Sublinear Algorithms

LECTURE 14

Last time

Approximate Max-Cut

Today

- Testing triangle-freeness
- Regularity Lemma

Project progress reports due next Thursday Sign up for project meetings

Sofya Raskhodnikova; Boston University

Recall

- We discussed testing bipariteness.
- A graph is bipartite iff it has no odd cycles.
- In particular, a bipartite graph has no triangles.

Main tool: Regularity Lemma [Szemerédi 78]

Testing Triangle-Freeness

Input: parameters ε , n, access to undirected graph G = (V, E)represented by $n \times n$ adjacency matrix.

Goal: Accept if *G* has no triangles; **reject** w.p. $\geq \frac{2}{3}$ if *G* is ε -far from triangle-free (at least $\varepsilon {n \choose 2}$ edges need to be removed to get rid of all triangles).

• [AFKS09]: Time that depends only on ε

Tester

Algorithm (Input: ε , n; query access to adjacency matrix of G=(V,E))

- 1. Repeat *s* times:
- 2. Sample vertices v_1, v_2, v_3 uniformly at random
- 3. **Reject** if they form a triangle.
- 4. Accept.

How many repetitions suffice?

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every *n*-node graph that is ε -far from triangle-free contains at least $\delta \cdot {n \choose 3}$ triangles.

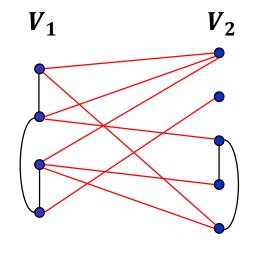
- It is easy to see that if G is ε -far from triangle-free then it has at leas $\varepsilon \binom{n}{2}$ triangles. This is asymptotically better.
- By Witness Lemma, setting $s = 2/\delta$ yields a tester.

The Regularity Lemma: Density

• Let V_1, V_2 be non-empty disjoint subsets of V. $e(V_1, V_2) = \text{set of edges between } V_1 \text{ and } V_2$

• The edge density of the pair (V_1, V_2) , denoted $d(V_1, V_2)$, is $\frac{|e(V_1, V_2)|}{|V_1| \cdot |V_2|}$.

The probability that a random pair of nodes from different sets is an edge.

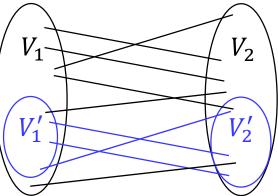


• This is the same definition as in the last lecture, except for normalization, generalized to non-partitions.

Regularity

A pair (V_1, V_2) of disjoint subsets of vertices is γ -regular if $\forall V'_1 \subseteq V_1, V'_2 \subseteq V_2$, such that $|V'_1| > \gamma |V_1|$ and $|V'_2| > \gamma |V_2|$, $|d(V_1, V_2) - d(V'_1, V'_2)| < \gamma$.

If the subsets are large then the set pair and the subset pair have similar densities



We expect subsets in a random graph to have this property.

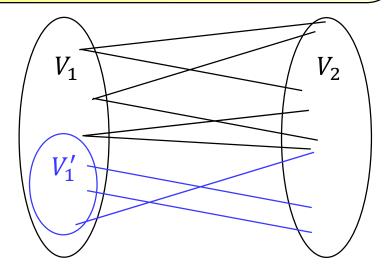
Connections in Regular Pairs

Claim (Most nodes in regular pairs have many neighbors) Suppose (V_1, V_2) is a γ -regular pair of density $\geq \eta$. Consider the set V'_1 of nodes in V_1 , each of which has at most $(\eta - \gamma)|V_2|$ neighbors in V_2 . Then $|V'_1| < \gamma |V_1|$.

Proof:

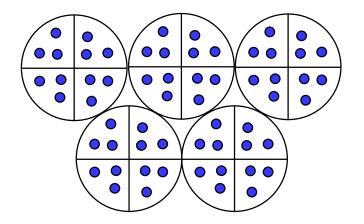
 $d(V_1',V_2) =$

 $d(V_1, V_2) \ge \eta$ $|d(V_1, V_2) - d(V_1', V_2)| \ge$



By γ -regularity of (V_1, V_2) , we conclude that $|V'_1| < \gamma |V_1|$

- An equipartition of a graph is a partition of its vertices into sets that differ in size by at most 1.
- A partition \mathcal{B} is a refinement of a partition \mathcal{A} if every set in \mathcal{B} is a subset of set in \mathcal{A} .



Regularity Lemma

Every large graph G has an equipartition where

- (almost) all pairs of sets are regular,
- the number of parts is not too large.

Regularity Lemma [Szemerédi 78]

 $\forall a, \forall \gamma > 0, \exists T = T(a, \gamma)$ such that if G is a graph with more that T nodes and \mathcal{A} is an equipartition of G into a sets then there is an equipartition \mathcal{B} of G into b sets which is a refinement of \mathcal{A} satisfying:

1.
$$a \leq b < T$$
;

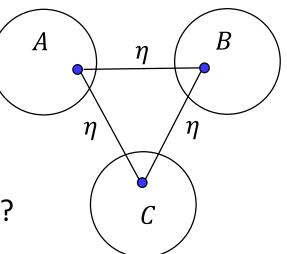
2. at most $\gamma \begin{pmatrix} b \\ 2 \end{pmatrix}$ pairs of sets in \mathcal{B} are not γ -regular.

Important: T does not depend on the size of the graph

• But the dependence of T on γ is a tower $2^{2^{-2}}$ of height poly $\left(\frac{1}{\gamma}\right)$

Triangles in a Random Tripartite Graph

- Consider disjoint sets A, B, C of vertices
- Suppose that each pair of nodes from different sets becomes an edge with probability η
- What is the expected number of triangles?



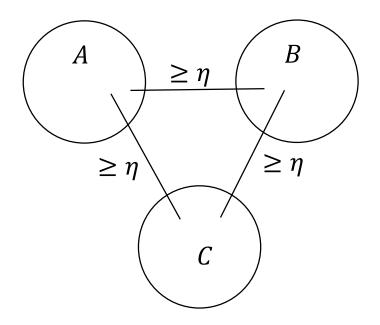
• Let X_{uvw} be an indicator that u, v, w form a triangle. $\mathbb{E}\left[\sum_{u \in A, v \in B, w \in C} X_{uvw}\right] = \sum_{u \in A, v \in B, w \in C} \mathbb{E}[X_{uvw}] = \eta^3 |A| \cdot |B| \cdot |C|$

Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1-\eta)\eta^{3}$.

Proof: A' = the set of nodes in A, each of which has $<(\eta - \gamma^{\Delta})$ neighbors in B.



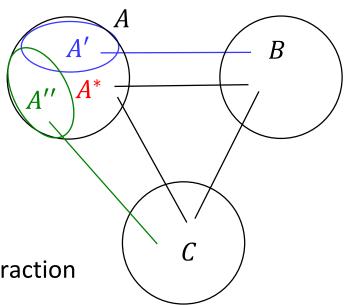
Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ disjoint triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1-\eta)\eta^{3}$.

Proof: A' = the set of nodes in A, each of which has $<(\eta - \gamma^{\Delta})$ neighbors in B.

- By Claim (most nodes in regular pairs have many neighbors), $|A'| < \gamma^{\Delta} |A|$.
- $A^{\prime\prime}$ = the set of nodes in A, each of which has $<(\eta \gamma^{\Delta})$ neighbors in C.
- Analogously, $|A''| < \gamma^{\Delta}|A|$.
- $\bullet \quad A^* = A A' A''$
- $|A^*| \ge (1 2\gamma^{\Delta})|A|$
- Each node in A^* is adjacent to $\geq (\eta \gamma^{\Delta})$ fraction of nodes in B and in C



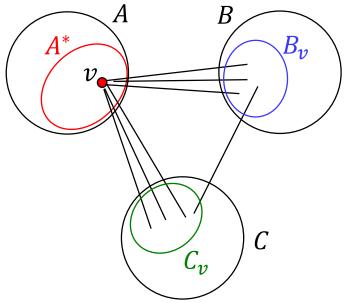
Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ disjoint triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1-\eta)\eta^{3}$.

Proof: Each $v \in A^*$ is adjacent to $\geq (\eta - \gamma^{\Delta})$ fraction of nodes in B and in C $|A^*| \geq (1 - 2\gamma^{\Delta})|A|$

• Consider a node $v \in A^*$



Proof of the Triangle-Removal Lemma

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every *n*-node graph that is ε -far from triangle-free contains at least $\delta \cdot {n \choose 3}$ distinct triangles.

Proof: Consider a graph G which is ε -far from being triangle-free.

• Start with an equipartition \mathcal{A} of G with $5/\varepsilon$ sets.

Apply the regularity lemma with $a = 5/\varepsilon$ and $\gamma = \min(\varepsilon/5, \gamma^{\Delta}(\varepsilon/5)) = \varepsilon/10$

- By Regularity Lemma, \mathcal{A} can be refined into equipartition $\mathcal{B} = \{V_1, \dots, V_b\}$: 1. $\frac{5}{4} \le b \le T$ $|V_i| = \frac{n}{b} \in \left[\frac{n}{T}, \frac{\varepsilon n}{5}\right]$ for all $i \in [b]$
 - 1. $\frac{5}{\varepsilon} \le b \le T$ $|V_i| = \frac{n}{b} \in \left[\frac{n}{T}, \frac{\varepsilon n}{5}\right]$ for all $i \in [b]$ 2. at most $\gamma \cdot {b \choose 2}$ pairs among V_1, \dots, V_b are not γ -regular
- An edge (u, v), where u ∈ V_i and v ∈ V_j is useful if it satisfies:
 1. i ≠ j
 - 2. (V_i, V_j) is γ -regular
 - 3. the density $d(V_i, V_j) \ge \varepsilon/5$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

Proof of Claim

- An edge (u, v), where $u \in V_i$ and $v \in V_j$ is useful if it satisfies:
 - 1. $i \neq j$
 - 2. (V_i, V_j) is γ -regular
 - 3. the density $d(V_i, V_j) \ge \varepsilon/5$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

Edges violating	Number of such edges
Condition 1	
Condition 2	
Condition 3	

Total:
$$\frac{4\varepsilon}{5} \cdot \binom{n}{2} < \varepsilon \binom{n}{2}$$

Proof of the Triangle-Removal Lemma

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every *n*-node graph that is ε -far from triangle-free contains at least $\delta \cdot \binom{n}{3}$ distinct triangles.

Proof: Consider a graph G which is ε -far from being triangle-free.

• An edge (u, v), where $u \in V_i$ and $v \in V_j$ is useful if it satisfies:

$$l. \quad i \neq j$$

- 2. (V_i, V_j) is γ -regular
- 3. the density $d(V_i, V_j) \ge \varepsilon/5$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

• When we remove all non-useful edges, there is still a triangle!