Sublinear Algorithms

LECTURE 16

Last time

- Testing triangle-freeness
- Testing other properties of dense graphs
- Behrend's construction

Today

- Lower bound for testing triangle-freeness
- Canonical testers for the dense graph model

Project progress reports due today on Gradescope

Sofya Raskhodnikova;Boston University

Testing Triangle-Freeness

Input: parameters ε , n , access to undirected graph $G = (V, E)$ represented by $n \times n$ adjacency matrix.

Goal: **Accept** if G has no triangles; **reject** w.p. ≥ 2 3 if G is ε -far from triangle-free (at least ε \overline{n} 2 edges need to be removed to get rid of all triangles).

• [Alon Fischer Krivelevich Szegedy 09]: Time that depends only on ε

• Today

Lower Bound for Testing Triangle-Freeness [Alon 02] Testing triangle-freeness with 1-sided error requires super-polynomial dependence on $1/\varepsilon$. $\Omega\bigg(\bigg(\frac{c}{c}\bigg)$ ϵ $\left(\frac{c \log \frac{c}{\varepsilon}}{\varepsilon} \right)$ queries for some $c > 0$

Canonical Tester for Dense Graphs

Canonical Tester (**Input:** ε , n ; query access to adjacency matrix of $G=(V,E)$)

- 1. Sample **s** nodes uniformly at random.
- 2. Query all pairs of sampled nodes.
- **3. Accept** or **reject** based on available information.
- Consider any property $\mathcal P$ of graphs that does not depend on the names of the nodes. That is, if $G \in \mathcal{P}$ and G' is isomorphic to G then $G' \in \mathcal{P}$.

Exercise: Show that if there is an ε -tester T for $\boldsymbol{\mathcal{P}}$ with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for $\boldsymbol{\mathcal{P}}$ with query complexity $O(q^2(\varepsilon,n)).$ Moreover, if T has 1-sided error, so does $T'.$

A lower bound q for canonical tester implies a lower bound \sqrt{q} for every tester

Sufficient to prove our lower bound
$$
\Omega\left(\left(\frac{c}{\varepsilon}\right)^{c \log \frac{c}{\varepsilon}}\right)
$$

for 1-sided error canonical testers.

Exercise

Exercise: Show that if there is an ε -tester T for $\boldsymbol{\mathcal{P}}$ with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for $\boldsymbol{\mathcal{P}}$ with query complexity $O(q^2(\varepsilon,n)).$ Moreover, if T has 1-sided error, so does $T'.$

Exercise

Exercise: Show that if there is an ε -tester T for $\boldsymbol{\mathcal{P}}$ with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for $\boldsymbol{\mathcal{P}}$ with query complexity $O(q^2(\varepsilon,n)).$ Moreover, if T has 1-sided error, so does $T'.$

Goal for Proving the Lower bound

- A 1-sided error tester can reject only if it finds a triangle.
- Suppose we construct a graph G that is ε -far from being tringle free, where p fraction of triples are triangles for some small p .
- Consider a canonical tester T that samples q vertices.
- Let X be the number of triangles the tester catches.

$$
\mathbb{E}[X] = p {q \choose 3} = \Theta(p \cdot q^3)
$$

- Suppose q is set so that $\mathbb{E}[X] \leq 1/2$
- By Markov, $Pr[T \text{ rejects } G] \leq Pr[X \geq 1] \leq E[X] \leq$ 1 2 \lt 2 3
- So, for T to reject with high enough probability, $q = \Omega\left(p^{-\frac{1}{3}}\right)$ 3

Sufficient to ensure
$$
p = O\left(\left(\frac{\varepsilon}{c}\right)^{c \log \frac{c}{\varepsilon}}\right)
$$

Recall: Arithmetic-Progression-Free Sets

Behrend's Theorem

For all integer $m \geq 1$, there exists a set $S \subseteq [m]$ such that $|S| \geq \frac{m}{\sqrt{\log n}}$ $8\sqrt{\log_2 m}$

and the only solution to $x + y = 2z$ for $x, y, z \in S$ is $x = y = z$.

- We will use such a set S to construct a graph that is
	- far from triangle free
	- has relatively few triangles

Initial Graph Construction

- Let $S \subset [m]$ be a set from Behrend's Thm
- We construct a tripartite graph with m , 2 m , and 3 m nodes in the three parts
- Intended triangles

• No other triangles:

If $(i, i + x, i + x + y)$ is a triangle, then

 $x \in S$, $y \in S$, and $x + y = 2z$ for $z \in S$

But then $x = y = z$ by construction of S

All triangles are edge disjoint: each edge participates in exactly one triangle.

Parameters of the Initial Construction

Number of nodes, n

6m

• Number of edges

 $3m \cdot |S|$

- Number of (edge-disjoint) triangles, T $m \cdot |S|$
- Distance to triangle-freeness

Necessary and sufficient to remove one edge from each triangle, because they are edge-disjoint.

$$
\frac{T}{\binom{n}{2}} = \Theta\left(\frac{m \cdot |S|}{m^2}\right) = \Theta\left(\frac{|S|}{m}\right) = \Theta\left(\frac{1}{8\sqrt{\log m}}\right)
$$

Not constant!

Blowup of a Graph

To construct a b -blowup of a graph,

- make b copies of each node;
- make two copies (of different nodes) adjacent iff their originals are adjacent.

Parameters of the Blowup Construction

 \boldsymbol{m}

- Number of nodes, n 6
- Number of edges $3m \cdot |S| \cdot b^2$
- Number of triangles $m \cdot |S| \cdot b^3$
- Number of (edge-disjoint) triangles, T $m \cdot |S| \cdot b^2$
- Distance to triangle-freeness

$$
\frac{T}{\binom{n}{2}} = \Theta\left(\frac{m \cdot |S| \cdot b^2}{(m \cdot b)^2}\right) = \Theta\left(\frac{|S|}{m}\right) = \Theta\left(\frac{1}{8\sqrt{\log m}}\right)
$$

• Given ε and n , pick m so that $\varepsilon = \Theta\left(\frac{1}{\sqrt{\log n}}\right)$ $\left(\frac{1}{8\,\sqrt{\log m}}\right)$ and $b=\frac{n}{6n}$ 6

• Fraction of triples that are triangles:
\n
$$
\approx \frac{m \cdot |S| \cdot b^3}{n^3} \approx \frac{m \cdot |S|}{m^3} = \frac{|S|}{m^2} = \frac{\varepsilon}{m} < \frac{1}{m}
$$

2

(...

(00)
700)

 $\ddot{\bullet}\dot{\bullet}\dot{\bullet}$

 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

3

O.

...

ႜၭ

Conclusion: Triangle-Freeness

- The query complexity of testing triangle-freeness with 1-sided error depends only on ε (and is independent of the size of the graph).
- However, the dependence is super-polynomial in $1/\varepsilon$