
1

Sublinear Algorithms
Lecture 4

Sofya Raskhodnikova

Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time
approximation for graph problems.

Lecture 3. Testing properties of functions. Linearity testing.

Lecture 4. Techniques for proving hardness. Other models for
sublinear computation.

Query Complexity

• Query complexity of an algorithm is the maximum number of queries the

algorithm makes.

– Usually expressed as a function of input length (and other parameters)

– Example: the test for sortedness (from Lecture 2) had query complexity O(log

n) for constant �.
– running time ≥ query complexity

• Query complexity of a problem �, denoted � � , is the query

complexity of the best algorithm for the problem.

– What is �(testing	sortednes�)? How do we know that there is no better

algorithm?

Today: Two techniques for proving lower bounds on � � .

3

Yao’s Principle

A Method for Proving Lower Bounds

A Lower Bound Game

5

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Yao’s Minimax Principle (easy direction): Lola can perform in Game1 at least

as well as she can perform in Game2.

Game1

Move 1. Al selects a randomized algorithm for the problem.

Move 2. Lola selects an input on which the algorithm is as slow as possible.

Game2

Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a deterministic algorithm which works on Lola’s distribution as

fast as possible.

A Lower Bound for Testing Sortedness

Input: a list of n numbers x1 , x2 ,..., xn

Question: Is the list sorted or �-far from sorted?

Already saw: two different O((log n)/�) time testers.

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

Ω(log n) queries are required for all constant � ≤ 1/2
Today: Ω(log n) queries are required for all constant � ≤ 1/2

for every 1-sided error nonadaptive test.

• A test has 1-sided error if it always accepts all

YES instances.

• A test is nonadaptive if its queries that do not

depend on answers to previous queries.

6

1-sided Error Property Tester

Far from

YES

YES

Reject with

probability ≥ �/�

Don’t care

Accept with

probability ≥ �/�

				�

1-Sided Error Tests Must Catch “Mistakes”

• A pair (�� , ��)	is violated if �� < ��

Proof: Every sorted partial list can be extended to a sorted list.

7

Claim. A 1-sided error test can reject only if it finds a violated pair.

1 ? ? 4 … 7 ? ? 9

Yao’s Principle Game [Jha]

Lola’s distribution is uniform over the following log � lists:

8

Claim 2. Every pair (�� , ��) is violated in exactly one list above.

1 1 1 1 1 1 1 1 0 00 0 0 0 0 0ℓ!
ℓ" 1 1 1 1 0 0 0 0 2 22 2 1 1 1 1

1 1 0 0 2 2 1 1 3 23 2 4 4 3 3ℓ#

1 0 2 1 3 2 4 3 5 64 5 7 6 8 7ℓ$%& '

...

Claim 1. All lists above are 1/2-far from sorted.

Yao’s Principle Game: Al’s Move

Al picks a set (= {+!, +", … , +|.|} of positions to query.

• His test must be correct, i.e., must find a violated pair with probability ≥ 2/3
when input is picked according to Lola’s distribution.

• (contains a violated pair ⇔ (+� , +�3!) is violated for some 4
Pr

ℓ←Lola′s	distribution[+� , +�3! 	for	some	4	is	vilolated	in	list	ℓ] ≤ (− 1
log �

• If (≤ "
# log �	then this probability is < "

#
• So, (= Ω(log �)
• By Yao’s Minimax Principle, every randomized 1-sided error nonadaptive test

for sortedness must make Ω(log �)	queries.

9

? ? ? ?

+! +" +# +|.|…

By the Union Bound

Communication Complexity

A Method for Proving Lower Bounds [Blais

Brody Matulef 11]

Use known lower bounds

for other models of computation

Partially based on slides by Eric Blais

(Randomized) Communication Complexity

11

Compute C �, D

0100

11

001

⋯
0011

BobAlice

F�GHI: 	� Input: D

1101000101110101110101010110…
KL+MNO	M+�OPQ	�IM4�R

Goal: minimize the number of bits exchanged.

• Communication complexity of a protocol is the	maximum number of bits

exchanged by the protocol.

• Communication complexity of a function C, denoted T(C), is the communication

complexity of the best protocol for computing C.

Example: Set Disjointness UFKVW

12

Theorem [Hastad Wigderson 07]

T DISJ\ ≥ Ω] for all] < '
".

Compute UFKV\ K, ^
= _`aabcd		if	K ∩ ^ = ∅

gbhbad					otherwise

BobAlice

F�GHI: K ⊆ [�], K =]. Input: ^ ⊆ [�], ^ =]

1101000101110101110101010110…

k-Parity Functions

13

Recall: k ∶ 0,1 ' → {0,1} is linear if k �!, … , �' = ∑ ���∈q for some K ⊆ � .
Last time: linearity is testable in r 1/� time.

]-Parity Functions
A function k ∶ 0,1 ' → {0,1} is a]-parity if

k � = st � = ∑ ���∈t
for some set K ⊆ � of size K =].

Testing if a Boolean Function is a k-Parity

14

Input: Boolean function k: 0,1 ' → {0,1} and an integer]
Question: Is the function a]-parity or �-far from a]-parity

(≥ �2' values need to be changed to make it a]-parity)?

Time:

						O min(] log], � −] log � −] , �) [Chakraborty Garcia−Soriano Matsliah]	
Ω min	(], � −]) [Blais Brody Matulef 11]

• Today: Ω(]) for] < �/2
• Today’s bound implies Ω min	(], � −])

Reduction from UFKVW/� to Testing k-Parity

• Let ^ be the best tester for the]-parity property for � = 1/2
– query complexity of T is � testing]−parity .

• We will construct a communication protocol for UFKVW/� that runs ^
and has communication complexity 	2 ⋅ �(testing]−parity).

• Then	2 ⋅ �(testing]−parity) ≥ T DISJ\/" ≥ Ω]/2 for] ≤ �/2
⇓

�(testing]-parity) ≥ Ω] for] ≤ �/2

15

UFKVW
holds for CC of every

protocol for UFKVW [Hastad Wigderson 07]

Reduction from UFKVW/� to Testing k-Parity

16

BobAlice

F�GHI: K ⊆ [�], K =]/2.
Compute: k = st

Input: ^ ⊆ [�], ^ =]/2
Compute: R = sz

1101000101110101110101010110…

Output T’s answer

T

L = k { R	(QPO	2)

`aabcd/gbhbad

L � ? k � { R � 		QPO	2

k(�)
R(�)

• ^ receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by ^
Correctness:

• L = k { R	 QPO	2 = st { sz 	 QPO	2 = st}z
• KΔ^ = K { ^ − 2 K ∩ ^

• SΔ^ = _]										if		S∩T	=	∅
≤] − 2		if		S∩T ≠ ∅

L	is _]−parity																																				if		S∩T	=	∅]�−parity	where]� ≠]								if		S∩T ≠ ∅

• Recall that two different linear functions disagree on half of the values:

st, sz = 1 − 2 ⋅ fraction	of	disagreements	between	st	and	sz = 0				for		K ≠ ^
Summary: �(testing]-parity) ≥ Ω] for] ≤ �/2

17

]1/2-far from every]-parity

Summary of Lower Bounds

• Yao’s Principle

– testing sortedness

• Reductions from communication complexity problems

– testing if a function is a]-parity

18

Other Models of Sublinear
Computation

20

Tolerant Property Tester

�-close to YES

�-far from
YES

YES

Reject with

probability 2/3

Don’t care

Accept with

probability ≥ �/�

≥

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES Accept with

probability ≥ �/�

Reject with

probability 2/3

NO

≥

				

Sublinear-Time “Restoration” Models

Local Decoding

Program Checking

Local Reconstruction

21

Input: Function k nearly satisfying some property �
Requirement: Reconstruct function k to ensure that the

reconstructed function R satisfies �, changing k only

when necessary. For a given argument �, compute R(�)
with a few queries to k.

k

�Input: a program � computing k with a small error

probability.

Requirement: self-correct program � – for a given

argument �, compute k(�) by making a few calls to P.

Input: a slightly corrupted codeword

Requirement: recover a given bit of the closest codeword

with a constant number of queries.

k

Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?

Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space

complexity ≤ time complexity)

22

Data Stream Model

• Motivation: network traffic, database transactions, sensor networks, satellite data

feed

Model the stream as Q elements from [�], e.g.,

�!, �", … , �� = 3, 5, 3, 7, 5, 4, …	
Goal: Compute a function of the stream, e.g., median, number of distinct elements,

longest increasing sequence.

23

B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2) Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf

Streaming Puzzle

A stream contains � − 1 distinct elements from � in arbitrary order.

Problem: Find the missing element, using r(log	�) space.

24

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample � from a stream �!, �", … , �� of

unknown length Q

Analysis:

What is the probability that �	 = 	 �� at some time I ≥ 4?
Pr � = �� = 1

4 ⋅ 1 − 1
4 { 1 ⋅ … ⋅ 1 − 1

I
											= 1

4 ⋅
4

4 { 1 ⋅ … ⋅ I − 1
I = 1

I
Space: r(]	log	�) bits to get] samples.

25

Algorithm

1. Initially, � ← 	�!
2. On seeing the Ith element, � ← �� with probability 1/I

Conclusion

Sublinear algorithms are possible in many settings

• simple algorithms, more involved analysis

• nice combinatorial problems

• unexpected connections to other areas

• many open questions

26

