest codeword
with a constant number of queries.

Program Checking
Input: a program P computing f with a small error
probability.
Requirement: self-correct program P — for a given
argument x, compute f(x) by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that the
reconstructed function g satisfies P, changing f only
when necessary. For a given argument x, compute g(x)
with a few queries to f.

21

Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?
Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space
complexity < time complexity)

22

Data Stream Model

B|L|A|-|B|L|A|-|B|L|A|-|B|L|A|-|B|L|A|-|B|L|A|-|B|L|A|- >

Streaming (1) Quickly process each element
Algorithm

A

3) Quickly produce output
(2) Limited working memory 8la ke el

e Motivation: network traffic, database transactions, sensor networks, satellite data
feed

Model the stream as m elements from [n], e.g.,
(x1,%5, ..., Xm) =3,53,7,5,4, ...

Goal: Compute a function of the stream, e.g., median, number of distinct elements,
longest increasing sequence.

23

Streaming Puzzle

‘ // A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.

24

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream (x{, x5, ..., x,,,) of
unknown length m

(AIgorithm A

1. Initially, s « x4

6. On seeing the tt" element, s « x; with probability 1/t

Analysis:

What is the probability that s = x; atsometimet = i?

1 1 1
PF[S:xi]=—.'<1—i+1)-...-(1—?)

L
1 t—1 1
i i+1 7t ¢t
Space: O(k logn) bits to get k samples.

25

Conclusion

Sublinear algorithms are possible in many settings
e simple algorithms, more involved analysis

* nice combinatorial problems

e unexpected connections to other areas

* many open questions

26

