Sublinear Algorithms

LECTURE 13

Last time

- Graph property testing (for dense graphs)
- Testing bipartiteness

Today

Approximate Max-Cut [Goldreich Goldwasser Ron 98]

Sofya Raskhodnikova; Boston University

Max Cut in Dense Graphs

- Let G = (V, E) be an undirected *n*-node graph.
- Let (V_1, V_2) be a partition of V. $e(V_1, V_2) = \text{set of edges crossing the cut}$

Max Cut in Dense Graphs

- Let G = (V, E) be an undirected *n*-node graph.
- Let (V₁, V₂) be a partition of V.
 e(V₁, V₂) = set of edges crossing the cut
- The edge density of the cut, denoted $\mu(V_1, V_2)$, is $\frac{|e(V_1, V_2)|}{n^2}$.

• The edge density of the largest cut in G is $\mu(G) = \max_{(V_1,V_2)} \mu(V_1,V_2)$

Approximate Max-Cut Problem

Input: parameter ε , access to undirected graph G = (V, E)represented by $n \times n$ adjacency matrix.

Goal 1: Output an estimate $\hat{\mu}$ such that: $\Pr[|\hat{\mu} - \mu(G)| \le \varepsilon] \ge 2/3$ • [GGR98]: poly $\left(\frac{1}{\varepsilon}\right)$ queries and $O(2^{poly}\left(\frac{1}{\varepsilon}\right))$ time Goal 2: Output a partition (V_1, V_2) with edge density $\mu(V_1, V_2) \ge \mu(G) - \varepsilon$

with probability at least 2/3.

• [GGR98]:
$$O\left(2^{poly\left(\frac{1}{\varepsilon}\right)} + n \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$$
 time

Greedy Partitioning

- Suppose we have a partition (L_1, L_2) of $L \subset V$.
- In which part should we place a new node v to maximize edge density?
- Let $\Gamma(v, U)$ be the number of neighbors of v in U.
- Greedy: If $\Gamma(v, L_1) \leq \Gamma(v, L_2)$, place v in L_1 ; otherwise, place it in L_2 .

Main Idea

- Partition V into sets $V^{(i)}$ of (almost) equal size. Assume they are of equal size.
- For each set $V^{(i)}$, sample a learning set $L^{(i)}$ from the vertices not in $V^{(i)}$. $L^{(i)}$
- Consider all partitions of $L^{(i)}$. $L_2^{(i)}$

Consider all such partitions of *V* and pick the best.

Preliminary Max-Cut Approximation Algorithm

Algorithm (Input: ε , n; query access to adjacency matrix of G = (V, E))

- 1. Partition V into $t = 4/\epsilon$ sets $V^{(1)}, V^{(2)}, \dots, V^{(t)}$ of (almost) equal size.
- 2. For each $i \in [t]$, selelect a set $L^{(i)}$ of size $\ell = \frac{1}{c^2} \cdot \log \frac{1}{c}$ u.i.r. from $V \setminus V^{(i)}$. Let $L = (L^{(1)}, L^{(2)}, \dots, L^{(t)}).$
- For each partition sequence $\pi(L) = \left(\left(L_1^{(1)}, L_2^{(1)} \right), \dots, \left(L_1^{(t)}, L_2^{(t)} \right) \right)$ 3.
- 4. For each $i \in [t]$
- Partition $V^{(i)}$ into $\left(V_1^{(i)}, V_2^{(i)}\right)$ using the greedy rule: 5. place v in $V_1^{(i)}$ iff $\Gamma(v, L_1) \leq \Gamma(v, L_2)$.
- Let $V_1^{\pi} = \bigcup_i V_1^{(i)}$ and $V_2^{\pi} = \bigcup_i V_2^{(i)}$; calculate $\mu(V_1^{\pi}, V_2^{\pi})$. 6.

Output the cut (V_1^{π}, V_2^{π}) with the largest density. 7.

- Number of partition sequences: $(2^{\ell})^{t} = 2^{poly(\frac{1}{\epsilon})}$ •

• Running time: $n^2 \cdot 2^{poly(\frac{1}{\epsilon})}$ $O(n^2)$ time for calculating each density

Correctness of Max-Cut Approximation

Correctness Theorem

Let (H_1, H_2) be a partition of V.

Think: (H_1, H_2) is a max-cut

w. p. $\geq 5/6$ over the choice of *L*, some partition sequence $\pi(L)$

induces a partition (V_1^{π}, V_2^{π}) of V s. t. $\mu(V_1^{\pi}, V_2^{\pi}) \ge \mu(H_1, H_2) - 3\varepsilon/4$

Main Proof Idea: Use a hybrid argument.

•
$$\left(H_1^{(0)}, H_2^{(0)}\right) = (H_1, H_2)$$

- For $i \in [t]$, partition $\left(H_1^{(i)}, H_2^{(i)}\right)$ is obtained from $\left(H_1^{(i-1)}, H_2^{(i-1)}\right)$ by repartitioning $V^{(i)}$ into into $\left(V_1^{(i)}, V_2^{(i)}\right)$, the best out of all partitions induced by a partition of $L^{(i)}$.
- We will show that when we go from one hybrid to the next, the density does not drop too much (w.h.p.)

i-th hybrid partition $(H_1^{(i)}, H_2^{(i)})$

Correctness of Max-Cut Approximation

Correctness Theorem

Let (H_1, H_2) be a partition of V.

W. p. $\geq 5/6$ over the choice of *L*, some partition sequence $\pi(L)$

induces a partition (V_1^{π}, V_2^{π}) of V s. t. $\mu(V_1^{\pi}, V_2^{\pi}) \ge \mu(H_1, H_2) - 3\varepsilon/4$

Proof: Consider $i \in [t]$ and fix learning sets $L^{(1)}, ..., L^{(i-1)}$.

• Let A_i be the event that $\mu\left(H_1^{(i)}, H_2^{(i)}\right) \ge \mu\left(H_1^{(i-1)}, H_2^{(i-1)}\right) - \frac{3\varepsilon}{4t}$

Main Lemma

 $\Pr[A_i] \ge 1 - \frac{1}{6t}$, where the probability is taken over the choice of $L^{(i)}$.

• Then, by a union bound,

$$\Pr\left[\bigcup_{i} \overline{A_{i}}\right] \le t \cdot \frac{1}{6t} = \frac{1}{6}$$

Big Picture

When we go from hybrid i - 1 to hybrid i, only nodes in $V^{(i)}$ get repartitioned.

- Let $R_1 = V \setminus V^{(i)} \cap H_1^{(i-1)}$ and $R_2 = V \setminus V^{(i)} \cap H_2^{(i-1)}$
- Let $L_1^{(i)} = L^{(i)} \cap H_1^{(i-1)}$ and $L_2^{(i)} = L^{(i)} \cap H_2^{(i-1)}$

Proof of Main Lemma

- A node v is good w.r.t. $\left(L_1^{(i)}, L_2^{(i)}\right)$ if $\left|\frac{\Gamma\left(v, L_j^{(i)}\right)}{\ell} \frac{\Gamma\left(v, R_j\right)}{n}\right| \le \frac{\varepsilon}{8} \quad \forall j \in \{1, 2\}$
- Learning set $L^{(i)}$ is good for (R_1, R_2) if $\leq \frac{\varepsilon}{4}$ fraction of nodes in $V^{(i)}$ are bad

Claim 1

The probability that all *t* learning sets are good is at least 5/6.

• A node v is balanced w.r.t. (R_1, R_2) if $\left|\frac{\Gamma(v, R_1)}{n} - \frac{\Gamma(v, R_2)}{n}\right| \le \frac{\varepsilon}{4}$

Observation

If all learning sets are good, all good unbalanced nodes are placed correctly.

Proof: Suppose w.l.o.g. that $\Gamma(v, R_1) \leq \Gamma(v, R_2)$ for a good unbalanced node v

$$\frac{\varepsilon}{4} < \frac{\Gamma(v, R_2)}{n} - \frac{\Gamma(v, R_1)}{n} \le \left(\frac{\Gamma\left(v, L_2^{(i)}\right)}{n} + \frac{\varepsilon}{8}\right) - \left(\frac{\Gamma\left(v, L_1^{(i)}\right)}{n} - \frac{\varepsilon}{8}\right)$$

So, $\Gamma\left(v, L_1^{(i)}\right) < \Gamma\left(v, L_2^{(i)}\right)$, and v is placed correctly.

Density Loss from Repartitioning $V^{(i)}$

when
$$\left(L_1^{(i)}, L_2^{(i)}\right)$$
 is good

Type of cut-edges	Number of edges lost
Incident to good unbalanced nodes	
Incident to bad unbalanced nodes	
Incident to balanced nodes	
Between nodes of $V^{(i)}$	

Total:
$$\frac{3\varepsilon}{4t} \cdot n^2$$

- Recall: A_i is the event that $\mu\left(H_1^{(i)}, H_2^{(i)}\right) \ge \mu\left(H_1^{(i-1)}, H_2^{(i-1)}\right) \frac{3\varepsilon}{4t}$
- When $(L_1^{(i)}, L_2^{(i)})$ is good, A_i occurs.
- It remains to show that w.p. $\geq 5/6$ all learning sets are good.

Probability of Good Learning Sets

- A node v is good w.r.t. $\left(L_1^{(i)}, L_2^{(i)}\right)$ if $\left|\frac{\Gamma\left(v, L_j^{(i)}\right)}{\ell} \frac{\Gamma\left(v, R_j\right)}{n}\right| \le \frac{\varepsilon}{8} \ \forall j \in \{1, 2\}$
- Learning set $L^{(i)}$ is good for (R_1, R_2) if $\leq \frac{\varepsilon}{4}$ fraction of nodes in $V^{(i)}$ are bad

Claim 1

The probability that all *t* learning sets are good is at least 5/6.

Proof: It suffices to prove that $\Pr[L^{(i)} \text{ is bad}] \leq \frac{1}{6t}$

- Fix $v \in V^{(i)}$
- Let $L^{(i)} = \{v_1, \dots, v_\ell\}$. Recall that it is chosen u.i.r. from $V \setminus V^{(i)}$

$$X_{j}^{k} = \begin{cases} 1, & \text{if } v_{k} \text{ is a neibhbor of } v \text{ in } R_{j} \\ 0, & \text{otherwise} \end{cases} \quad \forall j \in \{1, 2\} \\ X_{j} = \sum_{k \in [\ell]} X_{j}^{k} = \Gamma\left(v, L_{j}^{(i)}\right) \\ \mathbb{E}[X_{j}] = \sum_{k \in [\ell]}^{k \in [\ell]} \mathbb{E}[X_{j}^{k}] = \ell \cdot \frac{1}{n} \Gamma(v, R_{j}) \end{cases}$$

• Use Hoeffding Bound.

Improved Max-Cut Approximation Algorithm

Algorithm (Input: ε , n; query access to adjacency matrix of G = (V, E))

- 1. Partition V into $t = 4/\varepsilon$ sets $V^{(1)}, V^{(2)}, ..., V^{(t)}$ of (almost) equal size.
- 2. For each $i \in [t]$, selelect a set $L^{(i)}$ of size $\ell = \frac{1}{\epsilon^2} \cdot \log \frac{1}{\epsilon}$ u.i.r. from $V \setminus V^{(i)}$. Let $L = (L^{(1)}, L^{(2)}, \dots, L^{(t)})$.
- 3. Select u.i.r. S of size $m = \frac{t\ell}{s^2}$
- 4. For each partition sequence $\pi(L) = \left(\left(L_1^{(1)}, L_2^{(1)} \right), \dots, \left(L_1^{(t)}, L_2^{(t)} \right) \right)$
- 5. For each $i \in [t]$
- 6. Partition $S^{(i)}$ into $\left(S_1^{(i)}, S_2^{(i)}\right)$ using the greedy rule: add v to $S_1^{(i)}$ iff $\Gamma(v, L_1) \leq \Gamma(v, L_2)$.
- 7. Let $S_1^{\pi} = \bigcup_i S_1^{(i)}$ and $S_2^{\pi} = \bigcup_i S_2^{(i)}$; calculate

$$\mu'(S_1^{\pi}, S_2^{\pi}) = \frac{|\{k:\{s_{2k-1}, s_{2k}\} \in e(S_1^{\pi}, S_2^{\pi})\}|}{m/2}$$

8. Output $\max_{\pi} \mu'(S_1^{\pi}, S_2^{\pi})$

• We can also out put the cut of V induced by π with max μ'

14