Sublinear Algorithms

LECTURE 17

Last time

- Lower bound for testing triangle-freeness
- Canonical testers for the dense graph model

Today

• Approximating the average degree

Sofya Raskhodnikova; Boston University

Graph Models for Sublinear Algorithms

Dense Graph Model

- Input is represented by adjacency matrix
- Access: Adjacency queries: Is (i, j) an edge?
- For property testing, distance is normalized by n^2 or $\binom{n}{2}$

Bounded Degree Model

- Input is represented by adjacency lists of length Δ (degree bound)
- Access: Neighbor queries: What is the *i*th neighbor of vertex *v*?
- For property testing, distance is normalized by Δn

General Graph Model

- Input is represented by adjacency lists and adjacency matrix, sometimes with additional data structures
- Access: adjacency, neighbor and degree queries
- For property testing, distance is normalized by m

Approximating the Average Degree

Input: parameters ε , n, access to an undirected n-node graph G = (V, E) represented by *adjacency lists*. Queries

- **Degree queries:** given vertex v, return its degree d(v)
- Neighbor queries: given (v, i), return the *i*-th neighbor of v

Goal: Return, w.p. at least 2/3, an estimate \hat{d} for the average degree $\bar{d} = \frac{1}{n} \sum_{v \in V} d(v)$

Estimating the average degree is equivalent to estimating the number of edges: $\bar{d} = \frac{2m}{n}$

Estimating the Average Degree: Results

- An estimate \hat{d} is a *c*-approximation for \overline{d} if $\overline{d} \leq \hat{d} \leq c \cdot \overline{d}$
- Assumption: $\overline{d} \ge 1$
- [Feige 06]: $(2 + \varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree queries Need $\Omega(n)$ degree queries to get better than 2-approximation
- [Goldreich Ron 08]: $(1 + \varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree and neighbor queries

Simple Lower Bounds

Need Ω(n) queries to get a c-approximation to the average of numbers x₁, ..., x_n ∈ {0,1, ..., n − 1} for any constant c

Proof: Use Yao's Minimax. To distinguish between

- all numbers are 1

the average is 1

random c numbers are n-1 and the rest are 1

```
the average is > c
```

```
we need \Omega\left(\frac{n}{c}\right) = \Omega(n) queries.
```

But degree sequences are special!

1 1 1 1 1 1 1 1 1 1 1 n - 1 n - 1 is not a degree sequence

Simple Lower Bounds

- Need $\Omega(\sqrt{n})$ degree queries to get a *c*-approximation for any constant *c* **Proof:** Use Yao's Minimax. To distinguish between random isomorphisms of
 - a matching of n/2 edges

- \sqrt{cn} -clique and a matching on remaining nodes

we need $\Omega\left(\frac{\sqrt{n}}{\sqrt{c}}\right) = \Omega\left(\sqrt{n}\right)$ queries

Average: Degree Approximation Guarantee

- $\Pr[|\hat{d} \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}$
- In particular, \hat{d} is an *unbiased* estimator: $\mathbb{E}[\hat{d}] = \bar{d}$
- The approximation guarantee is equivalent to $(1 + \varepsilon)$ -approximation

$$(1-\varepsilon) \cdot \bar{d} \leq \hat{d} \leq (1+\varepsilon) \cdot \bar{d}$$
$$\bar{d} \leq \frac{\hat{d}}{1-\varepsilon} \leq \frac{1+\varepsilon}{1-\varepsilon} \cdot \bar{d}$$

$$\frac{1+\varepsilon}{1-\varepsilon} \le 1 + \frac{2\varepsilon}{1-\varepsilon} \le 1 + 4\varepsilon \text{ for } \varepsilon \le 1/2$$

Conclusion: $\frac{\hat{d}}{1-\varepsilon}$ gives a $(1+\epsilon')$ -approximation, where $\epsilon' = 4\varepsilon$

• Amplification of success probability: If we want error probability δ , we repeat the algorithm $\Theta\left(\log\frac{1}{\delta}\right)$ and output the median answer.

Average Degree Estimation [Eden Ron Seshadhri]

Main idea: To reduce variance, we will count each edge towards its endpoint with smaller degree.

- Define ordering on *V*: for $u, v \in V$, we say $u \prec v$ if d(u) < d(v) or if d(u) = d(v) and id(u) < id(v). to break ties
- ``Orient'' the edges towards higher-ID nodes
- Define N(v) to be the set of neighbors of v.

Algorithm (Input: ε , n; degree and neighbor query access to G=(V,E))

1. Set
$$k = \frac{12}{s^2} \cdot \sqrt{n}$$
 and initialize $X_i = 0$ for all $i \in [k]$

- 2. For *i* = 1 to *k* **do**
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If $u \prec v$, set $X_i = 2d(u)$
- 3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Analysis: Expectation

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\epsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k **do**
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.

c. If
$$u \prec v$$
, set $X_i = 2d(u)$

3. Return
$$\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$$

- Let $d^+(u)$ denote the number of neighbors v of u with $u \prec v$.
- Let X denote one of the variables X_i. (They all have the same distribution.)
- Let *U* denote the random variable equal to the node *u* sampled in Step 2a. $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|U]] \quad \text{By the compact form of the Law of Total Expectation}$ $\mathbb{E}[X|U] = \frac{d^+(U)}{d(U)} \cdot 2d(U) = 2d^+(U). \quad d^+(U) \text{ is \# of neighbors } v \text{ of } U \text{ for}$ $\mathbb{E}[X] = \mathbb{E}[2d^+(U)] = 2\sum_{u \in V} \frac{1}{n} \cdot d^+(u) = \frac{2m}{n} = \overline{d}$ which X = 2d(U)

Observation about Degrees

- Let $d^+(u)$ denote the number of neighbors v of u with $u \prec v$.
- Let $H \subseteq V$ be the set of the $\sqrt{2m}$ vertices with highest rank according to \prec .
- Let $L = V \setminus H$.

Observation

- 1. For all $v \in H$, $d^+(v) < \sqrt{2m}$.
- 2. For all $v \in L$, $d(v) < \sqrt{2m}$.

Proof:

 $\sqrt{2m}$

- 1. $d^+(v)$ is the number of neighbors of v of rank higher than v. If $v \in H$, it is among the $\sqrt{2m}$ vertices of the highest rank, so $d^+(v) < \sqrt{2m}$
- 2. Consider $v \in L$. All $u \in H$, by definition, have degree at least d(v).

Then the sum of all degrees, 2m, is greater than $\sqrt{2m} \cdot d(v)$.

That is,
$$d(v) < \frac{2m}{\sqrt{2m}} = \sqrt{2m}$$

Analysis: Putting It All Together

Approximating the Average Degree: Run Time

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{s^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If $u \prec v$, set $X_i = 2d(u)$

3. Return
$$\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$$

Running time:

$$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$$

to get
$$\Pr[|\hat{d} - \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}$$