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Sublinear Algorithms

LECTURE 18

Last time
• Approximating the average degree

Today
• Testing linearity of Boolean functions

[Blum Luby Rubinfeld]

Sofya Raskhodnikova; Boston University

Thanks to Madhav Jha (Penn State) for help with creating these slides.



Linear Functions Over Finite Field 𝔽2
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear if 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2
– Other accepted notation for 𝔽2: 𝐺𝐹2 and  ℤ2
– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

001001 

011001  

010000

+

example



Testing If a Boolean Function Is Linear
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question:

Is the function linear or 𝜀-far from linear 

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Today: can answer in 𝑂
1

𝜀
time



Motivation

• Linearity test is one of the most celebrated testing algorithms
– A special case of many important property tests

– Computations over finite fields are used in 

• Cryptography

• Coding Theory

– Originally designed for program checkers and self-correctors

– Low-degree testing is needed in constructions of Probabilistically 
Checkable Proofs (PCPs)

• Used for proving inapproximability

• Main tool in the correctness proof: Fourier analysis of Boolean 
functions
– Powerful and widely used technique in understanding the structure of 

Boolean functions
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Equivalent Definitions of Linear Functions
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Definition. 𝑓 is linear if 𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ 𝔽2
⇕

𝑓 𝑥1, … , 𝑥𝑛 = σ𝑖∈S 𝑥𝑖 for some 𝑆 ⊆ 𝑛 .

Definition′. 𝑓 is linear if 𝑓 𝒙 + 𝒚 = 𝑓 𝒙 + 𝑓(𝒚) for all 𝒙, 𝒚 ∈ 0,1 𝑛.

• Definition ⇒ Definition′

𝑓 𝒙 + 𝒚 = σ𝑖∈𝑆 𝒙 + 𝒚 𝑖 = σ𝑖∈𝑆(𝑥𝑖 + 𝑦𝑖) = σ𝑖∈𝑆 𝑥𝑖 +σ𝑖∈𝑆 𝑦𝑖 = 𝑓 𝒙 + 𝑓 𝒚 .

• Definition′ ⇒ Definition 

Let 𝛼𝑖 = 𝑓((0,… , 0,1,0, … , 0

𝑒𝑖

))

Repeatedly apply Definition′: 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑓 σ𝑥𝑖𝑒𝑖 = σ𝑥𝑖𝑓 𝑒𝑖 = σ𝛼𝑖𝑥𝑖 .

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

[𝑛] is a shorthand  for {1, …𝑛}



Linearity Test [Blum Luby Rubinfeld 90]
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1. Pick 𝒙 and 𝒚 independently and uniformly at random from 0,1 𝑛.

2. Set 𝒛 = 𝒙 + 𝒚 and query 𝑓on 𝒙, 𝒚, and 𝒛. Accept iff 𝑓 𝒛 = 𝑓 𝒙 + 𝑓 𝒚 .

Analysis

If 𝑓is linear, BLR always accepts. 

If 𝑓 is 𝜀-far from linear then > 𝜀 fraction of pairs 𝒙 and 𝒚 fail BLR test.

• Then, by Witness Lemma (Lecture 1), 2/𝜀 iterations suffice.

BLR Test (f, ε)

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]



Analysis Technique: 
Fourier Expansion



Representing Functions as Vectors

Stack the 2𝑛 values of 𝑓(𝒙) and treat it as a vector in {0,1}2
𝑛

. 

𝑓 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

𝑓(0000)
𝑓(0001)
𝑓(0010)
𝑓(0011)
𝑓(0100)

⋅
⋅
⋅

𝑓(1101)
𝑓(1110)
𝑓(1111)
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Linear functions

There are 2𝑛 linear functions: one for each subset 𝑆 ⊆ [𝑛]. 

𝜒∅ =

0
0
0
0
0
⋅
⋅
⋅
0
0
0

, 𝜒 1 =

0
1
0
1
0
⋅
⋅
⋅
1
0
1

, ⋯⋯, 𝜒 𝑛 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0
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Parity on the positions indexed by set 𝑆 is 𝜒𝑆 𝑥1, … , 𝑥𝑛 = ෍

𝑖∈S

𝑥𝑖



Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

• Vectors in 0,1 2𝑛 ⟶ Vectors in ℝ2𝑛.

• 0/False ⟶ 1 1/True ⟶ -1.

• Addition (mod 2) ⟶ Multiplication in ℝ.

• Boolean function: 𝑓 ∶ −1, 1 𝑛 → {−1,1}.

• Linear function 𝜒𝑆∶ −1, 1 𝑛 → {−1,1} is given by 𝜒𝑆 𝒙 = ς𝑖∈𝑆 𝑥𝑖.
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Benefit 1 of New Notation

• The dot product of 𝑓 and 𝑔 as vectors in −1,1 2𝑛:

(# 𝒙’s such that 𝑓 𝒙 = 𝑔(𝒙)) − (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

= 2𝑛 − 2 ⋅ (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

𝑓, 𝑔 =
1

2𝑛
dot product of 𝑓 and 𝑔 as vectors

= avg
𝒙∈ −1,1 𝑛

𝑓 𝒙 𝑔 𝒙 = E
𝒙∈ −1,1 𝑛

[ 𝑓 𝒙 𝑔 𝒙 ].

𝑓, 𝑔 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝑔)
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Inner product of functions 𝑓, 𝑔 ∶ −1, 1 𝑛 → {−1, 1}

disagreements between 𝑓 and 𝑔



Benefit 2 of New Notation

• If 𝑆 ≠ 𝑇 then 𝜒𝑆 and 𝜒𝑇 are orthogonal:  𝜒𝑆, 𝜒𝑇 = 0. 

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ 

(w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖 )

where 𝒙 𝑖 is 𝒙 with the 𝑖th bit flipped.

– Each such pair contributes 𝑎𝑏 − 𝑎𝑏 = 0 to 𝜒𝑆, 𝜒𝑇 . 

– Since all 𝒙’s are paired up, 𝜒𝑆, 𝜒𝑇 = 0.

• Recall that there are 2𝑛 linear functions 𝜒𝑆 .

• 𝜒𝑆, 𝜒𝑆 = 1
– In fact, 𝑓, 𝑓 = 1 for  all 𝑓 ∶ −1, 1 𝑛 → −1, 1 .

– (The  norm of 𝑓, denoted 𝑓 , is  𝑓, 𝑓 )
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𝒙

𝒙 𝑖

𝜒𝑆 𝜒𝑇

+1
−1
+1
+𝑎
+1
⋅
⋅
⋅
−𝑎
+1
−1
−1

−1
+1
+1
𝑏
+1
⋅
⋅
⋅
𝑏
−1
+1
+1

The functions 𝜒𝑆 𝑆⊆ 𝑛 form an orthonormal basis for ℝ2𝑛.Claim.



Idea: Work in the basis 𝜒𝑆 𝑆⊆ 𝑛 , so it is easy to see how close a specific 

function 𝑓 is to each of the linear functions.

Every function 𝑓 ∶ −1, 1 𝑛 → ℝ is uniquely expressible as a linear 
combination (over ℝ) of the 2𝑛 linear functions:

where መ𝑓 𝑆 = 𝑓, 𝜒𝑆 is the Fourier Coefficient of 𝑓 on set 𝑆.

Proof: 𝑓 can be written uniquely as a linear combination of basis vectors:

𝑓 = ෍

𝑆⊆ 𝑛

𝑐𝑆 ⋅ 𝜒𝑆

It remains to prove that 𝑐𝑆= መ𝑓 𝑆 for all 𝑆.

መ𝑓 𝑆 = 𝑓, 𝜒𝑆 = ෍

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 = ෍

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 = 𝑐𝑆

Fourier Expansion Theorem
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Fourier Expansion Theorem

𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆,

Linearity of ⋅,⋅ 𝜒𝑇 , 𝜒𝑆 = ቊ1 if 𝑇 = 𝑆
0 otherwise

Definition of Fourier

coefficients



Examples: Fourier Expansion

𝒇 Fourier transform

𝑓 𝒙 = 1 1

𝑓 𝒙 = 𝑥𝑖 𝑥𝑖

AND(𝑥1, 𝑥2) 1

2
+
1

2
𝑥1 +

1

2
𝑥2 −

1

2
𝑥1𝑥2

MAJORITY(𝑥1, 𝑥2, 𝑥3) 1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥3 −

1

2
𝑥1𝑥2𝑥3
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Parseval Equality

Proof: 

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆 , ෍

𝑇⊆ 𝑛

መ𝑓 𝑇 𝜒𝑇

=෍

𝑆

෍

𝑇

መ𝑓 𝑆 መ𝑓 𝑇 𝜒𝑆, 𝜒𝑇

=෍

𝑆

መ𝑓 𝑆 2
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By linearity of inner product

By orthonormality of 𝜒𝑆’s

Parseval Equality

Let 𝑓: −1, 1 𝑛 → ℝ. Then

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2

By Fourier Expansion Theorem



Parseval Equality

Proof: 

𝑓, 𝑓 = E
𝒙∈ −1,1 𝑛

[𝑓 𝒙 2]

= 1
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Parseval Equality for Boolean Functions

Let 𝑓: −1, 1 𝑛 → −1, 1 . Then

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2 = 1

By definition of inner product

Since 𝑓 is Boolean



Vector product notation: 𝒙 ∘ 𝒚 = (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑛𝑦𝑛)

Proof: Indicator variable 𝟙𝐵𝐿𝑅 = ቊ
1 if BLR accepts
0 otherwise

𝟙𝐵𝐿𝑅 =
1

2
+

1

2
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 .

Pr
𝒙,𝒚∈ −1,1 𝑛

BLR 𝑓 accepts = E
𝐱,𝐲∈ −1,1 𝑛

𝟙𝐵𝐿𝑅 =
1

2
+
1

2
E

𝐱,𝐲∈ −1,1 𝑛
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

BLR Test in {-1,1} Notation
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BLR Test (f, ε)

1. Pick 𝒙 and 𝒚 independently and uniformly at random from −1,1 𝑛.

2. Set 𝒛 = 𝒙 ∘ 𝒚 and query 𝑓 on 𝒙, 𝒚, and 𝒛.  Accept iff 𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 = 1.

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+
1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3Sum-Of-Cubes Lemma.

By linearity of expectation



So far: Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
E

𝐱,𝐲∈ −1,1 𝑛
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

Next:

Proof of Sum-Of-Cubes Lemma
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= ෍

𝑆,𝑇,𝑈⊆[𝑛]

መ𝑓 𝑆 መ𝑓 𝑇 መ𝑓 𝑈 E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

= E
𝐱,𝐲∈ −1,1 𝑛

෍

𝑆,𝑇,𝑈⊆[𝑛]

መ𝑓 𝑆 መ𝑓 𝑇 መ𝑓 𝑈 𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

E
𝐱,𝐲∈ −1,1 𝑛

𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

= E
𝐱,𝐲∈ −1,1 𝑛

෍

𝑆⊆[𝑛]

መ𝑓 𝑆 𝜒𝑆(𝒙) ෍

𝑇⊆[𝑛]

መ𝑓 𝑇 𝜒𝑇(𝒚) ෍

𝑈⊆[𝑛]

መ𝑓 𝑈 𝜒𝑈(𝒛)

By Fourier Expansion Theorem

Distributing out the product of sums

By linearity of expectation



Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts

• Let 𝑆Δ𝑇denote symmetric difference of sets 𝑆 and 𝑇

Proof of Sum-Of-Cubes Lemma (Continued)
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a= E
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆 𝑥𝑖ς𝑖∈𝑇 𝑦𝑖ς𝑖∈𝑈 𝑥𝑖𝑦𝑖

a= E
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑥𝑖ς𝑖∈𝑇Δ𝑈 𝑦𝑖

a= E
𝐱∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑥𝑖 ⋅ E
𝐲∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑦𝑖

a= ς𝑖∈𝑆Δ𝑈 E
𝐱∈ −1,1 𝑛

[𝑥𝑖] ⋅ ς𝑖∈𝑇Δ𝑈 E
𝐲∈ −1,1 𝑛

[𝑦𝑖]

a E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

= ቊ
1 when 𝑆Δ𝑈 = ∅ and 𝑇Δ𝑈 = ∅ ⇔ 𝑆 = 𝑇 = 𝑈
0 otherwise

a= E
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆 𝑥𝑖ς𝑖∈𝑇 𝑦𝑖ς𝑖∈𝑈 𝑧𝑖

=
1

2
+
1

2
෍

𝑆,𝑇,𝑈⊆[𝑛]

෠𝑓 𝑆 ෠𝑓 𝑇 ෠𝑓 𝑈 E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

Since 𝑥𝑖
2 = 𝑦𝑖

2 = 1

Since 𝐱 and 𝐲 are independent

Since 𝐳 = 𝐱 ∘ 𝐲

Since 𝐱 and 𝐲′s coordinates
are independent

a= ς𝑖∈𝑆Δ𝑈 E
𝑥𝑖∈{−1,1}

[𝑥𝑖] ⋅ ς𝑖∈𝑇Δ𝑈 E
𝑦𝑖∈{−1,1}

[𝑦𝑖]

E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)] is 1 if 𝑆 = 𝑇 = 𝑈 and 0 otherwise.Claim.



Proof of Sum-Of-Cubes Lemma (Done)
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=
1

2
+
1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+
1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3Sum-Of-Cubes Lemma.

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+
1

2
෍

𝑆,𝑇,𝑈⊆[𝑛]

෠𝑓 𝑆 ෠𝑓 𝑇 ෠𝑓 𝑈 E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]



Proof of Correctness Theorem

Proof: Suppose to the contrary that

• Then max
𝑆⊆ 𝑛

መ𝑓 𝑆 > 1 − 2𝜀. That is, መ𝑓 𝑇 > 1 − 2𝜀 for some 𝑇 ⊆ 𝑛 .

• But መ𝑓 𝑇 = 𝑓, 𝜒𝑇 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝜒𝑇)

• 𝑓 disagrees with a linear function 𝜒𝑇 on < 𝜀 fraction of values.      
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By Sum-Of-Cubes Lemma

Since መ𝑓 𝑆 2 ≥ 0

Parseval Equality

Correctness Theorem (restated)

If 𝑓 is ε-far from linear then Pr BLR 𝑓 accepts ≤ 1 − 𝜀. 

=
1

2
+
1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3

≤
1

2
+
1

2
⋅ max

𝑆⊆ 𝑛
መ𝑓 𝑆 ⋅ ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2

=
1

2
+
1

2
⋅ max

𝑆⊆ 𝑛
መ𝑓 𝑆

1 − 𝜀 < Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts

⨳



Summary

BLR tests whether a function 𝑓: 0,1 𝑛 → {0,1} is

linear or 𝜀-far from linear 

(≥ 𝜀2𝑛 values need to be changed to make it linear)

in 𝑂
1

𝜀
time.
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