Sublinear Algorithms

LECTURE 2

Last time

- Introduction
 - Basic models for sublinear-time computation
- Simple examples of sublinear algorithms
 Today
- Properties of lists and functions.
- Testing if a list is sorted/Lipschitz and if a function is monotone.

Sofya Raskhodnikova; Boston University

Reminders

HW1 is due Thursday at 10am It is posted on the course webpage: https://cs-people.bu.edu/sofya/sublinear-course/

Use Piazza for questions and discussions

Office hours (on zoom): Wednesdays, 1:00PM-2:30PM

Testing if a List is Sorted

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

- Question: Is the list sorted?
 Requires reading entire list: Ω(n) time
- Approximate version: Is the list sorted or ε-far from sorted? (An ε fraction of x_i's have to be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/ε) time Ω(log n) queries

• Best known bounds:

 $\Theta(\log (\epsilon n)/\epsilon)$ time

[Belovs, Chakrabarty Dixit Jha Seshadhri 15]

Testing Sortedness: Attempts

1. **Test**: Pick a random *i* and reject if $x_i > x_{i+1}$

Fails on:

1 1 1 1 0 0 0 0

 \leftarrow 1/2-far from sorted

- 2. **Test**: Pick random i < j and reject if $x_i > x_j$ Fails on: 1 0 2 1 3 2 4 3 5 4
- \leftarrow 1/2-far from sorted

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

≤ *n* log *n* edges

- by adding a few "shortcut" edges (*i*, *j*) for *i* < *j*
- where each pair of vertices is connected by a path of length at most 2

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.

Analysis:

- Call an edge (x_i, x_i) violated if $x_i > x_i$, and good otherwise.
- If x_i is an endpoint of a **violated** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All good numbers x_i are sorted.

Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two **good** edges (x_i, x_k) , (x_k, x_j) . $\Rightarrow x_i \le x_k$ and $x_k \le x_j$

 $\Rightarrow x_i \leq x_j$

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.

Analysis:

- Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.
- If x_i is an endpoint of a **bad** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All good numbers x_i are sorted.

Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ϵ -far from sorted, it has $\geq \epsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \epsilon n/2$ violated edges out of $\leq n \log n$.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

• Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.

Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n)/\epsilon$ edges from 2-spanner.

Algorithm

Sample (4 log n)/ ϵ edges (x_i, x_i) from the 2-spanner and reject if $x_i > x_i$.

Guarantee: All sorted lists are accepted.

All lists that are ϵ -far from sorted are rejected with probability $\geq 2/3$. Time: O((log n)/ ϵ)

Generalization

Observation:

The same test/analysis apply to any edge-transitive property of a list of numbers that allows extension.

- A property is edge-transitive if
 - 1) it can be expressed in terms conditions on ordered pairs of numbers

- A property allows extension if
 - 3) any function that satisfies (1) on a subset of the numbers can be extended to a function with the property

Testing if a Function is Lipschitz [Jha R]

A function $f : D \rightarrow R$ is Lipschitz if it has Lipschitz constant 1: that is, if for all x,y in D, $distance_R(f(x), f(y)) \leq distance_D(x, y)$.

Consider $f: \{1, ..., n\} \rightarrow \mathbb{R}$:

nodes = points in the domain; edges = points at distance 1

node labels = values of the function

The Lipschitz property is *edge-transitive*:

- 1. a pair (x, y) is good if $|f(y)-f(x)| \le |y-x|$
- 2. (x,y) and (y,z) are good \Rightarrow (x,z) is good

It also allows extension for the range \mathbb{R} .

 \mathbb{Z} :ing if a function $f: \{1, ..., n\} \rightarrow \mathbb{R}$ is Lipschitz takes $O((\log n)/\epsilon)$ time.

Does the spanner-based test apply if the range is \mathbb{R}^2 with Euclidean distances? \mathbb{Z}^2 with Euclidean distances?

- Sorted or ε -far from sorted?
- Lipschitz (does not change too drastically)
 or ε-far from satisfying the Lipschitz property?

O(log n/ ε) time

This bound is tight (unless ε is really tiny w.r.t. n) [Chakrabarty Dixit Jha Seshadhri 15]

Basic Properties of Functions

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube

011001

y

- vertices: bit strings of length n
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

 A function f : {0,1}ⁿ → {0,1} is monotone if increasing a bit of x does not decrease f(x).

• Is f monotone or ε -far from monotone

(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for restricted class of tests
- Advanced techniques: $\Theta(\sqrt{n}/\epsilon^2)$ for nonadaptive tests, $\Omega(\sqrt[3]{n})$

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]

Monotonicity Test [GGLRS, DGLRRS]

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\epsilon$ edges (x, y) uniformly at random from the hypercube.
- **2.** Reject if some (x, y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

- If *f* is monotone, **EdgeTest** always accepts.
- If f is ε -far from monotone, by Witness Lemma, it suffices to show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1}n = \varepsilon 2^{n-1}$ edges) are violated by f.

- Let V(f) denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon 2^{n-1}$,

f can be made monotone by changing $< \varepsilon 2^n$ values.

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.

Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

Let V_j = # of violated edges in dimension j

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

Enough to prove the claim for squares

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled 0→1, and the vertical violation is repaired.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$

After we perform swaps in all dimensions:

- f becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (\# \text{ violated edges in dim 2 after swapping dim 1})$ + 2 \cdot (# violated edges in dim 3 after swapping dim 1 and 2) + ... $\leq 2 \cdot V_1 + 2 \cdot V_2 + \cdots 2 \cdot V_n = 2 \cdot V(f)$

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Improve the bound by a factor of 2.

Testing if a Functions $f : \{0,1\}^n \rightarrow \{0,1\}$ is monotone

Monotone or ε -far from monotone?

 $O(n/\varepsilon)$ time (logarithmic in the size of the input)

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions $f: \{1, ..., n\}^d \to \mathbb{R}$, including:

- Lipschitz property [Jha R]
- Bounded-derivative properties [Chakrabarty Dixit Jha Seshadhri]
- Unateness [Baleshzar Chakrabarty Pallavoor **R** Seshadhri]