Sublinear Algorithms

LECTURE 10

Last time

- Multipurpose sketches
- Count-min and count-sketch
- Range queries, heavy hitters, quantiles **Today**
- Limitations of streaming algorithms
- Communication complexity

HIW3, project proposal resubmission due Thursday

Sofya Raskhodnikova;Boston University

Recall: Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p -th frequency moment is $F_p = \left|\left|f\right|\right|_p^p$ \overline{p} $=\sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements) $F_1 = m$ (# of elements in the stream) $F_2 = ||f||_2^2$ 2 is a measure of non-uniformity used e.g. for anomaly detection in network analysis $F_{\infty} = \max_{i}$ i $f_{\boldsymbol{i}}$ is the most frequent element We obtained streaming algorithms for F_0 , F_1 , F_2 . What about F_3 to F_{∞} ?

Communication Complexity

A Method for Proving Lower Bounds

(Randomized) Communication Complexity

Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted $R(C)$, is the communication complexity of the best protocol for computing C.

Example: Set Disjointness

One-Way Communication Complexity

Goal: minimize the number of bits Alice sends to Bob.

One-way communication complexity of a function C, denoted $R^{\rightarrow}(C)$, is the communication complexity of the best one-way protocol for computing C.

3-Player One-Way Communication Complexity

Goal: minimize $|m_1| + |m_2|$.

Require correct output w.p. at least $2/3$ over the random string

Converting Streaming Algorithm to CC Protocol

Let $\mathcal P$ be a streaming problem.

Suppose there is a transformation $x \to s_1$, $y \to s_2$, $z \to s_3$ such that $\mathcal{P}(s_1 \circ s_2 \circ s_3)$ suffices to compute $C(x, y, z)$

An s-bit algorithm A for $\mathcal P$ gives a 2s-bit protocol for C

- Alice runs A on s_1 and sends memory state, m_1 , to Bob
- Bob instantiates A with m_1 , runs A on s_2 , sends memory state, m_2 , to Carol
- Carol instantiates A with m_2 , runs A on s_3 to get $\mathcal{P}(s_1 \circ s_2 \circ s_3)$ and computes $C(x, y, z)$

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Converting Streaming Algorithm to CC Protocol

Let $\mathcal P$ be a streaming problem.

Suppose there is a transformation $x \to s_1$, $y \to s_2$, $z \to s_3$ such that $\mathcal{P}(s_1 \circ s_2 \circ s_3)$ suffices to compute $C(x, y, z)$

An s-bit algorithm A for $\mathcal P$ gives a 2s-bit protocol for C

- If there are p players than the protocol uses $(p 1)s$ bits
- A lower bound L for computing C implies $b = \Omega\left(\frac{L}{n}\right)$ \overline{p}

Approximating F_{∞}

Application: Approximating [∞]

Theorem

Every algorithm that computes $4/3$ -approximation of F_{∞} $(w.p. ≥ 2/3)$ needs $\Omega(n)$ space.

Proof: Reduction from Set Disjointness

On input $x, y \in \{0,1\}^n$, players generate $s_1 = \{j : x_j = 1\}$ and $s_2 = \{j : y_j = 1\}$

Example: (0)

$$
\begin{array}{ll} (0\ 0\ 1\ 1\ 0\ 0) & \rightarrow \langle 3,4; 1,3,5 \rangle \\ (1\ 0\ 1\ 0\ 1\ 0) & \end{array}
$$

- Then $F_{\infty} = 1$ if x, y represent disjoint sets, and $F_{\infty} = 2$, otherwise. Output $\leq 4/3$ Output $\geq 3/2$
- An s-space algorithm implies an s-bit protocol:

$$
s = \Omega(n)
$$

by communication complexity of Set Disjointness

Computing the median of a stream

Index

- Alice gets an *n*-bit string x, and Bob gets an index $j \in [n]$.
- Define $Index(x, j) = x_j$.
- One-way communication complexity of $Index(x, j)$ is $\Omega(n)$

Application: Finding the Median of a Stream

Theorem

Every algorithm that computes the median of an $(2n - 1)$ element stream exactly (w.p. \geq 2/3) needs $\Omega(n)$ space.

Proof: Reduction from Index.

- On input $x \in \{0,1\}^n$, Alice generates $s_1 = \{2i + x_i : i \in [n]\}$ Example: $0\ 0\ 1\ 1\ 0\ 1\ 1 \rightarrow \langle 2,4,7,9,10,13,15 \rangle$
- On input $j \in [n]$, Bob generates

 $s_2 = \{n - j \text{ copies of } 0 \text{ and } j - 1 \text{ copies of } 2n + 2\}$ Example: $j = 2$ $\rightarrow (0,0,0,0,0,16)$

- Then $median(s_1 \circ s_2) = 2j + x_i$ and $Index(x, j) = 2j + x_i \mod 2$
- An s -space algorithm implies an s -bit protocol: $s = \Omega(n)$

by 1-way communication complexity of *Index*

Approximating Frequency Moments

[Bar-Yossef, Jayram, Kumar, Sivakumar 04]

Multi-party Set Disjointness

Consider a $p \times n$ binary matrix M where each column has weight 0, 1 or p

Example:

 0 1 0 1 0 0 1 0

- The input of player i is row i of M $DISJ^{(p)}(M) = \begin{cases} 0 & \text{if there is a column of 1s} \\ 1 & \text{otherwise} \end{cases}$ otherwise
- Communication complexity of $DISJ^{(p)}(M)$ is $\Omega\left(\frac{n}{n}\right)$ \overline{p}

Application: Frequency Moments for $k > 2$

Every algorithm that 2-approximaes F_k (w.p. ≥2/3) needs $\Omega\big(n^{1-\frac{2}{k}}\big)$ Thm. Every algorithm that 2-approximaes $F_{\bm k}$ (w.p. ${\geq}2/3$) needs $\Omega\backslash n^{1-\overline{\bm{k}}}\,J$ space

Proof: Reduction from multi-party Set Disjointness

• On input $M \in \{0,1\}^{p \times n}$, player *i* generates $s_i = \{j : M_{ij} = 1\}$

Example:
\n
$$
\begin{pmatrix}\n0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix} \rightarrow (3,4; 1,3,5; 3; 3,6)
$$

- If all columns have weight 0 or 1 then $F_k = \sum_{i=1}^n f_i^k \leq n$
- If there is a column of weight p then $F_k \geq p^k$
- A 2-approximation of F_k distinguishes the cases if $p^k > 4n \Leftrightarrow p > (4n)$ 1 \boldsymbol{k}
- An s-space algorithm implies $s(p-1)$ -bit protocol:

$$
s = \Omega\left(\frac{n}{p^2}\right) = \Omega\left(\frac{n}{(4n)^{\frac{2}{k}}}\right) = \Omega\left(n^{1-\frac{2}{k}}\right)
$$

by communication complexity of *DISJ^(p)* for constant *k*

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Distinct Elements

Gap Hamming

- Alice and Bob get *n*-bit strings x and y, respectively.
- Hamming distance $Ham(x, y)$ is the number of positions on which x and y differ.
- Output: $Ham(x, y)$ with additive error \sqrt{n} w.p. $\geq 2/3$
- Communication complexity of $Ham(x, y)$ is $\Omega(n)$ even when $|x|$ and $|y|$ are known to both players

Application: Distinct Elements

Thm. Every algorithm $(1+\varepsilon)$ -approximing F_{0} (w.p. ${\geq}2/3$) needs $\Omega\big(1/\varepsilon^{2}\big)$ space

Proof: Reduction from Gap Hamming

On input $x, y \in \{0,1\}^n$, players generate $s_1 = \{j : x_j = 1\}$ and $s_2 = \{j : y_j = 1\}$

Example: (0 0 1 1 0 0 (1 0 1 0 1 0) \rightarrow $\langle 3,4; 1,3,5 \rangle$

- Then $2F_0 = |x| + |y| + Ham(x, y)$
- When $|x|$ is known to Bob, $(1 + \varepsilon)$ -approximation of F_0 gives an additive approximation to Ham (x, y) $\varepsilon \cdot$ $|x| + |y| + Ham(x, y)$ 2 $\leq \varepsilon n \leq \sqrt{n}$ for $\varepsilon \leq 1/\sqrt{n}$
- An s -space algorithm implies an s -bit protocol:

$$
s = \Omega(n) = \Omega\left(\frac{1}{\varepsilon^2}\right)
$$

by communication complexity of Gap Hamming

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf