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Max Cut in Dense Graphs

e LetG = (V,E) be an undirected n-node graph.

Vq Vs
e Let (V1,V,) be a partition of V.

e(V;,V,) = set of edges crossing the cut



Max Cut in Dense Graphs

e LetG = (V,E) be an undirected n-node graph.

e Let (V1,V,) be a partition of V.
e(V;,V,) = set of edges crossing the cut

e The edge density of the cut,

denoted u(Vy, V5), is Ie(V1;V2)| .

n

e The edge density of the largest cutin G is

G) = max u(l,, V.
u(G) (Vl,Vz)'u( 1 V2)

Vi




Approximate Max-Cut Problem

Input: parameter ¢, access to undirected graph ¢ = (V, E)
represented by n X n adjacency matrix.

Goal 1: Output an estimate /i such that:
Prlg —u(G)| <€l =2/3

1

e [GGR98]: polye) queries and 0(2p01y(8)) time

Goal 2: Output a partition (1, V) with edge density

uV,Vy) =2 u(G) — ¢
with probability at least 2/3.

e [GGR98]: O (ZPOWG) + n - poly (i)) time



Greedy Partitioning

e Suppose we have a partition (L{,L,) of L c V.

e In which part should we place a new node v
to maximize edge density?

e LetI'(v,U) be the number of neighbors of v in U.

e Greedy: IfT'(v,Ly) <T(v,L,), place vin Ly;
otherwise, placeitin L,.



Main ldea

e Partition V into sets V) of (almost) equal size. Assume they are of equal size.
e For each set V(Y sample a learning set L) from the vertices not in V.

« Consider all partitions of L().

A partition of L™ induces a partition of V®
via the greedy rule
A partition sequence (L) = ((L(ll), L(Zl)), " (L(lt), L(zt)))
Induces a partition of V

e Consider all such partitions of ¥V and pick the best.



Preliminary Max-Cut Approximation Algorithm

@)rithm (Input: &, n; query access to adjacency matrix of G=(V,E))
1. PartitionVintot = 4/e sets VD, V() V® of (almost) equal size.

2. Foreachi € [t], selelect a set L of size £ = giz : log% u.i.r. from V\V®.
let L = (LW, L3, ., L®),

3. For each partition sequence (L) = ((L(ll),L(zl)), " (L(lt), L(Zt)))

4, For each i € [t]

5. Partition V¥ into (Vl(i), Vz(i)) using the greedy rule:
place v in Vl(l) iff (v, L) <T(v,L,).
6. Let V* = U; Vl(i) and V] = U; Vz(i); calculate u(V{*, V).
\ﬁ Output the cut (V{*, VJ*) with the largest density. /

e Number of partition sequences: (Z{J)t = ZPOW@

e Running time: n2 - zp‘”y@ O(nz) time for calculating each density



Correctness of Max-Cut Approximation

("Correctness Theorem )
Let (H,, H,) be a partition of V. Think: (Hy, Hy) isa max-cut =~
w. p. = 5/6 over the choice of L, some partition sequence m(L)

\induces a partition (V{*, V') of V's. t. u(V{*, V) = u(Hy,H,) — 3¢/4 Y,

Main Proof Idea: Use a hybrid argument.

* (Hl(O)»HZ(O)) = (Hy, Hy) 4%

e Fori € [t], partition (Hl(i),Hz(i)) is

i

obtained from (Hl(i_l),HZ(i_l)) by

repartitioning V® into into (Vl(i), Vz(i)), H{ npy+D) H, nyG+D

the best out of all partitions

vy

induced by a partition of L, H,nV® Hy N V®

il

e We will show that when we go from one

VAIYAY

hybrid to the next, the density does not i~th hybrid partition (Hl(i)’Hz(i))

drop too much (w.h.p.)

oo



Correctness of Max-Cut Approximation

/" Correctness Theorem )
Let (H{, H,) be a partition of I/.
W. p. = 5/6 over the choice of L, some partition sequence (L)

\induces a partition (V{*, V') of V's. t. u(V{*, V) = u(Hy,H,) — 3¢/4 Y,

Proof: Consider i € [t] and fix learning sets LD, ..., LG~

(@) ;@ (i-1) -1 3¢
e Let A; be the event that u (le ,H' ) > u (H1‘ 1 ) -
(Main Lemma W
LPr ] =1 ——=, where the probability is taken over the choice of L, J

e Then, by a union bound,

P UA_ <t 1_1
U= "6t " 6
L




Big Picture

When we go from hybrid i — 1 to hybrid i, only nodes in y @ get repartitioned.
e LetR, = N\VO nH Y and R, = \VD n g
o LetlP =1OnHVand LY = 1O 0 Y
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Proof of Main Lemma

. LY .
e Anode v is good w.r.t. (L(ll) L(l)) if (v{) ) F(v;lR’)

e Learning set L& is good for (R4, R,) if < Zfraction of nodes in V() are bad

(Claim 1 w

<-Vj€e{12}

LThe probability that all t learning sets are good is at least 5/6. J
. F(v, Rl) F(v Rz) &
e Anodevisbalanced w.r.t. (Ry,R,) if - —| <

( Observation w
Llf all learning sets are good, all good unbalanced nodes are placed correctly. J

Proof: Suppose w.l.o.g. that I'(v, R;) < I'(v, R,) for a good unbalanced node v
e TR TR (F (v.L3) g> (F (v, L) g>
— < - < += |- —=
4 n n n 8 n 8

v,

So, F( L(l)) <T (v L(l)) and v is placed correctly.
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Density Loss from Repartitioning 40
when (L(i),L(zi)) is good
Number of edgeslost

3¢€
Total: = - n2
4t

3&

Recall: 4; is the event that u (Hl(i), Héi)) > u (Hl(i_l), Héi—l)) ’

e When (L(li),L(zi)) is good, A; occurs.

It remains to show that w.p. = 5/6 all learning sets are good.
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Probability of Good Learning Sets

r(v.1)") _r@r)
' n

e Anodevisgoodw.r.t. (L(li) L(l)) if < g vj € {1,2}

e Learning set L@ s good for (R{,R,) if < ifraction of nodes in V" are bad

(Claim 1 W

LThe probability that all t learning sets are good is at least 5/6. J

Proof: It suffices to prove that Pr[L(i) is bad]< é

e FixveV®
e Letl® = {vq, ..., vp}. Recall that it is chosen u.i.r. from V\V(i)
|1 if vy is a neibhbor of v in R;

{O, otherwise

ZX"—F (v,
]E[X]— fIE[X"]—{’ —I‘(vR)

KE[?]

vj € {1,2}

e Use Hoeffding Bound.
13



Improved Max-Cut Approximation Algorithm

@thm (Input: &, n; query access to adjacency matrix of G=(V F ))\

1. Partition Vintot = 4/¢ sets VD, V(@) | V® of (almost) equal size.

2. Foreachi € [t], selelect a set LY of size £ = iz : logl u.i.r. from V\V®.
let L = (L, L@, ., 1®), N

3. Select u.i.r. S of sizem = Z—i

4. For each partition sequence (L) = ((L(ll), L(zl)), . (L(lt), L(Zt)))

5. For each i € [t]

6. Partition S into (Sl(i),SZ(i)) using the greedy rule:

add vto S\ iff (v, L;) < T'(v, Ly).
7. Let ST = UiSl(i) and S7 = Ul-S(i); calculate

ul(sf’ Sé-[):|{k:{Szk_l,Szk}Ee(Sit,Sg)}|

m/2
kOutput max, 1’ (ST, ST /

e We can also out put the cut of V induced by m with max u’ 14




