Sublinear Algorithms Lecture 1

Sofya Raskhodnikova Boston University

Course webpage:

https://cs-people.bu.edu/sofya/sublinear-course/

Use Piazza to ask questions Office hours (on zoom): Wednesdays, 1:00PM-2:30PM

Evaluation

- Homework (about 4 assignments)
- Taking lecture notes (about once per person)
- Course project and presentation
- Peer grading (PhD student only)
- Class participation

Tentative Topics

Introduction, examples and general techniques.

Sublinear-time algorithms for

- graphs
- strings
- geometric properties of images
- basic properties of functions
- algebraic properties and codes
- metric spaces
- distributions

Tools: probability, Fourier analysis, combinatorics, codes, ...

Sublinear-space algorithms: streaming

Tentative Plan

Introduction, examples and general techniques.

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. (Next week) Properties of functions and graphs. Sublinear approximation.

Lecture 3-5. Background in probability. Techniques for proving hardness. Other models for sublinear computation.

Motivation for Sublinear-Time Algorithms

Massive datasets

- world-wide web
- online social networks
- genome project
- sales logs
- census data
- high-resolution images
- scientific measurements
- Long access time
- communication bottleneck (slow connection)
- implicit data (an experiment per data point)

"Why Gramma, what big data you have!"

Do We Have To Read All the Data?

- What can an algorithm compute if it
 - reads only a **tiny** portion of the data?
 - runs in **sublinear** time?

Image source: http://apandre.wordpress.com/2011/01/16/bigdata/

A Sublinear-Time Algorithm

Goal: Fundamental Understanding of Sublinear Computation

- What computational tasks?
- How to measure quality of approximation?
- What type of access to the input?
- Can we make our computations robust (e.g., to noise or erased data)?

Types of Approximation

Classical approximation

- need to compute a value
 - output should be close to the desired value
 - example: average

Property testing

need to answer YES or NO

Intuition: only require correct answers on two sets of instances that are very different from each other

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: *m* points, described by a distance matrix *D*

- D_{ij} is the distance between points *i* and *j*
- D satisfies triangle inequality and symmetry (Note: input size is $n = m^2$)
- Let *i*, *j* be indices that maximize D_{ij} .
- Maximum D_{ij} is the *diameter*.

Output: (k, ℓ) such that $D_{k\ell} \ge D_{ij}/2$

Algorithm and Analysis

Algorithm (m, D)

- 1. Pick k arbitrarily
- 2. Pick ℓ to maximize $D_{k\ell}$
- 3. Output (k, ℓ)
- Approximation guarantee $D_{ij} \leq D_{ik} + D_{kj}$ (triangle inequality) $\leq D_{k\ell} + D_{k\ell}$ (choice of ℓ + symmetry of D) k $\leq 2D_{k\ell}$
- Running time: $O(m) = O(m = \sqrt{n})$

A rare example of a deterministic sublinear-time algorithm

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

"in the ballpark" vs. "out of the ballpark"

Does the input satisfy the property or is it far from satisfying it?

- for some applications, it is the right question (probabilistically checkable proofs (PCPs), precursor to learning)
- good enough when the data is constantly changing
- fast sanity check to rule out inappropriate inputs

(rejection-based image processing)

Property Tester Definition

 ε -far = differs in many places ($\geq \varepsilon$ fraction of places)

Randomized Sublinear Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a string $w \in \{0,1\}^n$

Question: Is $w = 00 \dots 0$?

Requires reading entire input.

Approximate version: Is $w = 00 \dots 0$ or

does it have $\geq \varepsilon n$ 1's ("errors")?

1

 \mathbf{O}

()

 $\mathbf{0}$

1

 \mathbf{O}

0

...

Used: $1 - x \le e^{-x}$

1. Sample $s = 2/\varepsilon$ positions uniformly and independently at random

2. If 1 is found, **reject**; otherwise, **accept**

Analysis: If $w = 00 \dots 0$, it is always accepted.

If w is ε -far, Pr[error] = Pr[no 1's in the sample] $\leq (1-\varepsilon)^s \leq e^{-\varepsilon s} = e^{-2} < \frac{1}{2}$

Witness Lemma

If a test catches a witness with probability $\geq p$,

then $s = \frac{2}{n}$ iterations of the test catch a witness with probability $\geq 2/3$.

Randomized Approximation: a Toy Example

Input: a string $w \in \{0,1\}^n$

Goal: Estimate the fraction of 1's in w (like in polls)

It suffices to sample $s = 1 / \epsilon^2$ positions and output the average to get the fraction of 1's $\pm \epsilon$ (i.e., additive error ϵ) with probability $\geq 2/3$

Hoeffding BoundLet Y_1, \ldots, Y_s be independently distributed random variables in [0,1].Let $Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$ (called sample mean). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.Y_i = value of sample *i*. Then $E[Y] = \frac{1}{s} \cdot \sum_{i=1}^{s} E[Y_i] = (\text{fraction of } 1's \text{ in } w)$ Pr[|(sample mean) - (fraction of 1's in w)| \ge \varepsilon] $\le 2e^{-2s\varepsilon^2} = 2e^{-2} < 1/3$ Apply Hoeffding Bound

Property Testing

Simple Examples

Testing Properties of Images

Pixel Model

Input: $n \times n$ matrix of pixels (0/1 values for black-and-white pictures)

Query: point (i_1, i_2) Answer: color of (i_1, i_2)

Testing if an Image is a Half-plane [R03]

A half-plane or ε -far from a half-plane?

 $O(1/\varepsilon)$ time

"Testing by implicit learning" paradigm

- Learn the outline of the image by querying a few pixels.
- Test if the image conforms to the outline by random sampling, and reject if something is wrong.

Half-plane Test

Claim. The number of sides with different corners is 0, 2, or 4.

Algorithm

1. Query the corners.

Half-plane Test: 4 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

• If it is 4, the image cannot be a half-plane.

Algorithm

- 1. Query the corners.
- 2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

• If all corners have the same color, the image is a half-plane if and only if it is unicolored.

Algorithm

- 1. Query the corners.
- 2. If all corners have the same color *c*, test if all pixels have color *c* (as in Toy Example 1).

Half-plane Test: 2 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

- The area outside of $W \cup B$ has $\leq \epsilon n^2/2$ pixels.
- If the image is a half-plane, W contains only white pixels and B contains only black pixels.
- If the image is ε -far from half-planes, it has $\geq \varepsilon n^2/2$ wrong pixels in $W \cup B$.
- By Witness Lemma, $4/\varepsilon$ samples suffice to catch a wrong pixel.

Algorithm

- 1. Query the corners.
- 2. If # of sides with different corners is 2, on both sides find 2 different pixels within distance $\epsilon n/2$ by binary search.
- 3. Query $4/\varepsilon$ pixels from $W \cup B$
- **4.** Accept iff all *W* pixels are white and all *B* pixels are black.

Testing if an Image is a Half-plane [R03]

A half-plane or ε -far from a half-plane?

Other Results on Testing Properties of Images

• Pixel Model

Convexity [Berman Murzabulatov R] Convex or ε -far from convex? O(1/ ε) time

Connectedness [Berman Murzabulatov R] Connected or ε -far from connected? O($1/\varepsilon^{3/2} \sqrt{\log 1/\varepsilon}$) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template or is ε -far?

time independent of image size

• Properties of sparse images [Ron Tsur 10]

