Sublinear Algorithms

LECTURE 2

Last time

- Introduction
- Basic models for sublinear-time computation
- Simple examples of sublinear algorithms **Today**
- Properties of lists and functions.
- Testing if a list is sorted/Lipschitz and if a function is monotone.

Sofya Raskhodnikova;Boston University

Reminders

HW1 is due Thursday at 10am It is posted on the course webpage: <https://cs-people.bu.edu/sofya/sublinear-course/>

Use Piazza for questions and discussions

Office hours (on zoom): Wednesdays, 1:00PM-2:30PM

Testing if a List is Sorted

Input: a list of *n* numbers x_1 , x_2 ,..., x_n

- Question: Is the list sorted? Requires reading entire list: $\Omega(n)$ time
- Approximate version: Is the list sorted or ϵ -far from sorted? (An ϵ fraction of x_i 's have to be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: $O((\log n)/\epsilon)$ time Ω (log n) queries

• Best known bounds:

 $\Theta(\log (εn)/ε)$ time

[Belovs, Chakrabarty Dixit Jha Seshadhri 15]

Testing Sortedness: Attempts

1. **Test**: Pick a random *i* and reject if $x_i > x_{i+1}$

Fails on:

1 1 1 1 0 0 0 0

 \leftarrow 1/2-far from sorted

2. **Test**: Pick random $i < j$ and reject if $x_i > x_j$

Fails on:

 \leftarrow 1/2-far from sorted

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

≤ *n* log *n* edges

- by adding a few "shortcut" edges (*i, j*) for *i* < *j*
- where each pair of vertices is connected by a path of length at most 2

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

- Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.
- If *xi* is an endpoint of a **violated** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All **good** numbers *xi* are sorted.

Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two **good** edges (*xi ,x^k*), (*x^k ,xj*). \Rightarrow $x_i \le x_k$ and $x_k \le x_j$

 \Rightarrow $x_i \le x_j$

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

- Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.
- If *xi* is an endpoint of a **bad** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All **good** numbers *xi* are sorted.

Claim 2. An ϵ -far list **violates** $\geq \epsilon$ /(2 log n) fraction of edges in 2-spanner.

Proof: If a list is ϵ -far from sorted, it has $\geq \epsilon$ n **bad** numbers. (Claim 1)

- Each **violated** edge contributes 2 **bad** numbers.
- 2-spanner has $\geq \epsilon$ n/2 **violated** edges out of \leq n log n.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

• Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.

Claim 2. An ϵ -far list **violates** $\geq \epsilon$ /(2 log n) fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n)/\epsilon$ edges from 2-spanner.

Algorithm

Sample (4 log n)/ ϵ edges (x_i , x_j) from the 2-spanner and reject if $x_i > x_j$.

Guarantee: All sorted lists are accepted.

All lists that are ϵ -far from sorted are rejected with probability $>$ 2/3. Time: $O((\log n)/\epsilon)$

Generalization

Observation:

The same test/analysis apply to any edge-transitive property of a list of numbers that allows extension.

- A property is edge-transitive if
	- 1) it can be expressed in terms conditions on ordered pairs of numbers

- A property allows extension if
	- 3) any function that satisfies (1) on a subset of the numbers can be extended to a function with the property

Testing if a Function is Lipschitz **[Jha R]**

A function $f: D \to R$ is Lipschitz if it has Lipschitz constant 1: that is, if for all x,y in *D*, $distance_R(f(x),f(y)) \leq distance_D(x,y).$

Consider $f: \{1,...,n\} \rightarrow \mathbb{R}$:

nodes = points in the domain; edges = points at distance 1

node labels = values of the function

The Lipschitz property is *edge-transitive*:

- 1. a pair (x, y) is *good* if $|f(y)-f(x)| \le |y-x|$
- 2. (x,y) and (y,z) are *good* \Rightarrow (x,z) is *good*

It also allows extension for the range \mathbb{R} .

I:ing if a function f : {1,...,n} $\rightarrow \mathbb{R}$ is Lipschitz takes $O((\log n)/\epsilon)$ time.

Does the spanner-based test apply if the range is \mathbb{R}^2 with Euclidean distances? \mathbb{Z}^2 with Euclidean distances?

- Sorted or ε -far from sorted?
- Lipschitz (does not change too drastically) or ε -far from satisfying the Lipschitz property?

O(log n/ ε) time

This bound is tight (unless ε is really tiny w.r.t. n) [Chakrabarty Dixit Jha Seshadhri 15]

Basic Properties of Functions

Boolean Functions $f: \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: n -dimensional hypercube

011001

 \mathcal{Y}

- \bullet vertices: bit strings of length n
- \bullet edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 001001 χ
- each vertex x is labeled with $f(x)$

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

• A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is monotone if increasing a bit of x does not decrease $f(x)$.

• Is f monotone or ε -far from monotone

(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if $f(x) > f(y)$.

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for restricted class of tests
- Advanced techniques: $\Theta(\sqrt{n}/\varepsilon^2)$ for nonadaptive tests, $\Omega(\sqrt[3]{n})$

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]

2

Monotonicity Test **[GGLRS, DGLRRS]**

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\varepsilon$ edges (x, y) uniformly at random from the hypercube.
- **2. Reject** if some (x, y) is violated (i.e. $f(x) > f(y)$). Otherwise, **accept**.

Analysis

- If f is monotone, EdgeTest always accepts.
- If f is ε -far from monotone, by Witness Lemma, it suffices to show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n}$ \boldsymbol{n} $\cdot 2^{n-1}n = \varepsilon 2^{n-1}$ edges) are violated by f.

- Let $V(f)$ denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon 2^{n-1}$,

f can be made monotone by changing $\langle \varepsilon \rangle \leq 2^n$ values.

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.

Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ **in one dimension to** $0 \rightarrow 1$.

Let V_i = # of violated edges in dimension j

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

Enough to prove the claim for squares

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled $0\rightarrow 1$, and the vertical violation is repaired.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

After we perform swaps in all dimensions:

- f becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (#$ violated edges in dim 2 after swapping dim 1) $+ 2 \cdot (#$ violated edges in dim 3 after swapping dim 1 and 2) $+ ... \leq 2 \cdot V_1 + 2 \cdot V_2 + ... 2 \cdot V_n = 2 \cdot V(f)$

Repair Lemma

can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Improve the bound by a factor of 2.

Testing if a Functions $f : \{0,1\}^n \rightarrow \{0,1\}$ is monotone

Monotone or ε -far from monotone?

 $O(n/\varepsilon)$ time (logarithmic in the size of the input)

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions $f\!:\!\{1,...,n\}^d \rightarrow \mathbb{R}$, including:

- Lipschitz property [Jha **R**]
- Bounded-derivative properties [Chakrabarty Dixit Jha Seshadhri]
- Unateness[Baleshzar Chakrabarty Pallavoor **R** Seshadhri]