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Testing If a Boolean Function Is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Today: can answer in O e) time



Linearity Test [Blum Luby Rubinfeld 90]

(BLR Test (g, query access to f) \
1. Pick x and y independently and uniformly at random from {0,1}".
2. Setz = x+ yandquery fonx,y,and z. Accept iff f(z) = f(x) + f(y).

Analysis
If fis linear, BLR always accepts.

/COFI‘EC'CHESS Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95] A

If f is e-far from linear then > ¢ fraction of pairs x and y fail BLR test.
- J

e Then, by Witness Lemma (Lecture 1), 2/¢ iterations suffice.



Analysis Technique:
Fourier Expansion



Representing Functions as Vectors

Stack the 2™ values of f(x) and treat it as a vector in {O,l}zn.
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l_Inear functions

There are 2" linear functions: one for each subset S € [n].

I 0] 07
0 1 1
0 0 1
0 1 0
0 0 1
X@ = |, X{l} = o I , X[Tl] —_ .
0 1 1
0 0 0
0 1. 0

Parity on the positions indexed by set S is y¢(x, ..., x,,) = 2 X;
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Great Notational Switch

ldea: Change notation, so that we work over reals instead of a finite field.
e Vectorsin{0,1}2° —  Vectorsin R?".

e (O/False — 1 1/True — -1.

e Addition (mod 2) —  Multiplication in R.

e Boolean function: f : {—1,1}" - {—1,1}.

e Linear function ygs: {—1,1}" = {—1,1}is given by ys(x) = [];c5 x;.



Benefits of New Notation

" Inner product of functionsf g:{—1,1}" - {-1,1} )
(f,9) =— (dot product of f and g as vectors)
= avg [f@Wg@I= _E [f@gx]
\ x€e{—1,1} /

(f,g) =1— 2 - (fraction of disagreementsbetween f and g)

[ Claim. The functions (xs)sc[n] form an orthonormal basis for RZ".




Fourier Expansion Theorem

Idea: Work in the basis (Xs)sc[n], SO it is easy to see how close a specific
function f is to each of the linear functions.

/Fourier Expansion Theorem I
Every function f : {—1,1}" —» Ris uniquely expressible as a linear
combination (over R) of the 2" linear functions: A
( ) = 2 fSxs,

~ Sc[n]
there f(S) = (f, xs) is the Fourier Coefficient of f onset S. Y,




Parseval Equality

("Parseval Equality for Boolean Functions

Let f:{—1,1}" - {—1,1}. Then

(F.0r= ) 2 =1
\_ Scn]
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BLR Test in {-1,1} Notation

(BLR Test (f, ) )
1. Pick x and y independently and uniformly at random from {—1,1}".
2. Setz =xoyandquery fonx,y,and z. Acceptiff f(x)f(y)f(z) = 1.

Vector product notation: x o y = (X141, X2V2, e+ X V)

1 1 N
Sum-Of-Cubes Lemma. Pr _ [BLR(f)accepts] = =+ = E ()3
x,ye{—1,1}" 2 2 S
Cin

1 if BLR accepts

Proof: Indicator variable 15, p = {0 th .
otherwise

Ipir =5 +5 fOfDf (2).

1 1
Pt BLR(Daccepts] = E | [15,] A B F D]

By linearity of expectation 11



Proof of Sum-Of-Cubes Lemma

Sofar:  Pr [BLR(Paccepts] =5 +5 E  [f()f(3)f(2)]
Next:

E{ Ly [f () f(y)f(2)] By Fourier Expansion Theorem
= e <Sczn] F)xs () ) (ZH Fxr ) ) <UCZM Fxu(@) )

Distributing out the product of sums

= E ( z f(S)f(T)f(U)XS(x)XT(y)XU(Z)>

x,ye{—1,1}"
| \S, T, U<S[n]

By linearity of expectation

_ z FOFMFW). _E  xsxrMxu(@)]

x,ye{—1,1}"
S, T, Uc[n]
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Proof of Sum-Of-Cubes Lemma (Continued)

Pr_ [BLR(Daccepts] =5+5 > FOFMIW), _E, s o]

x,ye{—1,1}" x,ye{—1,1}"
S, T, Ucn]
[Claim. Xye{[_E1 1}n[)(5(x))(T(y))(U(z)] is1if S =T = U and 0 otherwise. y
e Let SATdenote symmetric difference of sets S and T
x,ye{[—El,l}" Xs()xr(V)xu(2)] = x,ye{[—E1,1}"[Hi€S xXi ier vi llieu zi)
] Sq =Xo
= xye{I—El 1 U Lies xi Hier vi lliey %] meeRT Ry
’ ’ : Since x* = y? =1
= xye{]El 1 UTiesav xi Iierav vil
' E ' [l_ ] E [1_[ ] Since x and y are independent
== . x . . .
xe{-1,1}" HesAuT ye{-1,1}" iesau i Since x and y's coordinates
= Miesav B al6i] Thierau ( E D] | areindependent
= [liesav xie{IE1,1}[xi] lierav yie{]:El'l}[yi]

_ {1 when SAU = @ and TAU = ¢

0 otherwise 3



Proof of Sum-Of-Cubes Lemma (Done)

Pr_ [BLR(Daccepts] =5+5 > FOFMFW), _E s o]

x,ye{—1,1}" 5772 m] x,ye{—1,1}"
41U = n

ZfSF

l\)lb—\
Nlr—\

1

1 A
{Sum-Of-Cubes Lemma. {Prl 1}n[BLR(f)accepts = E 5 z F($)3
Q




Proof of Correctness Theorem

( Correctness Theorem (restated)
L If f is e-far from linear then Pr[BLR(f) accepts] < 1 — ¢.
Proof: Suppose to the contrary that

1—¢e< X,ye{P_rl J}n[BLR(f )accepts]

—1

By Sum-Of-Cubes Lemma

1 1
_ 1 3
=213 2 /() .

Sc[n] Since f(5)2 =0

1 1 A "
<-4 . : 2
=273 (sné%f(s)) Z f(S)

Scn]
—_ 11 £ Parseval Equality
=3+3 (mpyf©)
. Thenglgaxf(S) > 1 — 2¢. Thatis, f(T) > 1 — 2¢ for some T € [n].

e Butf(T) =(f,xr) =1— 2 (fraction of disagreementsbetween f and y7)
e f disagrees with a linear function y; on < ¢ fraction of values. ¥
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Summary

BLR tests whether a function f:{0,1}"* — {0,1} is
linear or e-far from linear

(= 2™ values need to be changed to make it linear)

in 0 G) time.
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Tolerant Property Testing [Parnas Ron Rubinfeld]
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&

/
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=)
=)
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Don’t care

Reject with
probability > 2/3

Tolerant Property Tester

™M
Y

Far from
YES

=)
=)

Accept with
probability > 2/3

Don’t care

Reject with
probability > 2/3

Two objects are at distance ¢ = they differ in an & fraction of places
Equivalent problem: approximating distance to the property with
additive error.




Distance Approximation to Property 2

Input: Parameter € € (0,1/2] and query access to an object f

dist(f,P) = min dist(f, g)
geP

dist(f, g) = fraction of representation on which f and g differ

Output: An estimate & such that w.p. = %
1€ —dist(f,P)| < ¢
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Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter € € (0,1/2] and
a list of n zeros and ones (equivalently, f: [n] = {0,1})
Question: How far is this list to being sorted?
(Equivalently, how far is f from monotone?)

dist(f, MONQ) =distance from f to monotone
Dist(f, MONO) = n - dist(f, MONO)

Note: Dist(f, MONO) = n — |LIS]|,
where LIS is the longest increasing subsequence

Output: An estimate & such that w.p. = %
|€ — dist(f, MONO)| < ¢

. 1) ,.
Today: can answer in O (;) time [Berman Raskhodnikova Yaroslavtsev]
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Distance to Monotonicity over POset Domains

e Let f be afunction over a partially ordered domain D.

Violated pair;: e—=¢—¢—0—0—>0—0
o Vi pai : 3

* The violation graph Gy is a directed graph with vertex set D whose edge set
is the set of pairs (x, y) violated by f.

) VCf is @ minimum vertex cover of Gf

e MM;g is a maximum matching in Gy

( Characterization of Dist(f, Mono) for f: D — {0,1} [FLNRRS 02] )
L Dist(f, Mono) = |[MM;| = [V ;|
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Distance to Monotonicity for 0/1 Sequences

e Letf:[n] - {0,1}

e Great notation switch: g; = (—=1)® for i € [n]

e Cumulative sums: sp = 0ands; = s;_; + g; fori € [n]
* Final sum: s = sy

e Maximum sum: mg = max;—, S;

(" dist(f, Mono) for f: [n] — {0,1} [Berman Raskhodnikova Yaroslavtsev] B
n—2ms + s¢
2

Dist(f,Mono) =

Proof:
1. Construct a matching of that size
2. Construct a vertex cover of that size.
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Distance to Monotonicity for 0/1 Sequences

(" Characterization dist(f, Mono) for f: [n] = {0,1} )
L . n—2ms + s¢ J
Dist(f,Mono) = >

Proof: (1) Construct a matching that leaves 2m¢ — sy nodes unmatched
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Distance to Monotonicity for 0/1 Sequences

(" Characterization dist(f, Mono) for f: [n] = {0,1} )
L . n—2ms + s¢ J
Dist(f,Mono) = >

Proof: (2) Construct a vertex cover.
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