Sublinear Algorithms

LECTURE 19

Last time

• Testing linearity of Boolean functions [Blum Luby Rubinfeld]

Today

- Testing linearity
- Tolerant testing and distance approximation

HIW 4 is due Thursday

Sofya Raskhodnikova; Boston University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

11/10/2020

Testing If a Boolean Function Is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear

 $\left(\geq \varepsilon 2^{n} \right)$ values need to be changed to make it linear)?

Today: can answer in $O\left(\frac{1}{\epsilon}\right)$ $\mathcal{E}_{\mathcal{E}}$ time

BLR Test (ε, query access to f)

- 1. Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- 2. Set $z = x + y$ and query f on x, y, and z. Accept if $f(z) = f(x) + f(y)$.

Analysis

If f is linear, BLR always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

If f is ε -far from linear then $\geq \varepsilon$ fraction of pairs x and y fail BLR test.

Then, by Witness Lemma (Lecture 1), $2/\varepsilon$ iterations suffice.

Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^n values of $f(\pmb{x})$ and treat it as a vector in $\{0{,}1\}^{2^n}.$

Linear functions

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in ${0,1}^{2^n}$ \longrightarrow Vectors in \mathbb{R}^{2^n} .
- 0/False \rightarrow 1 1/True \rightarrow -1.
- Addition (mod 2) \rightarrow Multiplication in R.
- Boolean function: $f: \{-1, 1\}^n \rightarrow \{-1, 1\}.$
- Linear function $\chi_S \colon \{-1,1\}^n \to \{-1,1\}$ is given by $\chi_S(x) = \prod_{i \in S} x_i$.

Inner product of functions
$$
f, g: \{-1, 1\}^n \to \{-1, 1\}
$$

\n
$$
\langle f, g \rangle = \frac{1}{2^n} (\text{dot product of } f \text{ and } g \text{ as vectors})
$$
\n
$$
= \underset{x \in \{-1, 1\}^n}{\text{avg}} [f(x)g(x)] = \underset{x \in \{-1, 1\}^n}{\mathbb{E}} [f(x)g(x)].
$$

 $\langle f, g \rangle = 1 - 2 \cdot ($ fraction of *disagreements* between f and g)

Claim. The functions $(\chi_S)_{S \subseteq [n]}$ form an orthonormal basis for $\mathbb{R}^{2^n}.$

Fourier Expansion Theorem

Idea: Work in the basis $(\chi_S)_{S \subseteq [n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f: \{-1, 1\}^n \to \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n linear functions: $f = \sum$ $\hat{f}(S)\chi_{S,}$

where $\hat{f}(S) = \langle f, \chi_S \rangle$ is the Fourier Coefficient of f on set S . $S \subseteq [n]$

Parseval Equality

Parseval Equality for Boolean Functions

Let $f: \{-1, 1\}^n \to \{-1, 1\}$. Then

$$
\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2 = 1
$$

BLR Test in **{-1,1}** *Notation*

BLR Test (f, ε)

- 1. Pick x and y independently and uniformly at random from $\{-1,1\}^n$.
- 2. Set $z = x \circ y$ and query f on x, y, and z. Accept iff $f(x)f(y)f(z) = 1$.

Vector product notation: $\mathbf{x} \circ \mathbf{y} = (x_1y_1, x_2y_2, ..., x_ny_n)$

Pr $\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\text{BLR}(f)\text{accepts}] =$ 1 2 $+$ 1 2 \sum $S\subseteq[n]$ $\hat{f}(S)^3$ Sum-Of-Cubes Lemma.

Proof: Indicator variable
$$
\mathbb{1}_{BLR} = \begin{cases} 1 & \text{if BLR accepts} \\ 0 & \text{otherwise} \end{cases}
$$

$$
\mathbb{1}_{BLR} = \frac{1}{2} + \frac{1}{2} f(x) f(y) f(z).
$$

$$
\Pr_{x,y \in \{-1,1\}^n}[\text{BLR}(f)\text{accepts}] = \mathop{\mathbb{E}}_{x,y \in \{-1,1\}^n}[\mathbb{1}_{BLR}] = \frac{1}{2} + \frac{1}{2} \mathop{\mathbb{E}}_{x,y \in \{-1,1\}^n} [f(x)f(y)f(z)]
$$

By linearity of expectation

Proof of Sum-Of-Cubes Lemma

So far: Pr $\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\text{BLR}(f) \text{accepts}] = \frac{1}{2}$ 2 $+\frac{1}{2}$ 2 E $\underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\mathrm{E}}[f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$ *Next:*

$$
\sum_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n} [f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})] \qquad \text{By Fourier Expansion Theorem}
$$
\n
$$
= \sum_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n} \left[\left(\sum_{S\subseteq[n]} \hat{f}(S)\chi_S(\mathbf{x}) \right) \left(\sum_{T\subseteq[n]} \hat{f}(T)\chi_T(\mathbf{y}) \right) \left(\sum_{U\subseteq[n]} \hat{f}(U)\chi_U(\mathbf{z}) \right) \right]
$$
\nDistributing out the product of sums
\n
$$
= \sum_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n} \left[\left(\sum_{S,T,U\subseteq[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z}) \right) \right]
$$
\nBy linearity of expectation

$$
= \sum_{S,T,U\subseteq[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)\underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\mathbb{E}}[\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})]
$$

Proof of Sum-Of-Cubes Lemma (Continued)

$$
\Pr_{x,y \in \{-1,1\}^n}[BLR(f) accepts] = \frac{1}{2} + \frac{1}{2} \sum_{S,T,U \subseteq [n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)_{x,y \in \{-1,1\}^n}[X_S(x)X_T(y)X_U(z)]
$$
\n
$$
\frac{\text{Claim. } \sum_{x,y \in \{-1,1\}^n}[X_S(x)X_T(y)X_U(z)] \text{ is 1 if } S = T = U \text{ and 0 otherwise.}}{\text{Let } S\Delta T \text{ denote symmetric difference of sets } S \text{ and } T}
$$
\n
$$
\Pr_{x,y \in \{-1,1\}^n}[X_S(x)X_T(y)X_U(z)] = \sum_{x,y \in \{-1,1\}^n}[\prod_{i \in S} x_i \prod_{i \in T} y_i \prod_{i \in U} z_i]
$$
\n
$$
= \sum_{x,y \in \{-1,1\}^n}[\prod_{i \in S\Delta U} x_i \prod_{i \in T} y_i \prod_{i \in U} x_i y_i]
$$
\n
$$
= \sum_{x,y \in \{-1,1\}^n}[\prod_{i \in S\Delta U} x_i \prod_{i \in T\Delta U} y_i]
$$
\n
$$
= \sum_{x \in \{-1,1\}^n}[\prod_{i \in S\Delta U} x_i \prod_{i \in T\Delta U} y_i]
$$
\n
$$
= \prod_{x \in \{-1,1\}^n}[\prod_{i \in S\Delta U} x_i] \cdot \sum_{y \in \{-1,1\}^n}[\prod_{i \in S\Delta U} y_i]
$$
\n
$$
= \prod_{i \in S\Delta U} \sum_{x \in \{-1,1\}^n} [x_i] \cdot \prod_{i \in T\Delta U} \sum_{y \in \{-1,1\}^n} [y_i]
$$
\n
$$
= \prod_{i \in S\Delta U} \sum_{x_i \in \{-1,1\}^n} [x_i] \cdot \prod_{i \in T\Delta U} \sum_{y_i \in \{-1,1\}^n} [y_i]
$$
\n
$$
= \begin{cases} 1 & \text{when } S\Delta U = \emptyset \text{ and } T\Delta U = \emptyset \end{cases}
$$

Proof of Sum-Of-Cubes Lemma (Done)

$$
\Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n}[\text{BLR}(f) \text{ accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S, T, U \subseteq [n]} \hat{f}(S) \hat{f}(T) \hat{f}(U) \sum_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [\chi_S(\mathbf{x}) \chi_T(\mathbf{y}) \chi_U(\mathbf{z})]
$$

$$
= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3
$$

Sum-Of-Cubes Lemma.
$$
\Pr_{x,y \in \{-1,1\}^n}[\text{BLR}(f) accepts] = \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3
$$

Proof of Correctness Theorem

Correctness Theorem (restated)

If *f* is ϵ -far from linear then Pr[BLR(*f*) accepts] $\leq 1 - \epsilon$.

Proof: Suppose to the contrary that

$$
1 - \varepsilon < \Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n}[\text{BLR}(f) \text{ accepts}]
$$

\n
$$
= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3
$$

\n
$$
\leq \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S) \right) \cdot \sum_{S \subseteq [n]} \hat{f}(S)^2 \geq 0
$$

\n
$$
= \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S) \right)
$$

\nParseval Equality

- Then max $S\mathsf{\subseteq}[n]$ $\hat{f}(S) > 1 - 2\varepsilon$. That is, $\hat{f}(T) > 1 - 2\varepsilon$ for some $T \subseteq [n]$.
- But $\hat{f}(T) = \langle f, \chi_T \rangle = 1 2 \cdot$ (fraction of *disagreements* between f and χ_T)
- f disagrees with a linear function χ_T on $\lt \varepsilon$ fraction of values.

⨳

BLR tests whether a function $f: \{0,1\}^n \rightarrow \{0,1\}$ is $linear$ or ε -far from linear $\left(\geq \varepsilon 2^{n} \right)$ values need to be changed to make it linear) in $\boldsymbol{0}$ 1 \mathcal{E}_{0}^{2} time.

Tolerant Property Testing [Parnas Ron Rubinfeld]

Two objects are at distance ε = they differ in an ε fraction of places *Equivalent problem:* approximating distance to the property with additive error.

Distance Approximation to Property

Input: Parameter $\varepsilon \in (0,1/2]$ and query access to an object f $dist(f, {\cal P}) = \min$ $g\in \bm{\mathcal{P}}$ $dist(f,g)$ $dist(f, g)$ = fraction of representation on which f and g differ Output: An estimate $\hat{\varepsilon}$ such that w.p. $\geq \frac{2}{3}$ 3 $|\hat{\varepsilon} - dist(f, \mathcal{P})| \leq \varepsilon$

Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter $\varepsilon \in (0,1/2]$ and

a list of *n* zeros and ones (equivalently, $f: [n] \rightarrow \{0,1\}$)

```
Question: How far is this list to being sorted?
```
(Equivalently, how far is f from monotone?)

 $dist(f, MONO)$ =distance from f to monotone $Dist(f, MONO) = n \cdot dist(f, MONO)$ Note: Dist(f, $MONO$) = $n - |LIS|$, where LIS is the longest increasing subsequence Output: An estimate $\hat{\varepsilon}$ such that w.p. $\geq \frac{2}{3}$ 3 $|\hat{\varepsilon} - \text{dist}(f, MONO)| \leq \varepsilon$ Today: can answer in $O\left(\frac{1}{\sigma^2}\right)$ $\left(\frac{1}{\varepsilon^2}\right)$ time [Berman Raskhodnikova Yaroslavtsev]

Distance to Monotonicity over POset Domains

- Let f be a function over a partially ordered domain D .
- Violated pair: 1 0
- The violation graph G_f is a directed graph with vertex set D whose edge set is the set of pairs (x, y) violated by f.
- VC_f is a minimum vertex cover of G_f
- MM_f is a maximum matching in G_f

Characterization of $Dist(f, \text{mono})$ for $f: D \rightarrow \{0,1\}$ [FLNRRS 02] $Dist(f, \text{Mono}) = |\text{MM}_f| = |VC_f|$

Distance to Monotonicity for 0/1 Sequences

- Let $f: [n] \rightarrow \{0,1\}$
- Great notation switch: $g_i = (-1)^{f(i)}$ for $i \in [n]$
- Cumulative sums: $s_0 = 0$ and $s_i = s_{i-1} + g_i$ for $i \in [n]$
- Final sum: $s_f = s_n$
- Maximum sum: $m_f = \max_{i=0}^n s_i$

Proof:

- 1. Construct a matching of that size
- 2. Construct a vertex cover of that size.

Distance to Monotonicity for 0/1 Sequences

Characterization dist(f, Mono) for f: $[n] \rightarrow \{0,1\}$
$Dist(f, Mono) = \frac{n - 2m_f + s_f}{2}$

Proof: (1) Construct a matching that leaves $2m_f - s_f$ nodes unmatched

Distance to Monotonicity for 0/1 Sequences

Proof: (2) Construct a vertex cover.