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Linear Functions Over Finite Field IF,

A Boolean function f:{0,1}" — {0,1} is linear if

flxy, ., xy) =ayxy + -+ anx,%for some dq, ...,a, € {0,1}

no free term

e Work in finite field IF,

— Other accepted notation for F,: GF, and Z, example

— Addition and multiplication is mod. 2 ) . 001001

= X=(%1, s X0, y=(V1, oo, Yn), that is, x, y € {0,1} 011001
X+ y=(x1 + Y1, e, X + V) 010000




Testing If a Boolean Function Is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Today: can answer in O e) time



Motivation

e Linearity test is one of the most celebrated testing algorithms
— A special case of many important property tests

— Computations over finite fields are used in
e Cryptography
e Coding Theory
— Originally designed for program checkers and self-correctors

— Low-degree testing is needed in constructions of Probabilistically
Checkable Proofs (PCPs)

e Used for proving inapproximability
e Main tool in the correctness proof: Fourier analysis of Boolean
functions

— Powerful and widely used technique in understanding the structure of
Boolean functions



Equivalent Definitions of Linear Functions

() [n] is a shorthand for {1, ...n}

Definition. f is linear if f (x4, ..., x,,) = ayxq + -+ + ayx,, forsome a4, ...,a, € F,
f(xq, .o, Xp) = Diies x; for some S € [n].

[Definition’. fislinearif f(x +y) = f(x) + f(y) forall x,y € {0,1}". ]

e Definition = Definition’
fx+y) =2ies(x+¥)i = Xies(xi + Vi) = LiesXi + iesyi = f () + F(y).
e Definition’ = Definition
€;
Let a; = £((0, ...,0,1,0, ..., 0))
Repeatedly apply Definition’:
f(CGrn o xn)) = F(Exi8) = Yxif (e)) = Y.




Linearity Test [Blum Luby Rubinfeld 90]

(BLR Test (f, €) )
1. Pick x and y independently and uniformly at random from {0,1}".
2. Setz = x+ yandquery fonx,y,and z. Accept iff f(z) = f(x) + f(y).

Analysis
If fis linear, BLR always accepts.

/COFI‘EC'CHESS Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95] A

If f is e-far from linear then > ¢ fraction of pairs x and y fail BLR test.
- J

e Then, by Witness Lemma (Lecture 1), 2/¢ iterations suffice.



Analysis Technique:
Fourier Expansion



Representing Functions as Vectors

Stack the 2™ values of f(x) and treat it as a vector in {O,l}zn.

0] £(0000)T
1 £(0001)
1 £(0010)
0 £(0011)
1 £(0100)
f=1 :
1 f(1101)
0 £(1110)
0. f(1111)]




l_Inear functions

There are 2" linear functions: one for each subset S € [n].

I 0] 07
0 1 1
0 0 1
0 1 0
0 0 1
X@ = |, X{l} = o I , X[Tl] —_ .
0 1 1
0 0 0
0 1. 0

Parity on the positions indexed by set S is y¢(x, ..., x,,) = 2 X;

LES




Great Notational Switch

ldea: Change notation, so that we work over reals instead of a finite field.

Vectorsin {0,1}2"° —  Vectorsin R?".

0/False — 1 1/True — -1.

Addition (mod 2) —  Multiplication in R.

Boolean function: f : {—1,1}" - {—1,1}.

Linear function yg: {—1,1}" — {—1,1} is given by ys(x) = [[;cq x;.
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Benefit 1 of New Notation

e The dot product of f and g as vectors in {—1,1}2":
(# x’s such that f(x) = g(x)) — (# x’s such that f(x) # g(x))
=2t -2 (#\x’s such that f(x) # g(x)})

|
disagreements between f and g

 Inner product of functions f,g:{—-1,1}" - {—-1,1} )
(f,g) =— (dot product of f and g as vectors)
= avg [f(gx)] = L) g0l
\_ xe{—1,1}" x€{- 1 1} Y

(f,g) =1—2- (fraction of disagreementsbetween f and g)
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Benefit 2 of New Notation

[ Claim. The functions (xs)sc[n] form an orthonormal basis for RZ". ]

e IfS # T then ys and yr are orthogonal: (x5, xr) = 0.

— Let i be an element on which S and T differ +17[—1]
: —11|+1
(w.log.i€S\T) | +1l+1

— Pair up all n-bit strings: (x, x(V) x |+all b
where x) is x with the ith bit flipped. +1){+1

— Each such pair contributes ab — ab = 0 to (xs, x7)-
— Since all x’s are paired up, (x5, x7) = 0.

e Recall that there are 2" linear functions ys . x| —all b
_ +111—-1
— Infact, (f,f) = 1for all f : {—1,1}" - {-1,1}. —1l+1.

The norm of f, denoted |f], is /{f, f) Xs XT
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Fourier Expansion Theorem

Idea: Work in the basis (Xs)sc[n], SO it is easy to see how close a specific
function f is to each of the linear functions.

/Fourier Expansion Theorem I
Every function f : {—1,1}" —» Ris uniquely expressible as a linear
combination (over R) of the 2" linear functions: A
( ) = 2 f(S)xs,
~ Sc[n]
there f(S) = (f, xs) is the Fourier Coefficient of f onset S. Y,

Proof: f can be written uniquely as a linear combination of basis vectors:

f= Z Cs ' Xs
Sc[n]
It remains to prove that cs=f (S) for all S.

f(S) = (fixs) = <z CT'XT»)(S> ™y 2 CT'(X?T:XS) = Cs

T TS[n] T T<S[n]
Definition of Fourier Linearity of (:,-) i ) = 1 ifT=S
coefficients FEE 0 otherwise
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Examples: Fourier Expansion

f
flx)=1
fx) = x;

AND(xq,x5)

MAJORITY (x4, x5, x3)

Fourier transform
1
Xi
1 1 1 1
> + Exl + Exz — §x1x2
1 1 1 1

=X1 T 5 Xy +5X3 — XXX
71T 5 A2 T 5 A3 ™ 5 414243
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Parseval Equality

Parseval Equality N
Let f:{—1,1}" - R. Then
(F.0= ) F6)
\_ Sc[n] J
Proof: By Fourier Expansion Theorem

(f.f) = <Z

Sc[n

]3(5))(5; z f(T)XT>
] T<S[n]

By linearity of inner product

= > ) FO FM s xr)
S T

= ) f(s)?
S

By orthonormality of ys’s
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Parseval Equality

("Parseval Equality for Boolean Functions

Let f:{—1,1}" - {—1,1}. Then

(F.0r= ) 2 =1
\_ Scn]

Proof:

By definition of inner product

(f.fr=__E  [f(x)?]

x€{—1,1}"

=1

Since f is Boolean
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BLR Test in {-1,1} Notation

(BLR Test (f, ) )
1. Pick x and y independently and uniformly at random from {—1,1}".
2. Setz =xoyandquery fonx,y,and z. Acceptiff f(x)f(y)f(z) = 1.

Vector product notation: x o y = (X141, X2V2, e+ X V)

1 1 N
Sum-Of-Cubes Lemma. Pr _ [BLR(f)accepts] = =+ = E ()3
x,ye{—1,1}" 2 2 S
Cin

1 if BLR accepts

Proof: Indicator variable 15, p = {0 th .
otherwise

Ipir =5 +5 fOfDf (2).

1 1
Pt BLR(Daccepts] = _E | [15,] A B F D]

By linearity of expectation 17



Proof of Sum-Of-Cubes Lemma

Sofar:  Pr [BLR(Paccepts] =5 +5 E  [f()f(3)f(2)]
Next:

E{ Ly [f () f(y)f(2)] By Fourier Expansion Theorem
= e <Sczn] F)xs () ) (ZH Fxr ) ) <UCZM Fxu(@) )

Distributing out the product of sums

= E ( z f(S)f(T)f(U)XS(x)XT(y)XU(Z)>

x,ye{—1,1}"
| \S, T, U<S[n]

By linearity of expectation

_ z FOFMFW) . _E  xsxrMxu(@)]

x,ye{—1,1}"
S, T, Uc[n]
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Proof of Sum-Of-Cubes Lemma (Continued)

Pr_ [BLR(Daccepts] =5+5 > FOFMFW), _E s o]

x,ye{—1,1}" x,ye{—1,1}"
S, T, Ucn]
[Claim. Xye{El 1}n[)(5(x))(T(y))(U(z)] is1ifS =T = U and 0 otherwise. y
e Let SATdenote symmetric difference of sets S and T
x,ye{Emn s () xr (V) xu(2)] = X,ye{gl’l}n[nies Xi [lier vi lliev 2]
] Sq =Xo
= xyE{E:l 1 [ ies xi Hier vi Hliey i meerTRey
’ ’ : Since x* = y? =1
= Xye{El 1 UTiesav xi Iierav vil
' P ' [l_ ] B [1_[ ] Since x and y are independent
= Uliesav Xil - Uliesav Vi
xe{-1,1} © ©oye(-11) © l Since x and y's coordinates
= [liesav XE{_Ei 1 [x:] - Tierau ye{_Ei 1 [vil 2L e Sl
= [liesav xie{lil’l}[xi] [lierav yie{lilil}[yi]

_ {1 when SAU = @ and TAU = ¢

0 otherwise "



Proof of Sum-Of-Cubes Lemma (Done)

Pr_ [BLR(Daccepts] =5+5 > FOFMFW), _E s o]

x,ye{—1,1}" 5772 m] x,ye{—1,1}"
41U = n

ZfSF

l\)lb—\
Nlr—\

1

1 A
{Sum-Of-Cubes Lemma. {Prl 1}n[BLR(f)accepts = E 5 z F($)3
Q




Proof of Correctness Theorem

( Correctness Theorem (restated)
L If f is e-far from linear then Pr[BLR(f) accepts] < 1 — ¢.
Proof: Suppose to the contrary that

1—¢e< X,ye{P_rl J}n[BLR(f )accepts]

—1

By Sum-Of-Cubes Lemma

1 1
_ 1 3
=213 2 /() .

Sc[n] Since f(5)2 =0

1 1 A "
<-4 . : 2
=273 (sné%f(s)) Z f(S)

Scn]
—_ 11 £ Parseval Equality
=3+3 (mpyf©)
. Thenglgaxf(S) > 1 — 2¢. Thatis, f(T) > 1 — 2¢ for some T € [n].

e Butf(T) =(f,xr) =1— 2 (fraction of disagreementsbetween f and y7)
e f disagrees with a linear function y; on < ¢ fraction of values. ¥
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Summary

BLR tests whether a function f:{0,1}"* — {0,1} is
linear or e-far from linear

(= 2™ values need to be changed to make it linear)

in 0 G) time.
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