Sublinear Algorithms

LECTURE 16

Last time

- Testing triangle-freeness
- Testing other properties of dense graphs
- Behrend's construction

Today

- Lower bound for testing triangle-freeness
- Canonical testers for the dense graph model

Project progress reports due today on Gradescope

Sofya Raskhodnikova;Boston University

Testing Triangle-Freeness

Input: parameters ε , n, access to undirected graph G = (V, E)represented by $n \times n$ adjacency matrix.

Goal: Accept if *G* has no triangles; reject w.p. $\geq \frac{2}{3}$ if *G* is ε -far from triangle-free (at least $\varepsilon {n \choose 2}$ edges need to be removed to get rid of all triangles).

• [Alon Fischer Krivelevich Szegedy 09]: Time that depends only on ε

• Today

 Lower Bound for Testing Triangle-Freeness [Alon 02]

 Testing triangle-freeness with 1-sided error requires super-polynomial dependence on $1/\varepsilon$.

 $\Omega\left(\left(\frac{c}{\varepsilon}\right)^{c\log\frac{c}{\varepsilon}}\right)$ queries for some c > 0

Canonical Tester for Dense Graphs

Canonical Tester (Input: ε , n; query access to adjacency matrix of G=(V,E))

- 1. Sample *s* nodes uniformly at random.
- 2. Query all pairs of sampled nodes.
- 3. Accept or reject based on available information.
- Consider any property \mathcal{P} of graphs that does not depend on the names of the nodes. That is, if $G \in \mathcal{P}$ and G' is isomorphic to G then $G' \in \mathcal{P}$.

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

A lower bound q for canonical tester implies a lower bound \sqrt{q} for every tester

Sufficient to prove our lower bound
$$\Omega\left(\left(\frac{c}{\varepsilon}\right)^{c\log\frac{c}{\varepsilon}}\right)$$

for 1-sided error canonical testers.

Exercise

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

Exercise

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

Goal for Proving the Lower bound

- A 1-sided error tester can reject only if it finds a triangle.
- Suppose we construct a graph G that is ε-far from being tringle free, where p fraction of triples are triangles for some small p.
- Consider a canonical tester *T* that samples *q* vertices.
- Let X be the number of triangles the tester catches.

$$\mathbb{E}[X] = p\binom{q}{3} = \Theta(p \cdot q^3)$$

- Suppose q is set so that $\mathbb{E}[X] \leq 1/2$
- By Markov, $\Pr[T \text{ rejects } G] \leq \Pr[X \geq 1] \leq \mathbb{E}[X] \leq \frac{1}{2} < \frac{2}{3}$
- So, for T to reject with high enough probability, $q = \Omega\left(p^{-\frac{1}{3}}\right)$

Sufficient to ensure
$$p = O\left(\left(\frac{\varepsilon}{c}\right)^{c \log \frac{c}{\varepsilon}}\right)$$

Recall: Arithmetic-Progression-Free Sets

Behrend's Theorem

For all integer $m \ge 1$, there exists a set $S \subseteq [m]$ such that $|S| \ge \frac{m}{8\sqrt{\log_2 m}}$

and the only solution to x + y = 2z for $x, y, z \in S$ is x = y = z.

- We will use such a set *S* to construct a graph that is
 - far from triangle free
 - has relatively few triangles

Initial Graph Construction

- Let $S \subset [m]$ be a set from Behrend's Thm
- We construct a tripartite graph with *m*, 2*m*, and 3*m* nodes in the three parts
- Intended triangles

• No other triangles:

If (i, i + x, i + x + y) is a triangle, then

 $x \in S, y \in S$, and x + y = 2z for $z \in S$

But then x = y = z by construction of S

• All triangles are edge disjoint: each edge participates in exactly one triangle.

Parameters of the Initial Construction

• Number of nodes, *n*

6*m*

• Number of edges

 $3m \cdot |S|$

- Number of (edge-disjoint) triangles, $T = m \cdot |S|$
- Distance to triangle-freeness

Necessary and sufficient to remove one edge from each triangle, because they are edge-disjoint.

$$\frac{T}{\binom{n}{2}} = \Theta\left(\frac{m \cdot |S|}{m^2}\right) = \Theta\left(\frac{|S|}{m}\right) = \Theta\left(\frac{1}{8\sqrt{\log m}}\right)$$

Not constant!

Blowup of a Graph

To construct a *b*-blowup of a graph,

- make *b* copies of each node;
- make two copies (of different nodes) adjacent iff their originals are adjacent.

Parameters of the Blowup Construction

m

- Number of nodes, *n* 6*mb*
- Number of edges $3m \cdot |S| \cdot b^2$
- Number of triangles $m \cdot |S| \cdot b^3$
- Number of (edge-disjoint) triangles, $T \\ m \cdot |S| \cdot b^2$
- Distance to triangle-freeness

$$\frac{T}{\binom{n}{2}} = \Theta\left(\frac{m \cdot |S| \cdot b^2}{(m \cdot b)^2}\right) = \Theta\left(\frac{|S|}{m}\right) = \Theta\left(\frac{1}{8\sqrt{\log m}}\right)$$

• Given ε and n, pick m so that $\varepsilon = \Theta\left(\frac{1}{8\sqrt{\log m}}\right)$ and $b = \frac{n}{6m}$

Fraction of triples that are triangles:

$$\approx \frac{m \cdot |S| \cdot b^3}{n^3} \approx \frac{m \cdot |S|}{m^3} = \frac{|S|}{m^2} = \frac{\varepsilon}{m} < \frac{1}{m}$$

2m

(ii)

000

3m

Conclusion: Triangle-Freeness

- The query complexity of testing triangle-freeness with 1-sided error depends only on *ε* (and is independent of the size of the graph).
- However, the dependence is super-polynomial in $1/\varepsilon$