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Sublinear Algorithms

LECTURE 11
Last time
• Limitations of streaming algorithms

• Communication complexity

Today
• Graph streaming

• Linear sketching for graph connectivity

• 𝐿0 sampling

Sofya Raskhodnikova;Boston University



Graph Streams

• Consider a stream of edges 〈𝑒1, … , 𝑒𝑚〉
defining a graph 𝐺 with 𝑉 = [𝑛] and 𝐸 = {𝑒1, … , 𝑒𝑚}

• Semi-streaming: space restriction of 𝑂(𝑛 polylog 𝑛) bits

• What can we compute about 𝐺 in this model?
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Connected Components

Goal: Compute the number of connected components

Analysis:

• In the final forest, each set (tree) corresponds to a connected component

• Space: 𝑂(𝑛 log 𝑛) bits 
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Spanning Forest Algorithm

1. Initialize a union-find data structure with singletons for all vertices to 
represent a forest 𝐹 on [𝑛] with no edges.   

2. For each edge (𝑢, 𝑣), if 𝑢 and 𝑣 are in different sets in 𝐹, merge their sets.

3. Return the number of sets in 𝐹.

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-1.pdf



Dynamic Graph Streams

• Edges can be added and deleted

• Each stream update specifies an edge 𝑒 and whether it is 
added or deleted

• Can we still compute connected components?
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Graph Sketching: Motivating Example

• There are 𝑛 people in a social network

• Each has the corresponding row of the adjacency matrix of the 
network

• Each can write a postcard to Mark Zukerberg

• How many bits should each postcard contain, so that he can 
determine whether the network is connected w.h.p.?

Today: 𝑂 polylog 𝑛 bits suffice

Corollary: 𝑂(𝑛 polylog 𝑛) bits suffice to compute whether a 
dynamic stream of edges corresponds to a connected graph

[Ahn Guha McGregor 12]

5Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf



First Ingredient: Borůvka’s Algorithm

Consider a different (non-streaming) algorithm for computing       
a spanning forest

Analysis:

• There are at most log 𝑛 rounds since, in round 𝑖 = 1,2, …, every connected 
component either grows to size at least 2𝑖 or stops growing.

• The set of selected edges includes a spanning forest of the graph.
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Spanning Forest Algorithm 2 (Borůvka’s Algorithm) 

1. Initially put each node in its own component.

2. Repeat until no more changes are made:

3. For each connected component, pick an incident edge (if one exists).

4. Merge all components connected by the selected edges.

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf



Second Ingredient: Sketch for 𝑳𝟎 Sampling

Problem: Given a stream of elements from [𝑁] with insertions and deletions, 
output an element with non-zero (positive or negative) frequency (w.h.p.).

More general 𝐿𝑝 Sampling:

If the final frequency vector is 𝑓, return an index 𝐼 ∈ [𝑁] and 𝑅 ∈ ℝ with

Pr 𝐼 = 𝑖 = ±𝜀
𝑓𝑖

𝑝

𝑓𝑖 𝑝

𝑝 + 𝑁−𝑐 and 𝑅 = 1 ± 𝜀 𝑓𝑖 (for each 𝑖 ∈ [𝑁])

• Union Bound: If we have multiple vectors 𝑥(1), … , 𝑥 𝑡 , then we can find      

a non-zero entry from each of them  from 𝒜𝑥 1 , … ,𝒜𝑥 𝑡 w. p. ≥ 1 − 𝛿𝑡.

• Linearity: Given 𝒜𝑥 and 𝒜𝑦, we can find a non-zero entry from 𝑧 = 𝑥 + 𝑦, 
since 𝒜𝑧 = 𝒜 𝑥 + 𝑦 = 𝒜𝑥 +𝒜𝑦.
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𝐿0 Sketching Lemma

There exists a random matrix 𝒜 ∈ ℝ𝑂 log2 𝑁 ×𝑁 such that, for each 𝑥 ∈ ℝ𝑁,
with probability at least 1 − 𝛿 (for 𝛿 = 1/poly(𝑁)),                                        

we can learn (𝑖, 𝑥𝑖) for some 𝑥𝑖 ≠ 0 from 𝒜𝑥.

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf



Third Ingredient: Signed Vertex-Edge Vectors

Associate each node 𝑖 ∈ [𝑛] with a vector of length 
𝑛
2

indexed by node pairs.

• An entry indexed by a pair {𝑖, 𝑗} is ቐ
𝟏 if 𝑖, 𝑗 ∈ 𝐸 and 𝑖 > 𝑖

−𝟏 if 𝑖, 𝑗 ∈ 𝐸 and 𝑖 < 𝑖
𝟎 otherwise

Proof: An entry of σ𝑖∈𝑆 𝑥
𝑖 indexed by {𝑗, 𝑘} can be non-zero only if 𝑗, 𝑘 ∈ 𝐸

and it is adjacent to a node in 𝑆. But if 𝑗, 𝑘 ∈ 𝑆, then this entry is 1 − 1 = 0.
So exactly one of 𝑗, 𝑘 is in 𝑆.

8Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf

Example:
1 4

2

5

3

𝑥 1 = 1 1 0 0 0 0 0 0 0 0
1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 {4,5}

𝑥 2 = −1 0 0 0 1 0 0 0 0 0
𝑥 3 = 0 − 1 0 0 − 1 0 0 0 1 0
𝑥 4 = 0 0 0 0 0 0 0 0 0 1
𝑥 5 = 0 0 0 0 0 0 0 − 1 0 − 1

Lemma

Non-zero entries of σ𝑖∈𝑆 𝑥
𝑖 correspond to edges between 𝑆 and 𝑉/𝑆.

https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf


What to Write on the Postcard

• Person at node 𝑖 sends: 𝒜1𝑥
𝑖 , … ,𝒜log 𝑛 𝑥

𝑖 ,                      

where 𝒜1, … ,𝒜log 𝑛 are independent random matrices           

for 𝐿0 sampling

• Mark Zukerberg simulates Borůvka’s Algorithm:

– Identify an incident edge from each node 𝑖

by finding a non-zero entry of 𝑥 𝑖 from  𝒜1𝑥
𝑖

– In round 𝑡, identify an incident edge from each component 𝑆,    
by finding a non-zero entry of  σ𝑖∈𝑆 𝑥𝑖 from



𝑖∈𝑆

𝒜𝑡𝑥
𝑖 = 𝒜𝑡

𝑖∈𝑆

𝑥𝑖

9Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf

Non-zero entries correspond to incident edges

https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf


𝑳𝟎 Sketching: Main Idea
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• For each 𝑗 ∈ 0,… , log 𝑛 , independently sample a 2-wise independent 
hash function ℎ𝑖: 𝑁 → [2𝑖]

• Each ℎ𝑖 implicitly defines the set 𝑆𝑖 = {𝑗 ∈ [𝑁]: ℎ𝑖 𝑗 = 0}

To sketch each vector 𝑥, for all 𝑆 ∈ 𝑆0, … , 𝑆log 𝑛 , compute

𝑎 = 

𝑗∈𝑆

𝑗𝑥𝑗 ; 𝑏 = 

𝑗∈𝑆

𝑥𝑗 ; estimate 𝑑 = 1 ± 0.1 𝑥𝑆 0
with 𝛿 = 𝑛−𝑂 1

To output the index of a non-zero entry of 𝑥

• Select the smallest 𝑖∗ with 𝑆𝑖∗ such that 𝑑 = 1 ± 0.1 (if one exists)

• Return 𝑎/𝑏

Only one 𝑥𝑗 is non-zero

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf and Piotr Indyk’s lecture notes: 

https://www.sketchingbigdata.org/fall17/lec/lec18.pdf

Then 𝑎 = 𝑗𝑥𝑗 and 𝑏 = 𝑥𝑗

Our distinct elements estimator work in 

streams with deletions, too!

Each element 𝑗 of [𝑁] is added to 𝑆𝑖 w.p. 2−𝑖

https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf
https://www.sketchingbigdata.org/fall17/lec/lec18.pdf


Analysis

Proof: Pick 𝑖 such that 2𝑖−2 ≤ 𝑃 ≤ 2𝑖−1. Then 1/4 ≤ 𝑃 ⋅ 2−𝑖 ≤ 1/2
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Lemma
Let 𝑃 = 𝑖 ∈ 𝑁 : 𝑥𝑖 ≠ 0 be positions of non-zero entries. For some 𝑆,

Pr 𝑃 ∩ 𝑆 = 1 ≥ 1/8

= 

𝑗∈𝑃

Pr 𝑗 ∈ 𝑆𝑖 ⋅ Pr[𝑘 ∉ 𝑆𝑖 ∀𝑘 ∈ 𝑃\ 𝑗 ∣ 𝑗 ∈ 𝑆𝑖]

≥ 

𝑗∈𝑃

1

2𝑖
⋅ 1 − 

𝑘∈𝑃\ 𝑗

Pr 𝑘 ∈ 𝑆𝑖 𝑗 ∈ 𝑆𝑖

Pr 𝑃 ∩ 𝑆 = 1 = 

𝑗∈𝑃

Pr[𝑗 ∈ 𝑆𝑖 , 𝑘 ∉ 𝑆𝑖 ∀𝑘 ∈ 𝑃\{𝑗}]

≥ 

𝑗∈𝑃

1

2𝑖
⋅ 1 − 

𝑘∈𝑃\ 𝑗

Pr 𝑘 ∈ 𝑆𝑖

≥
𝑃

2𝑖
⋅ 1 −

𝑃

2𝑖
≥
1

4
⋅ 1 −

1

2
=
1
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By Product Rule

By a union bound

By pairwise independence

By 1/4 ≤ 𝑃 ⋅ 2−𝑖 ≤ 1/2



From Postcards to Streaming Algorithm

• Space to store each hash function: 𝑂(log𝑁) = 𝑂(log 𝑛)

• Number of hash functions is polylog(𝑛)

• Each message uses polylog(𝑛) bits

• Total space: 𝑛 polylog(𝑛)

• To insert an edge {𝑖, 𝑗}, where 𝑖 < 𝑗:

𝒜𝑡𝑥
𝑖 ← 𝒜𝑡𝑥

𝑖 +𝒜𝑡𝑒𝑖,𝑗
𝒜𝑡𝑥

𝑗 ← 𝒜𝑡𝑥
𝑗 −𝒜𝑡𝑒𝑖,𝑗

where 𝑒𝑖,𝑗 is the vector of length 
𝑛
2

with exactly one non-zero entry

• To delete an edge {𝑖, 𝑗}, where 𝑖 < 𝑗:

𝒜𝑡𝑥
𝑖 ← 𝒜𝑡𝑥

𝑖 −𝒜𝑡𝑒𝑖,𝑗
𝒜𝑡𝑥

𝑗 ← 𝒜𝑡𝑥
𝑗 +𝒜𝑡𝑒𝑖,𝑗
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𝒙 𝒊

+

1 {𝒊, 𝒋}

𝒆𝒊,𝒋


