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Sublinear Algorithms

LECTURE 15
Last time
• Testing triangle-freeness

• Regularity Lemma

Today
• Testing triangle-freeness

• Triangle-removal lemma

• Testing other properties of dense graphs

• Behrend’s construction

Sofya Raskhodnikova;Boston University



Testing Triangle-Freeness

Input: parameters 𝜀, 𝑛, access to undirected graph 𝐺 = (𝑉, 𝐸)
represented by 𝑛 × 𝑛 adjacency matrix.

Goal: Accept if 𝐺 has no triangles;                                                    

reject w.p. ≥
2

3
if 𝐺 is 𝜀-far from triangle-free                                        

(at least 𝜀
𝑛
2

edges need to be removed to get rid of all triangles).

• [Alon Fischer Krivelevich Szegedy 09]:  Time that depends only on 𝜀
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Tester

How many repetitions suffice?

• It is easy to see that if 𝐺 is 𝜀-far from triangle-free then it has 

at leas 𝜀
𝑛
2

triangles. This is asymptotically better.

• By Witness Lemma, setting s = 2/𝛿 yields a tester.
3

Algorithm (Input: 𝜀, 𝑛; query access to adjacency matrix of G=(V,E))

1. Repeat 𝒔 times:

2. Sample vertices 𝑣1, 𝑣2, 𝑣3 uniformly at random

3. Reject if they form a triangle.
4. Accept.

Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀 such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

triangles. 



Definitions from Last Lecture

• The edge density of the pair 𝑉1, 𝑉2 ,                                            

denoted 𝑑 𝑉1, 𝑉2 , is 
𝑒 𝑉1,𝑉2

𝑉1 ⋅|𝑉2|
.

• A pair 𝑉1, 𝑉2 of disjoint subsets of vertices is 𝛾-regular if                     
∀𝑉1

′ ⊆ 𝑉1, 𝑉2
′ ⊆ 𝑉2, such that 𝑉1

′ > 𝛾|𝑉1| and 𝑉2
′ > 𝛾|𝑉2|,

𝑑 𝑉1, 𝑉2 − 𝑑 𝑉1
′, 𝑉2

′ < 𝛾.

• An equipartition of a graph is a partition of its vertices into sets 
that differ in size by at most 1.

• A partition ℬ is a refinement
of a partition 𝒜
if every set in ℬ is a subset of set in 𝒜.
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Regularity Lemma

5

Every large graph 𝐺 has an equipartition where 

• (almost) all pairs of sets are regular,

• the number of parts is not too large.

Important: 𝑇 does not depend on the size of the graph

• But the dependence of 𝑇 on 𝛾 is a tower 22…2
of height poly

1

𝛾

Regularity Lemma [Szemerédi 78]
∀𝑎, ∀𝛾 > 0, ∃𝑇 = 𝑇(𝑎, 𝛾) such that if 𝐺 is a graph with more that 𝑇 nodes 
and  𝒜 is an equipartition of 𝐺 into 𝑎 sets then there is an equipartition ℬ 
of 𝐺 into 𝑏 sets which is a refinement of 𝒜 satisfying:

1. 𝑎 ≤ 𝑏 < 𝑇;

2. at most 𝛾
𝑏
2

pairs of sets in ℬ are not 𝛾-regular.



Triangles in a Graph with Three Regular Pairs
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Lemma [Kolmos Simonovits]

∀𝜂>0, if 𝐴, 𝐵, 𝐶 are disjoint subsets of 𝑉 and each pair of them is 𝛾∆-regular 
with density at least 𝜂 then 𝐺 contains at least 𝛿∆ 𝐴 ⋅ 𝐵 ⋅ |𝐶| triangles, 

where 𝛾∆ = 𝛾∆ 𝜂 =
𝜂

2
and 𝛿∆ = 𝛿∆ 𝜂 =

1

8
1 − 𝜂 𝜂3 .

𝐵𝐴

𝐶

≥ 𝜂

≥ 𝜂

≥ 𝜂



Proof of the Triangle-Removal Lemma: Idea

Main Idea: Consider a graph 𝐺 which is 𝜀-far from being triangle-free.

• We apply the Regularity Lemma to get a regular partition.

• We carefully remove fewer than 𝜀
𝑛
2

edges, and show that

there remains a triangle consisting of edges between regular dense pairs.

• We apply [Kolmos Simonovits] to get many triangles.
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Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀 such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

distinct triangles. 

𝑉𝑘

𝑉𝑗𝑉𝑖 𝜂

𝜂 𝜂



Proof of the Triangle-Removal Lemma

Proof: Consider a graph 𝐺 which is 𝜀-far from being triangle-free.

• Start with an equipartition 𝒜 of 𝐺 with 4/𝜀 sets.

Apply the regularity lemma with 𝑎 = 4/𝜀 and 𝛾 = min(𝜀/4, 𝛾∆(𝜀/4)) = 𝜀/8

• By Regularity Lemma, 𝒜 can be refined into equipartition ℬ= 𝑉1, … , 𝑉𝑏 :

1.
4

𝜀
≤ 𝑏 ≤ 𝑇

2. at most 𝛾 ⋅
𝑏
2

pairs among 𝑉1, … , 𝑉𝑏 are not 𝛾-regular

• An edge 𝑢, 𝑣 , where 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑗 is useful if it satisfies:
1. 𝑖 ≠ 𝑗

2. (𝑉𝑖 , 𝑉𝑗) is 𝛾-regular

3. the density 𝑑 𝑉𝑖 , 𝑉𝑗 ≥ 𝜀/4
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Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀 such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

distinct triangles. 

Claim. Graph 𝐺 has less than 𝜀
𝑛
2

non-useful edges.

𝑉𝑖 =
𝑛

𝑏
∈

𝑛

𝑇
,

𝜀𝑛

4
for all 𝑖 ∈ [𝑏]



Proof of Claim

• An edge 𝑢, 𝑣 , where 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑗 is useful if it satisfies:
1. 𝑖 ≠ 𝑗

2. (𝑉𝑖 , 𝑉𝑗) is 𝛾-regular

3. the density 𝑑 𝑉𝑖 , 𝑉𝑗 ≥ 𝜀/4

Total:
7𝜀

8
⋅

𝑛
2

< 𝜀
𝑛
2

9

Edges

violating

Number of such edges

Condition 1

Condition 2

Condition 3

Claim. Graph 𝐺 has less than 𝜀
𝑛
2

non-useful edges.



Proof of the Triangle-Removal Lemma

Proof: Consider a graph 𝐺 which is 𝜀-far from being triangle-free.

• An edge 𝑢, 𝑣 , where 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑗 is useful if it satisfies:
1. 𝑖 ≠ 𝑗
2. (𝑉𝑖 , 𝑉𝑗) is 𝜀/8-regular
3. the density 𝑑 𝑉𝑖 , 𝑉𝑗 ≥ 𝜀/4

• When we remove all non-useful edges,                                                
there is still a triangle!

• By [Kolmos Simonovits], there are at least

𝛿∆ 𝜀

4
⋅ 𝑉𝑖 ⋅ 𝑉𝑗 ⋅ 𝑉𝑘 ≥

1

8
1 −

𝜀

4

𝜀

4

3
⋅

𝑛3

𝑇3

triangles.
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Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀 such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

distinct triangles. 

Claim. Graph 𝐺 has less than 𝜀
𝑛
2

non-useful edges.

𝑉𝑗𝑉𝑖

𝑉𝑘

𝜀

4

𝜀

4

𝜀

4

Triangle of useful edges



Testing Other Properties

• We will prove part (2) for triangles.
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Testing Subgraph-Freeness [Alon 02]
Let 𝐻 be a fixed graph on ℎ nodes.  

Let 𝓟𝐻 be the property that 𝐺 does not contain a copy of 𝐻 as a subgraph.

1. If 𝐻 is bipartite:

– There is a 2-sided error tester for 𝓟𝐻 with 𝑂
1

𝜀
queries.

– There is a 1-sided error tester for 𝓟𝐻 with 𝑂 ℎ2 1

2𝜀

ℎ2/4
queries.

2. If 𝐻 is not bipartite, then there exists c > 0, such that every 1-sided 

error tester for 𝓟𝐻 makes Ω(
𝑐

𝜀

𝑐 log
𝑐

𝜀
) queries.

Polynomial 

in 1/𝜀
for fixed 𝐻.

Super-polynomial in 

1/𝜀.



Main Tool for Proving the Lower Bound
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Dense Sets of Integers with no Arithmetic Progression

• Behrend’s bound [Behrend 46] is slightly better.

• The best known is Ω
𝑚

22 2 log2 𝑚
log2

1/4
𝑚 [Elkin 10]

Proof idea: Represent integers in [𝑚] as 𝑘-digit numbers base 𝑑,             
where 𝑘 and 𝑑 are parameters.

• For a number 𝑥, view its digits                                                                                  
as coordinates of a point 𝑥0, 𝑥1, … , 𝑥𝑘−1

• Pick points that lie on the same sphere:                                                      

i.e., with fixed 𝑥0
2 + 𝑥1

2 + ⋯ + 𝑥𝑘−1
2

• Then no three of them lie on the same line,                                               
which ensures that no point is                                                                                     
the average of two other points.
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.

𝑥 𝑧 𝑦

(𝑥0, 𝑥1, 𝑥2)
𝑥2

𝑥0

𝑟

𝑥1



Proof of Behrend’s Theorem

Proof: For an integer 𝐵 > 0, define a set 

𝑆𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1 and 𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖
2

• All numbers in sets 𝑆𝐵 are less than 𝑑𝑘.

We set 𝑑𝑘 = 𝑚 to ensure 𝑆𝐵 ⊆ 𝑚 ∀𝐵.
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.

Claim

For all 𝐵, the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵 is 𝑥 = 𝑦 = 𝑧.



Proof of Claim

For an integer 𝐵 > 0, define a set 

𝑆𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1 and 𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖
2

Proof: Suppose 𝑥 + 𝑦 = 2𝑧 for some 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵.

• Representing 𝑥, 𝑦, 𝑧 base 𝑑, we get 



𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 + 

𝑖=0

𝑘−1

𝑦𝑖𝑑𝑖 = 2 

𝑖=0

𝑘−1

𝑧𝑖𝑑𝑖

• Since 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are less than 𝑑/2 for all 𝑖, there are no carries.

That is, 𝑥0, 𝑥1, … , 𝑥𝑘−1 + 𝑦0, 𝑦1, … , 𝑦𝑘−1 = 2 𝑧0, 𝑧1, … , 𝑧𝑘−1

But these three points are on a sphere,         

so one can be the average of the other two  only if they are identical.
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Claim

For all 𝐵, the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵 is 𝑥 = 𝑦 = 𝑧.

𝒙

𝒛

𝒚



Proof of Behrend’s Theorem: Setting Parameters

Proof: For an integer 𝐵 > 0, define a set 

𝑆𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1 and 𝐵 = 

𝑖=0

𝑘−1

𝑥𝑖
2

• Set 𝑑𝑘 = 𝑚 and 𝑑 = 2 1/2⋅log 𝑚. Then 𝑘 =

• How many possibilities for 𝐵?

• How many numbers are in all sets 𝑆𝐵?

• By Pigeonhole Principle, at least one of the sets has size at least
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.


