
10/20/2020

Sublinear Algorithms

LECTURE 13
Last time
• Graph property testing (for dense graphs)

• Testing bipartiteness

Today

Approximate Max-Cut
[Goldreich Goldwasser Ron 98]

Sofya Raskhodnikova;Boston University

Max Cut in Dense Graphs

• Let 𝐺 = (𝑉, 𝐸) be an undirected 𝑛-node graph.

• Let 𝑉1, 𝑉2 be a partition of 𝑉.

𝑒 𝑉1, 𝑉2 = set of edges crossing the cut

2

1
2

𝑽𝟏 𝑽𝟐

Max Cut in Dense Graphs

• Let 𝐺 = (𝑉, 𝐸) be an undirected 𝑛-node graph.

• Let 𝑉1, 𝑉2 be a partition of 𝑉.

𝑒 𝑉1, 𝑉2 = set of edges crossing the cut

• The edge density of the cut,

denoted 𝜇 𝑉1, 𝑉2 , is
𝑒 𝑉1,𝑉2

𝑛2
.

• The edge density of the largest cut in 𝐺 is
𝜇 𝐺 = max

𝑉1,𝑉2
𝜇 𝑉1, 𝑉2

3

1
2

𝑽𝟏 𝑽𝟐

Approximate Max-Cut Problem

Input: parameter 𝜀, access to undirected graph 𝐺 = (𝑉, 𝐸)
represented by 𝑛 × 𝑛 adjacency matrix.

Goal 1: Output an estimate Ƹ𝜇 such that:
Pr Ƹ𝜇 − 𝜇 𝐺 ≤ 𝜀 ≥ 2/3

• [GGR98]: poly
1

𝜀
queries and 𝑂(2

𝑝𝑜𝑙𝑦
1

𝜀) time

Goal 2: Output a partition 𝑉1, 𝑉2 with edge density

𝜇 𝑉1, 𝑉2 ≥ 𝜇 𝐺 − 𝜀

with probability at least 2/3.

• [GGR98]: 𝑂 2
𝑝𝑜𝑙𝑦

1

𝜀 + 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
time

4

1
2

Greedy Partitioning

• Suppose we have a partition 𝐿1, 𝐿2 of 𝐿 ⊂ 𝑉.

• In which part should we place a new node 𝑣
to maximize edge density?

• Let Γ(𝑣, 𝑈) be the number of neighbors of 𝑣 in 𝑈.

• Greedy: If Γ 𝑣, 𝐿1 ≤ Γ 𝑣, 𝐿2 , place 𝑣 in 𝐿1;
otherwise, place it in 𝐿2.

5

1
2

𝑳𝟏 𝑳𝟐

𝒗

Main Idea

• Partition 𝑉 into sets 𝑉 𝑖 of (almost) equal size.

• For each set 𝑉 𝑖 , sample a learning set 𝐿 𝑖 from the vertices not in 𝑉 𝑖 .

• Consider all partitions of 𝐿 𝑖 .

• Consider all such partitions of 𝑉 and pick the best.

6

A partition of 𝐿 𝑖 induces a partition of 𝑉 𝑖

via the greedy rule

1
2

𝑳 𝒊

𝑽 𝒊

𝑳𝟏
𝒊 𝑳𝟐

𝒊

𝑽𝟏
𝒊

𝑽𝟐
𝒊

Assume they are of equal size.

A partition sequence 𝜋 𝐿 = 𝐿1
1
, 𝐿2

1
, … , 𝐿1

𝑡
, 𝐿2

𝑡

induces a partition of 𝑉

Preliminary Max-Cut Approximation Algorithm

7

Algorithm (Input: 𝜀, 𝑛; query access to adjacency matrix of G=(V,E))

1. Partition 𝑉 into 𝑡 = 4/𝜀 sets 𝑉(1), 𝑉(2), … , 𝑉(𝑡) of (almost) equal size.

2. For each 𝑖 ∈ 𝑡 , selelect a set 𝐿(𝑖) of size ℓ =
1

𝜀2
⋅ log

1

𝜀
u.i.r. from 𝑉\V 𝑖 .

Let 𝐿 = 𝐿 1 , 𝐿 2 , … , 𝐿 𝑡 .

3. For each partition sequence 𝜋 𝐿 = 𝐿1
1
, 𝐿2

1
, … , 𝐿1

𝑡
, 𝐿2

𝑡

4. For each 𝑖 ∈ 𝑡

5. Partition 𝑉 𝑖 into 𝑉1
𝑖
, 𝑉2

𝑖
using the greedy rule:

place 𝑣 in 𝑉1
𝑖

iff Γ 𝑣, 𝐿1 ≤ Γ 𝑣, 𝐿2 .

6. Let 𝑉1
𝜋 = 𝑖𝑉1ڂ

𝑖
and 𝑉2

𝜋 = 𝑖ڂ 𝑉2
𝑖

; calculate 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 .

7. Output the cut 𝑉1
𝜋 , 𝑉2

𝜋 with the largest density.

• Number of partition sequences: 2ℓ
𝑡
= 2

𝑝𝑜𝑙𝑦
1

𝜀

• Running time: 𝑛2 ⋅ 2
𝑝𝑜𝑙𝑦

1

𝜀 𝑂 𝑛2 time for calculating each density

Correctness of Max-Cut Approximation

8

Main Proof Idea: Use a hybrid argument.

• 𝐻1
0
, 𝐻2

0
= 𝐻1, 𝐻2

• For 𝑖 ∈ [𝑡], partition 𝐻1
𝑖
, 𝐻2

𝑖
is

obtained from 𝐻1
𝑖−1

, 𝐻2
𝑖−1

by

repartitioning 𝑉 𝑖 into into 𝑉1
𝑖
, 𝑉2

𝑖
,

the best out of all partitions

induced by a partition of 𝐿 𝑖 .

• We will show that when we go from one
hybrid to the next, the density does not
drop too much (w.h.p.)

Correctness Theorem

Let 𝐻1, 𝐻2 be a partition of 𝑉.

w. p. ≥ 5/6 over the choice of 𝐿, some partition sequence 𝜋(𝐿)

induces a partition 𝑉1
𝜋 , 𝑉2

𝜋 of 𝑉 s. t. 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 ≥ 𝜇 𝐻1, 𝐻2 − 3𝜀/4

Think: 𝐻1, 𝐻2 is a max-cut

𝑽𝟏
𝟏

𝑽𝟐
𝟏

𝑽𝟏
𝒊

𝑽𝟐
𝒊

⋮

𝑯𝟏 ∩ 𝑽 𝒊+𝟏 𝑯𝟐 ∩ 𝑽 𝒊+𝟏

𝑯𝟏 ∩ 𝑽 𝒕 𝑯𝟐 ∩ 𝑽 𝒕

⋮

𝑖-th hybrid partition 𝐻1
𝑖
, 𝐻2

𝑖

Correctness of Max-Cut Approximation

9

Proof: Consider 𝑖 ∈ [𝑡] and fix learning sets 𝐿 1 , … , 𝐿 𝑖−1 .

• Let 𝐴𝑖 be the event that 𝜇 𝐻1
𝑖
, 𝐻2

𝑖
≥ 𝜇 𝐻1

𝑖−1
, 𝐻2

𝑖−1
−

3𝜀

4𝑡

• Then, by a union bound,

Pr ራ

𝑖

𝐴𝑖 ≤ 𝑡 ⋅
1

6𝑡
=
1

6

Correctness Theorem

Let 𝐻1, 𝐻2 be a partition of 𝑉.

W. p. ≥ 5/6 over the choice of 𝐿, some partition sequence 𝜋(𝐿)

induces a partition 𝑉1
𝜋 , 𝑉2

𝜋 of 𝑉 s. t. 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 ≥ 𝜇 𝐻1, 𝐻2 − 3𝜀/4

Main Lemma

Pr 𝐴𝑖 ≥ 1 −
1

6𝑡
, where the probability is taken over the choice of 𝐿 𝑖 .

Big Picture

When we go from hybrid 𝑖 − 1 to hybrid 𝑖, only nodes in 𝑉 𝑖 get repartitioned.

• Let 𝑅1 = 𝑉\V 𝑖 ∩ 𝐻1
𝑖−1

and 𝑅2 = 𝑉\V 𝑖 ∩ 𝐻2
𝑖−1

• Let 𝐿1
𝑖
= 𝐿 𝑖 ∩ 𝐻1

𝑖−1
and 𝐿2

𝑖
= 𝐿 𝑖 ∩ 𝐻2

𝑖−1

10

𝑯𝟏
𝒊−𝟏

𝑯𝟐
𝒊−𝟏

𝑽𝟏
𝒊

𝑽𝟐
𝒊

𝑳𝟏
𝒊

𝑳𝟐
𝒊

𝑹𝟏
𝑹𝟐

Proof of Main Lemma

• A node 𝑣 is good w.r.t. 𝐿1
𝑖
, 𝐿2

𝑖
if

Γ 𝑣, 𝐿𝑗
𝑖

ℓ
−

Γ 𝑣, 𝑅𝑗

𝑛
≤

𝜀

8
∀𝑗 ∈ {1,2}

• Learning set 𝐿 𝑖 is good for 𝑅1, 𝑅2 if ≤
𝜀

4
fraction of nodes in 𝑉 𝑖 are bad

• A node 𝑣 is balanced w.r.t. 𝑅1, 𝑅2 if
Γ 𝑣, 𝑅1

𝑛
−

Γ 𝑣, 𝑅2

𝑛
≤

𝜀

4

Proof: Suppose w.l.o.g. that Γ 𝑣, 𝑅1 ≤ Γ(𝑣, 𝑅2) for a good unbalanced node 𝑣

𝜀

4
<
Γ 𝑣, 𝑅2

𝑛
−
Γ 𝑣, 𝑅1

𝑛
≤

Γ 𝑣, 𝐿2
𝑖

𝑛
+
𝜀

8
−

Γ 𝑣, 𝐿1
𝑖

𝑛
−
𝜀

8

So, Γ 𝑣, 𝐿1
𝑖

< Γ 𝑣, 𝐿2
𝑖

, and 𝑣 is placed correctly.
11

Claim 1

The probability that all 𝑡 learning sets are good is at least 5/6.

Observation

If all learning sets are good, all good unbalanced nodes are placed correctly.

Density Loss from Repartitioning 𝑽 𝒊

when 𝐿1
𝑖
, 𝐿2

𝑖
is good

Total:
3𝜀

4𝑡
⋅ 𝑛2

• Recall: 𝐴𝑖 is the event that 𝜇 𝐻1
𝑖
, 𝐻2

𝑖
≥ 𝜇 𝐻1

𝑖−1
, 𝐻2

𝑖−1
−

3𝜀

4𝑡

• When 𝐿1
𝑖
, 𝐿2

𝑖
is good, 𝐴𝑖 occurs.

• It remains to show that w.p. ≥ 5/6 all learning sets are good.

12

Type of cut-edges Number of edges lost

Incident to good

unbalanced nodes

Incident to bad

unbalanced nodes

Incident to balanced nodes

Between nodes of 𝑽 𝒊

Probability of Good Learning Sets

• A node 𝑣 is good w.r.t. 𝐿1
𝑖
, 𝐿2

𝑖
if

Γ 𝑣, 𝐿𝑗
𝑖

ℓ
−

Γ 𝑣, 𝑅𝑗

𝑛
≤

𝜀

8
∀𝑗 ∈ {1,2}

• Learning set 𝐿 𝑖 is good for 𝑅1, 𝑅2 if ≤
𝜀

4
fraction of nodes in 𝑉 𝑖 are bad

Proof: It suffices to prove that Pr[𝐿 𝑖 is bad]≤
1

6𝑡

• Fix 𝑣 ∈ 𝑉 𝑖

• Let 𝐿 𝑖 = {𝑣1, … , 𝑣ℓ}. Recall that it is chosen u.i.r. from 𝑉\V 𝑖

𝑋𝑗
𝑘 = ቊ

1, if 𝑣𝑘 is a neibhbor of 𝑣 in 𝑅𝑗
0, otherwise

∀𝑗 ∈ {1,2}

𝑋𝑗 = ෍

𝑘∈[ℓ]

𝑋𝑗
𝑘 = Γ 𝑣, 𝐿𝑗

𝑖

𝔼 𝑋𝑗 = ෍

𝑘∈[ℓ]

𝔼 𝑋𝑗
𝑘 = ℓ ⋅

1

𝑛
Γ 𝑣, 𝑅𝑗

• Use Hoeffding Bound.

13

Claim 1

The probability that all 𝑡 learning sets are good is at least 5/6.

Improved Max-Cut Approximation Algorithm

• We can also out put the cut of 𝑉 induced by 𝜋 with max 𝜇′ 14

Algorithm (Input: 𝜀, 𝑛; query access to adjacency matrix of G=(V,E))

1. Partition 𝑉 into 𝑡 = 4/𝜀 sets 𝑉(1), 𝑉(2), … , 𝑉(𝑡) of (almost) equal size.

2. For each 𝑖 ∈ 𝑡 , selelect a set 𝐿(𝑖) of size ℓ =
1

𝜀2
⋅ log

1

𝜀
u.i.r. from 𝑉\V 𝑖 .

Let 𝐿 = 𝐿 1 , 𝐿 2 , … , 𝐿 𝑡 .

3. Select u.i.r. 𝑆 of size 𝑚 =
𝑡ℓ

𝜀2

4. For each partition sequence 𝜋 𝐿 = 𝐿1
1
, 𝐿2

1
, … , 𝐿1

𝑡
, 𝐿2

𝑡

5. For each 𝑖 ∈ 𝑡

6. Partition 𝑆 𝑖 into 𝑆1
𝑖
, 𝑆2

𝑖
using the greedy rule:

add 𝑣 to 𝑆1
𝑖

iff Γ 𝑣, 𝐿1 ≤ Γ 𝑣, 𝐿2 .

7. Let 𝑆1
𝜋 = 𝑖ڂ 𝑆1

𝑖
and 𝑆2

𝜋 = 𝑖ڂ 𝑆2
𝑖

; calculate

𝜇′ 𝑆1
𝜋 , 𝑆2

𝜋 =
𝑘: 𝑠2𝑘−1,𝑠2𝑘 ∈𝑒 𝑆1

𝜋,𝑆2
𝜋

𝑚/2

8. Output max𝜋 𝜇′ 𝑆1
𝜋 , 𝑆2

𝜋

