Sublinear Algorithms

LECTURE 17

Last time

- Lower bound for testing triangle-freeness
- Canonical testers for the dense graph model

Today

• Approximating the average degree

Sofya Raskhodnikova;Boston University

Graph Models for Sublinear Algorithms

Dense Graph Model

- Input is represented by adjacency matrix
- Access: Adjacency queries: Is (i, j) an edge?
- For property testing, distance is normalized by n^2 or \overline{n} 2

Bounded Degree Model

- Input is represented by adjacency lists of length Δ (degree bound)
- Access: Neighbor queries: What is the *i*th neighbor of vertex v ?
- For property testing, distance is normalized by Δn

General Graph Model

- Input is represented by adjacency lists and adjacency matrix, sometimes with additional data structures
- Access: adjacency, neighbor and degree queries
- For property testing, distance is normalized by m

Approximating the Average Degree

Input: parameters ε , n , access to an undirected n -node graph $G = (V, E)$ represented by *adjacency lists*. **Queries**

- **Degree queries:** given vertex v , return its degree $d(v)$
- **Neighbor queries:** given (v, i) , return the *i*-th neighbor of v

Goal: Return, w.p. at least $2/3$, an estimate \ddot{d} for the average degree $\bar{d}=\frac{1}{n}$ $\frac{1}{n} \sum_{v \in V} d(v)$

Estimating the average degree is equivalent to estimating the number of edges: $\bar{d} =$ $2m$ \boldsymbol{n}

Estimating the Average Degree: Results

- An estimate \hat{d} is a c-approximation for \bar{d} if $\bar{d} \leq \hat{d} \leq c \cdot \bar{d}$
- Assumption: $d \geq 1$
- [Feige 06]: $(2 + \varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree queries Need $\Omega(n)$ degree queries to get better than 2-approximation
- [Goldreich Ron 08]: $(1 + \varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree and neighbor queries

Simple Lower Bounds

Need $\Omega(n)$ queries to get a c-approximation to the average of numbers $x_1, ..., x_n \in \{0, 1, ..., n-1\}$ for any constant c

Proof: Use Yao's Minimax. To distinguish between

– all numbers are 1

the average is 1

- random c numbers are $n-1$ and the rest are 1

```
the average is >c
```
we need
$$
\Omega\left(\frac{n}{c}\right) = \Omega(n)
$$
 queries.

But degree sequences are special!

 $1 1 1 1 1 1 1 1 1 1 n-1 n-1$ is not a degree sequence

Simple Lower Bounds

- Need $\Omega(\sqrt{n})$ degree queries to get a c-approximation for any constant c Proof: Use Yao's Minimax. To distinguish between random isomorphisms of
	- a matching of $n/2$ edges

 $-\sqrt{cn}$ -clique and a matching on remaining nodes

we need $\Omega\left(\frac{\sqrt{n}}{\sqrt{a}}\right)$ \overline{c} $\Omega(\sqrt{n})$ queries

Average: Degree Approximation Guarantee

- Pr $[|\hat{d} \bar{d}| \geq \varepsilon \cdot \bar{d}] \leq \frac{1}{2}$ 3
- In particular, \hat{d} is an *unbiased* estimator: $\mathbb{E}\big[\hat{d}\big] = \bar{d}$
- The approximation guarantee is equivalent to $(1 + \varepsilon)$ -approximation

$$
1 - \varepsilon) \cdot \bar{d} \le \hat{d} \le (1 + \varepsilon) \cdot \bar{d}
$$

$$
\bar{d} \le \frac{\hat{d}}{1 - \varepsilon} \le \frac{1 + \varepsilon}{1 - \varepsilon} \cdot \bar{d}
$$

$$
\frac{1+\varepsilon}{1-\varepsilon} \le 1 + \frac{2\varepsilon}{1-\varepsilon} \le 1 + 4\varepsilon \text{ for } \varepsilon \le 1/2
$$

Conclusion: $\frac{\hat{d}}{1}$ $1-\varepsilon$ gives a $(1 + \epsilon')$ -approximation, where $\epsilon' = 4\varepsilon$

• Amplification of success probability: If we want error probability δ , we repeat the algorithm $\Theta\left(\log\frac{1}{s}\right)$ δ and output the median answer.

Average Degree Estimation **[Eden Ron Seshadhri]**

Main idea: To reduce variance, we will count each edge towards its endpoint with smaller degree.

- Define ordering on V: for $u, v \in V$, we say $u \prec v$ if $d(u) < d(v)$ or if $d(u) = d(v)$ and $id(u) < id(v)$. to break ties
- Corient" the edges towards higher-ID nodes
- Define $N(v)$ to be the set of neighbors of v .

Algorithm (Input: ε , *n*; degree and neighbor query access to $G=(V,E)$)

1. Set
$$
k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}
$$
 and initialize $X_i = 0$ for all $i \in [k]$

- 2. For $i = 1$ to k do
	- a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
	- b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v .

c. If
$$
u < v
$$
, set $X_i = 2d(u)$

3. Return $\hat{d} = \frac{1}{b}$ $\frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Analysis: Expectation

Algorithm (**Input:** ε , n ; vertex and neighbor query access to $G=(V,E)$)

- 1. Set $k = \frac{12}{3^2}$ $\frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For $i=1$ to k do
	- a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
	- b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v .

c. If
$$
u < v
$$
, set $X_i = 2d(u)$

3. Return
$$
\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i
$$

- Let $d^+(u)$ denote the number of neighbors v of u with $u \lt v$.
- Let X denote one of the variables X_i . (They all have the same distribution.)
- Let U denote the random variable equal to the node u sampled in Step 2a. $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|U]]$ $\mathbb{E}[X|U] = \frac{d^+(U)}{d(U)}$ $d(U$ \cdot 2d(U) = 2d⁺(U). $d^+(U)$ is # of neighbors v of U for $\mathbb{E}[X] = \mathbb{E}[2d^+(U)] = 2$ $u \in V$ 1 \overline{n} $\cdot d^+(u) =$ $2m$ \overline{n} $=\bar{d}$ By the compact form of the Law of Total Expectation which $X = 2d(U)$

Observation about Degrees

- Let $d^+(u)$ denote the number of neighbors v of u with $u \prec v$.
- Let $H \subseteq V$ be the set of the $\sqrt{2m}$ vertices with highest rank according to \prec .
- Let $L = V \backslash H$.

Observation

- 1. For all $v \in H$, $d^+(v) < \sqrt{2m}$.
- $2.$ For all $v \in L$, $d(v) < \sqrt{2m}$.

Proof:

- 1. $d^+(v)$ is the number of neighbors of v of rank higher than v. If $v\in H$, it is among the $\sqrt{2m}$ vertices of the highest rank, so $d^+(v)<\sqrt{2m}$
- 2. Consider $v \in L$. All $u \in H$, by definition, have degree at least $d(v)$.

Then the sum of all degrees, 2m, is greater than $\sqrt{2m} \cdot d(\nu)$.

That is,
$$
d(v) < \frac{2m}{\sqrt{2m}} = \sqrt{2m}
$$

Analysis: Variance • $Var[X] = E[X^2] - (E[X])^2 < E[X^2]$ • $\mathbb{E}[X^2] = |\mathbb{E}[X^2|U]|$ By the compact form of the Law of Total Expectation $\mathbb{E}[X^2|U] = \frac{d^+(U)}{d(U)}$ $d(U)$ \cdot (2d(U) 2 $= 4d^+(U) \cdot d(U).$ $\mathbb{E}[X^2] = \mathbb{E}[4d^+(U) \cdot d(U)] = 4$ $u \in V$ 1 \overline{n} $\cdot d^+(u) \cdot d(u)$ = 4 \overline{n} \sum u∈H $d^+(u) \cdot d(u) + \sum$ u∈L $d^+(u) \cdot d(u)$ ≤ 4 \overline{n} \sum $u \in H$ $2m \cdot d(u) + \sum$ $u \in L$ $d^+(u)\cdot\sqrt{2m}$ ≤ $4\sqrt{2}m$ \overline{n} \sum $u \in H$ $d(u) + \sum$ $u \in L$ $d(u)$ = $4\sqrt{2m} \cdot \bar{d}$ Reminders: $d^+(u) =$ the # of neighbors v of u with $u \lt v$. $RV X$ denotes X_i . $RV U =$ the node u sampled in Step 2a. **Observation** $\forall v \in H$, $d^+(v) < \sqrt{2m}$. $\forall v \in L, d(v) < \sqrt{2m}.$

Analysis: Putting It All Together

Approximating the Average Degree: Run Time

Algorithm (Input: ε , n ; vertex and neighbor query access to $G=(V,E)$)

- 1. Set $k = \frac{12}{32}$ $\frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For $i=1$ to k do
	- a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
	- b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v .
	- c. If $u \lt v$, set $X_i = 2d(u)$

3. Return
$$
\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i
$$

Running time:

$$
O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)
$$

to get
$$
Pr[|\hat{d} - \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}
$$