Sublinear Algorithms

LECTURE 18

Last time

Approximating the average degree

Today

• Testing linearity of Boolean functions
[Blum Luby Rubinfeld]

IHIW 4 is due in a week

Linear Functions Over Finite Field \mathbb{F}_2

A Boolean function
$$f:\{0,1\}^n \to \{0,1\}$$
 is *linear* if
$$f(x_1,\dots,x_n)=a_1x_1+\dots+a_nx_n \text{ for some } a_1,\dots,a_n\in\{0,1\}$$

no free term

- Work in finite field F₂
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x=(x_1, ..., x_n), y=(y_1, ..., y_n)$, that is, $x, y \in \{0,1\}^n$ $x + y=(x_1 + y_1, ..., x_n + y_n)$

example

 $+\frac{001001}{011001}$ -010000

Testing If a Boolean Function Is Linear

```
Input: Boolean function f:\{0,1\}^n \to \{0,1\}
Question:

Is the function linear or \varepsilon-far from linear (\geq \varepsilon 2^n values need to be changed to make it linear)?

Today: can answer in O\left(\frac{1}{\varepsilon}\right) time
```

Motivation

- Linearity test is one of the most celebrated testing algorithms
 - A special case of many important property tests
 - Computations over finite fields are used in
 - Cryptography
 - Coding Theory
 - Originally designed for program checkers and self-correctors
 - Low-degree testing is needed in constructions of Probabilistically Checkable Proofs (PCPs)
 - Used for proving inapproximability
- Main tool in the correctness proof: Fourier analysis of Boolean functions
 - Powerful and widely used technique in understanding the structure of Boolean functions

Equivalent Definitions of Linear Functions

Definition.
$$f$$
 is $linear$ if $f(x_1, ..., x_n) = a_1x_1 + \cdots + a_nx_n$ for some $a_1, ..., a_n \in \mathbb{F}_2$

$$\updownarrow \qquad \qquad [n] \text{ is a shorthand for } \{1, ..., n\}$$

$$f(x_1, ..., x_n) = \sum_{i \in S} x_i \text{ for some } S \subseteq [n].$$

Definition'. f is *linear* if f(x + y) = f(x) + f(y) for all $x, y \in \{0,1\}^n$.

Definition ⇒ Definition'

$$f(x + y) = \sum_{i \in S} (x + y)_i = \sum_{i \in S} (x_i + y_i) = \sum_{i \in S} x_i + \sum_{i \in S} y_i = f(x) + f(y).$$

Definition['] ⇒ Definition

Let
$$\alpha_i = f((0, ..., 0, 1, 0, ..., 0))$$

Repeatedly apply Definition':

$$f((x_1, ..., x_n)) = f(\sum x_i e_i) = \sum x_i f(e_i) = \sum \alpha_i x_i.$$

Linearity Test [Blum Luby Rubinfeld 90]

BLR Test (f, ϵ)

- 1. Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- 2. Set z = x + y and query f on x, y, and z. Accept iff f(z) = f(x) + f(y).

Analysis

If f is linear, BLR always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

If f is ε -far from linear then $> \varepsilon$ fraction of pairs x and y fail BLR test.

• Then, by Witness Lemma (Lecture 1), $2/\varepsilon$ iterations suffice.

Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^n values of f(x) and treat it as a vector in $\{0,1\}^{2^n}$.

$$f = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ \cdot \\ \cdot \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Linear functions

There are 2^n linear functions: one for each subset $S \subseteq [n]$.

$$\chi_{\emptyset} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \chi_{\{1\}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 1 \end{bmatrix}, \qquad \cdots, \qquad \chi_{[n]} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Parity on the positions indexed by set *S* is $\chi_S(x_1, ..., x_n) = \sum_{i \in S} x_i$

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in $\{0,1\}^{2^n} \longrightarrow \text{Vectors in } \mathbb{R}^{2^n}$.
- $0/False \rightarrow 1$ $1/True \rightarrow -1$.
- Addition (mod 2) \longrightarrow Multiplication in \mathbb{R} .
- Boolean function: $f : \{-1, 1\}^n \to \{-1, 1\}$.
- Linear function $\chi_S: \{-1,1\}^n \to \{-1,1\}$ is given by $\chi_S(x) = \prod_{i \in S} x_i$.

Benefit 1 of New Notation

• The dot product of f and g as vectors in $\{-1,1\}^{2^n}$:

(#
$$x$$
's such that $f(x) = g(x)$) — (# x 's such that $f(x) \neq g(x)$)
$$= 2^{n} - 2 \cdot (\# x$$
's such that $f(x) \neq g(x)$)
$$disagreements between f and $g$$$

Inner product of functions
$$f, g : \{-1, 1\}^n \to \{-1, 1\}$$

$$\langle f, g \rangle = \frac{1}{2^n} (\text{dot product of } f \text{ and } g \text{ as vectors})$$

$$= \underset{x \in \{-1, 1\}^n}{\text{ever}} [f(x)g(x)] = \underset{x \in \{-1, 1\}^n}{\text{E}} [f(x)g(x)].$$

 $\langle f, g \rangle = 1 - 2 \cdot (\text{fraction of } \frac{disagreements}{disagreements})$ between f and g

Benefit 2 of New Notation

Claim. The functions $(\chi_S)_{S\subseteq[n]}$ form an orthonormal basis for \mathbb{R}^{2^n} .

- If $S \neq T$ then χ_S and χ_T are orthogonal: $\langle \chi_S, \chi_T \rangle = 0$.
 - Let i be an element on which S and T differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all n-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the ith bit flipped.
 - Each such pair contributes ab ab = 0 to $\langle \chi_S, \chi_T \rangle$.
 - Since all x's are paired up, $\langle \chi_S, \chi_T \rangle = 0$.
- Recall that there are 2^n linear functions χ_S .
- $\langle \chi_S, \chi_S \rangle = 1$
 - In fact, (f, f) = 1 for all $f : \{-1, 1\}^n \to \{-1, 1\}$.
 - (The norm of f, denoted |f|, is $\sqrt{\langle f, f \rangle}$)

	[+1]	[-1]
	$\lfloor -1 \rfloor$	+1
	+1	+1
\boldsymbol{x}	+a	b
	+1	+1
	•	
	.	.
	.	
$\boldsymbol{x}^{(i)}$	-a	b
	+1	$\left -1\right $
	$\lfloor -1 \rfloor$	+1
	$\lfloor -1 \rfloor$	$\lfloor +1 \rfloor$
	χ_{S}	χ_T

Fourier Expansion Theorem

Idea: Work in the basis $(\chi_S)_{S\subseteq[n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f: \{-1,1\}^n \to \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n linear functions: $f = \sum \hat{f}(S)\chi_S$

where $\hat{f}(S) = \langle f, \chi_S \rangle$ is the Fourier Coefficient of f on set S.

Proof: *f* can be written uniquely as a linear combination of basis vectors:

$$f = \sum_{S \subseteq [n]} c_S \cdot \chi_S$$

It remains to prove that $c_S = \hat{f}(S)$ for all S.

$$\hat{f}(S) = \langle f, \chi_S \rangle = \left(\sum_{T \subseteq [n]} c_T \cdot \chi_T, \chi_S \right) = \sum_{T \subseteq [n]} c_T \cdot \langle \chi_T, \chi_S \rangle = c_S$$
Definition of Fourier coefficients
$$\left(\chi_T, \chi_S \right) = \begin{cases} 1 & \text{if } T = S \\ 0 & \text{otherwise} \end{cases}$$

Examples: Fourier Expansion

f	Fourier transform
f(x)=1	1
$f(\mathbf{x}) = x_i$	x_i
$AND(x_1, x_2)$	$\frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2$
MAJORITY(x_1, x_2, x_3)	$\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$

Parseval Equality

Parseval Equality

Let $f: \{-1, 1\}^n \to \mathbb{R}$. Then

$$\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2$$

Proof:

By Fourier Expansion Theorem

$$\langle f, f \rangle = \left\langle \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \sum_{T \subseteq [n]} \hat{f}(T) \chi_T \right\rangle$$

By linearity of inner product

$$=\sum_{S}\sum_{T}\hat{f}(S)\,\hat{f}(T)\langle\chi_{S},\chi_{T}\rangle$$

By orthonormality of χ_S 's

$$=\sum_{S}\hat{f}(S)^{2}$$

Parseval Equality

Parseval Equality for Boolean Functions

Let
$$f: \{-1, 1\}^n \to \{-1, 1\}$$
. Then
$$\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$$

Proof:

By definition of inner product

$$\langle f, f \rangle = \underset{x \in \{-1,1\}^n}{\mathbb{E}} [f(x)^2]$$
Since f is Boolean
$$= 1$$

BLR Test in {-1,1} Notation

BLR Test (f, ε)

- 1. Pick x and y independently and uniformly at random from $\{-1,1\}^n$.
- 2. Set $z = x \circ y$ and query f on x, y, and z. Accept iff f(x)f(y)f(z) = 1.

Vector product notation: $\mathbf{x} \circ \mathbf{y} = (x_1 y_1, x_2 y_2, ..., x_n y_n)$

Sum-Of-Cubes Lemma.
$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\mathrm{BLR}(f)\mathrm{accepts}] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$$

Proof: Indicator variable
$$\mathbb{1}_{BLR} = \begin{cases} 1 & \text{if BLR accepts} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{1}_{BLR} = \frac{1}{2} + \frac{1}{2} f(\mathbf{x}) f(\mathbf{y}) f(\mathbf{z}).$$

$$\Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [BLR(f) \text{accepts}] = \mathop{\mathbb{E}}_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [\mathbb{1}_{BLR}] = \frac{1}{2} + \frac{1}{2} \mathop{\mathbb{E}}_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [f(\mathbf{x}) f(\mathbf{y}) f(\mathbf{z})]$$

By linearity of expectation

Proof of Sum-Of-Cubes Lemma

So far:
$$\Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [BLR(f)accepts] = \frac{1}{2} + \frac{1}{2} \mathop{\mathbb{E}}_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$$

Next:

$$\mathop{\mathbf{E}}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$$

Distributing out the product of sums

$$= \underset{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n}{\mathbb{E}} \left[\left(\sum_{\mathbf{S}, T, \mathbf{U} \subseteq [n]} \hat{f}(\mathbf{S}) \hat{f}(T) \hat{f}(\mathbf{U}) \chi_{\mathbf{S}}(\mathbf{x}) \chi_{T}(\mathbf{y}) \chi_{\mathbf{U}}(\mathbf{z}) \right) \right]$$

By linearity of expectation

$$= \sum_{S,T,U\subseteq[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U) \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\mathbb{E}} [\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})]$$

Proof of Sum-Of-Cubes Lemma (Continued)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\mathrm{BLR}(f)\mathrm{accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{\mathbf{S},T,U\subseteq[n]} \hat{f}(\mathbf{S})\hat{f}(T)\hat{f}(U) \mathop{\mathbb{E}}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\chi_{\mathbf{S}}(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})]$$

Claim. $\underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\mathbf{E}}[\chi_{\mathbf{S}}(\mathbf{x})\chi_{\mathbf{T}}(\mathbf{y})\chi_{\mathbf{U}}(\mathbf{z})]$ is 1 if $\mathbf{S}=T=\mathbf{U}$ and 0 otherwise.

Let $S\Delta T$ denote symmetric difference of sets S and T

$$\begin{array}{ll}
E \\
\mathbf{x}, \mathbf{y} \in \{-1,1\}^n & = E \\
\mathbf{x}, \mathbf{y} \in \{-1,1\}^n &$$

Since $\mathbf{z} = \mathbf{x} \circ \mathbf{y}$

Since
$$x_i^2 = y_i^2 = 1$$

Since \mathbf{x} and \mathbf{y} are independent

Since \mathbf{x} and \mathbf{y}' s coordinates are independent

Proof of Sum-Of-Cubes Lemma (Done)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\mathrm{BLR}(f)\mathrm{accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{\mathbf{S},T,U\subseteq[n]} \hat{f}(\mathbf{S})\hat{f}(T)\hat{f}(U) \mathop{\mathbb{E}}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\chi_{\mathbf{S}}(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3$$

Sum-Of-Cubes Lemma.
$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\mathrm{BLR}(f)\mathrm{accepts}] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$$

Proof of Correctness Theorem

Correctness Theorem (restated)

If f is ε -far from linear then $\Pr[BLR(f) \text{ accepts}] \leq 1 - \varepsilon$.

Proof: Suppose to the contrary that

$$1 - \varepsilon < \Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n}[\mathrm{BLR}(f)\mathrm{accepts}]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3$$

$$\leq \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right) \cdot \sum_{S \subseteq [n]} \hat{f}(S)^2$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right)$$
Parseval Equality

- Then $\max_{S\subseteq [n]} \hat{f}(S) > 1 2\varepsilon$. That is, $\hat{f}(T) > 1 2\varepsilon$ for some $T\subseteq [n]$.
- But $\hat{f}(T) = \langle f, \chi_T \rangle = 1 2 \cdot (\text{fraction of } \text{disagreements} \text{ between } f \text{ and } \chi_T)$
- f disagrees with a linear function χ_T on $< \varepsilon$ fraction of values.

Summary

BLR tests whether a function $f:\{0,1\}^n \to \{0,1\}$ is linear or ε -far from linear $(\geq \varepsilon 2^n \text{ values need to be changed to make it linear})$ in $O\left(\frac{1}{\varepsilon}\right)$ time.