Sublinear Algorithms

LECTURE 11

Last time

- Limitations of streaming algorithms
- Communication complexity

Today

- Graph streaming
- Linear sketching for graph connectivity
- L_0 sampling

Sofya Raskhodnikova;Boston University

Graph Streams

- Consider a stream of edges $(e_1, ..., e_m)$ defining a graph G with $V = [n]$ and $E = \{e_1, ..., e_m\}$
- Semi-streaming: space restriction of $O(n \text{ polylog } n)$ bits
- What can we compute about G in this model?

Connected Components

Goal: Compute the number of connected components

Spanning Forest Algorithm

- 1. Initialize a union-find data structure with singletons for all vertices to represent a forest F on |n| with no edges.
- 2. For each edge (u, v) , if u and v are in different sets in F , merge their sets.
- 3. Return the number of sets in F .

Analysis:

- In the final forest, each set (tree) corresponds to a connected component
- Space: $O(n \log n)$ bits

Dynamic Graph Streams

- Edges can be added and deleted
- Each stream update specifies an edge e and whether it is added or deleted
- Can we still compute connected components?

Graph Sketching: Motivating Example

- There are n people in a social network
- Each has the corresponding row of the adjacency matrix of the network
- Each can write a postcard to Mark Zukerberg
- How many bits should each postcard contain, so that he can determine whether the network is connected w.h.p.?

Today: $O(polylog n)$ bits suffice

Corollary: $O(n \text{ polylog } n)$ bits suffice to compute whether a dynamic stream of edges corresponds to a connected graph [Ahn Guha McGregor 12]

First Ingredient: Borůvka's Algorithm

Consider a different (non-streaming) algorithm for computing a spanning forest

Spanning Forest Algorithm 2 (Borůvka's Algorithm)

- 1. Initially put each node in its own component.
- 2. Repeat until no more changes are made:
- 3. For each connected component, pick an incident edge (if one exists).
- 4. Merge all components connected by the selected edges.

Analysis:

- There are at most $\log n$ rounds since, in round $i = 1, 2, ...$, every connected component either grows to size at least 2^i or stops growing.
- The set of selected edges includes a spanning forest of the graph.

Second Ingredient: Sketch for Sampling

Problem: Given a stream of elements from $[N]$ with insertions and deletions, output an element with non-zero (positive or negative) frequency (w.h.p.). More general L_p Sampling:

If the final frequency vector is f, return an index $I \in [N]$ and $R \in \mathbb{R}$ with

$$
\Pr[I = i] = \pm \varepsilon \frac{|f_i|^p}{||f_i||_p^p} + N^{-c} \text{ and } R = (1 \pm \varepsilon)f_i \text{ (for each } i \in [N])
$$

L_0 Sketching Lemma

There exists a random matrix $\mathcal{A} \in \mathbb{R}^{O(\log^2 N) \times N}$ such that, for each $x \in \mathbb{R}^N$, with probability at least $1 - \delta$ (for $\delta = 1/\text{poly}(N)$), we can learn (i, x_i) for some $x_i \neq 0$ from $\mathcal{A}x$.

- Union Bound: If we have multiple vectors $x^{(1)}$, ..., $x^{(t)}$, then we can find a non-zero entry from each of them from $\mathcal{A}x^{(1)}$, ..., $\mathcal{A}x^{(t)}$ w. p. $\geq 1-\delta t$.
- Linearity: Given $\mathcal{A}x$ and $\mathcal{A}y$, we can find a non-zero entry from $z = x + y$, since $Az = A(x + y) = Ax + Ay$.

Third Ingredient: Signed Vertex-Edge Vectors

Associate each node $i \in [n]$ with a vector of length $\binom{n}{2}$ 2 indexed by node pairs.

• An entry indexed by a pair $\{i, j\}$ is $\{\}$ **1** if $\{i, j\} \in E$ and $i > i$ -1 if $\{i, j\} \in E$ and $i < i$ **0** otherwise

Example: $\{1,2\}$ $\{1,3\}$ $\{1,4\}$ $\{1,5\}$ $\{2,3\}$ $\{2,4\}$ $\{2,5\}$ $\{3,4\}$ $\{3,5\}$ $\{4,5\}$ **1** $\sqrt{4}$ **2 5 3** $x^{(1)} = (1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ $\chi^{(2)} = (-1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$ $x^{(3)} = (0 - 1 0 0 - 1 0 0 0 1 0$ $x^{(4)} = (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$ $x^{(5)} = (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -1 \ 0 \ -1$

Lemma

Non-zero entries of $\sum_{i \in S} x^{(i)}$ correspond to edges between S and $V/S.$

Proof: An entry of $\sum_{i \in S} x^{(i)}$ indexed by $\{j, k\}$ can be non-zero only if $\{j, k\} \in E$ and it is adjacent to a node in S. But if j, $k \in S$, then this entry is $1 - 1 = 0$. So exactly one of j, k is in S .

Based on Andrew McGregor's slides: <https://people.cs.umass.edu/~mcgregor/711S18/graph-2.pdf>

What to Write on the Postcard

- Person at node *i* sends: $A_1x^{(i)}$, ..., $A_{\log n}x^{(i)}$, where $A_1, ..., A_{\log n}$ are independent random matrices for L_0 sampling
- Mark Zukerberg simulates Borůvka's Algorithm:
	- $-$ Identify an incident edge from each node i by finding a non-zero entry of $x^{(i)}$ from $\, {\cal A}_1 x^{(i)}$

Non-zero entries correspond to incident edges

 $-$ In round t, identify an incident edge from each component S, by finding a non-zero entry of $\sum_{i\in S}x_i$ from

$$
\sum_{i \in S} \mathcal{A}_t x^{(i)} = \mathcal{A}_t \sum_{i \in S} x_i
$$

Sketching: Main Idea

- For each $j \in \{0, ..., \log n\}$, independently sample a 2-wise independent hash function $h_i: [N] \to [2^i]$ Each element j of [N] is added to S_i w.p. 2^{-i}
- Each h_i implicitly defines the set $S_i = \{j \in [N]: h_i(j) = 0\}$

To sketch each vector x, for all $S \in \{S_0, ..., S_{\log n}\}\)$, compute

$$
a = \sum_{j \in S} jx_j; \quad b = \sum_{j \in S} x_j; \quad \text{estimate } d = (1 \pm 0.1) ||x_S||_0 \text{ with } \delta = n^{-O(1)}
$$
\nOur distinct elements estimator work in streams with deletions, too!

\nTo output the index of a non-zero entry of x Only one x_j is non-zero.

• Select the smallest i^* with S_{i^*} such that $d = 1 \pm 0.1$ (if one exists)

Then $a = jx_i$ and $b = x_i$

Return a/b

Analysis

Lemma

Let $P = \{i \in [N]: x_i \neq 0\}$ be positions of non-zero entries. For some S, $Pr[|P \cap S| = 1] \ge 1/8$

Proof: Pick *i* such that $2^{i-2} \leq |P| \leq 2^{i-1}$. Then $1/4 \leq |P| \cdot 2^{-i} \leq 1/2$

$$
\Pr[|P \cap S| = 1] = \sum_{j \in P} \Pr[j \in S_i, k \notin S_i \forall k \in P \setminus \{j\}]
$$

\n
$$
= \sum_{j \in P} \Pr[j \in S_i] \cdot \Pr[k \notin S_i \forall k \in P \setminus \{j\}] \mid j \in S_i]
$$
By Product Rule
\n
$$
\geq \sum_{j \in P} \frac{1}{2^i} \cdot \left(1 - \sum_{k \in P \setminus \{j\}} \Pr[k \in S_i \mid j \in S_i]\right)
$$
By a union bound
\n
$$
\geq \sum_{j \in P} \frac{1}{2^i} \cdot \left(1 - \sum_{k \in P \setminus \{j\}} \Pr[k \in S_i]\right)
$$
By pairwise independence
\n
$$
\geq \frac{|P|}{2^i} \cdot \left(1 - \frac{|P|}{2^i}\right) \geq \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}
$$
By 1/4 $\leq |P| \cdot 2^{-i} \leq 1/2$

From Postcards to Streaming Algorithm

- Space to store each hash function: $O(\log N) = O(\log n)$
- Number of hash functions is polylog (n)
- Each message uses polylog (n) bits
- Total space: n polylog (n)
- To insert an edge $\{i, j\}$, where $i < j$: $\mathcal{A}_t x^{(i)} \leftarrow \mathcal{A}_t x^{(i)} + \mathcal{A}_t e_{i,j}$ $\mathcal{A}_t x^{(j)} \leftarrow \mathcal{A}_t x^{(j)} - \mathcal{A}_t e_{i,j}$

where $e_{i,j}$ is the vector of length $\binom{n}{2}$ 2 with exactly one non-zero entry

To delete an edge $\{i, j\}$, where $i < j$:

$$
\mathcal{A}_t x^{(i)} \leftarrow \mathcal{A}_t x^{(i)} - \mathcal{A}_t e_{i,j}
$$

$$
\mathcal{A}_t x^{(j)} \leftarrow \mathcal{A}_t x^{(j)} + \mathcal{A}_t e_{i,j}
$$

