Sublinear Algorithms

LECTURE 20

Last time

- Testing linearity
- Tolerant testing and distance approximation

Today

• Approximating the distance to sortedness (length of LIS) of 0/1 sequences

Thank you for signing up to grade HIW 4

Sofya Raskhodnikova; Boston University

Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter $\varepsilon \in (0,1/2]$ and

a list of *n* zeros and ones (equivalently, $f: [n] \rightarrow \{0,1\}$)

```
Question: How far is this list to being sorted?
```
(Equivalently, how far is f from monotone?)

 $dist(f, MONO)$ =distance from f to monotone $Dist(f, MONO) = n \cdot dist(f, MONO)$ Note: Dist(f, $MONO$) = $n - |LIS|$, where LIS is the longest increasing subsequence Output: An estimate $\hat{\varepsilon}$ such that w.p. $\geq \frac{2}{3}$ 3 $|\hat{\varepsilon} - \text{dist}(f, MONO)| \leq \varepsilon$ Today: can answer in $O\left(\frac{1}{\sigma^2}\right)$ $\left(\frac{1}{\varepsilon^2}\right)$ time [Berman Raskhodnikova Yaroslavtsev]

Distance to Monotonicity over POset Domains

- Let f be a function over a partially ordered domain D .
- Violated pair: 1 0
- The violation graph G_f is a directed graph with vertex set D whose edge set is the set of pairs (x, y) violated by f.
- VC_f is a minimum vertex cover of G_f
- MM_f is a maximum matching in G_f

Characterization of $Dist(f, \text{mono})$ for $f: D \rightarrow \{0,1\}$ [FLNRRS 02] $Dist(f, \text{Mono}) = |\text{MM}_f| = |VC_f|$

Distance to Monotonicity for 0/1 Sequences

- Let $f: [n] \to \{0,1\}$
- Great notation switch: $g_i = (-1)^{f(i)}$ for $i \in [n]$
- Cumulative sums: $s_0 = 0$ and $s_i = s_{i-1} + g_i$ for $i \in [n]$
- Final sum: $s_f = s_n$
- Maximum sum: $m_f = \max_{i=0}^n s_i$

Proof:

- 1. Construct a matching of that size
- 2. Construct a vertex cover of that size.

Distance to Monotonicity for 0/1 Sequences

Characterization dist(f, Mono) for f: $[n] \rightarrow \{0,1\}$
$Dist(f, Mono) = \frac{n - 2m_f + s_f}{2}$

Proof: (1) Construct a matching that leaves $2m_f - s_f$ nodes unmatched

Distance to Monotonicity for 0/1 Sequences

Proof: (2) Construct a vertex cover.

Distance to Monotonicity: Algorithm

Algorithm (**Input:** ε , n ; query *acess to* f : $[n] \rightarrow \{0,1\}$

- 1. Sample a random subset $S \subset [n]$ 2. Let $\tilde{f} = f_{|S}$ where each element is included w.p. s/n independently
- 3. Compute $\tilde{\varepsilon} = Dist(\tilde{f}, Mono)/s$
- 4. **Return** $\tilde{\varepsilon}$

• Let
$$
\varepsilon_f = dist(f, \text{Mono}) = Dist(f, \text{Mono})/n
$$

Theorem

$$
\varepsilon_f - \sqrt{2\varepsilon_f/s} \le \mathbb{E}[\tilde{\varepsilon}] \le \varepsilon_f
$$

Var[\tilde{\varepsilon}] = O(\varepsilon_f/s)

Proof idea: Let $Z(S) = Dist(\tilde{f}, \text{Mono})$

We'll define random variables $X(S)$ and $Y(S)$, such that $X(S) \leq Z(S) \leq Y(S)$ $X(S)$ will be in terms of matching MM_f ; $Y(S)$ in terms of vertex cover VC_f

Upper Bound on $Z(S)$

Define $Y(S) = |VC_f \cap S|$

Upper Bound Lemma

(a) $Z(S) \leq Y(S)$, (b) $\mathbb{E}[Y(S)] = \varepsilon_f \cdot s$ and $\text{Var}[Y(S)] \leq \varepsilon_f \cdot s$

Proof: (a)
$$
Z(S) = Dist(\tilde{f}, \text{Mono}) = |VC_{\tilde{f}}|
$$

- Each pair violated by \tilde{f} is also violated by f
- $VC_f \cap S$ is a vertex cover (not necessarily minimum) of $G_{\tilde{f}}$ $Z(S) = Dist(\tilde{f}, \text{Mono}) = |VC_{\tilde{f}}| \leq |VC_{f} \cap S| = Y(S)$
- (b) Recall that $|VC_f| = \varepsilon_f \cdot n$
- Each element of VC_f appears in S independently w.p. s/n
- $Y(S)$ is binomial with mean $|VC_f| \cdot \frac{s}{n}$ $\frac{s}{n} = \varepsilon_f \cdot s$ and variance $\left|VC_f\right| \cdot \frac{s}{n}$ \boldsymbol{n} $1-\frac{s}{n}$ $\left(\frac{3}{n}\right) \leq \varepsilon_f \cdot s$

Lower Bound on $Z(S)$

- Let $\ell = |MM_f| = \varepsilon_f \cdot n$ MM_f consist of ℓ pairs of the form (a, b) Let $a_1 < a_2 < \cdots < a_\ell$ be the lower endpoints of pairs in MM_f Let $b_1 < b_2 < \cdots < b_\ell$ be the upper endpoints of pairs in MM_f • Then $a_i < b_i$ for all $i \in [\ell]$ $f(a) = 1$ $f(b) = 0$ a b $f(a_i) = 1$ $f(b_i) = 0$
- Guaranteed edges are pairs of the form (a_i, b_j) where $i \leq j$

- Let $\widetilde{MM}(S)$ denote a maximum matching that consists of guaranteed edges
- Define $X(S) = |\widetilde{MM}(S)|$

Lower Bound Lemma

(a) $X(S) \leq Z(S)$, (b) $\mathbb{E}[X(S)] \geq \varepsilon_f \cdot s - \sqrt{4.5\varepsilon_f \cdot s}$ and $Var[X(S)] = O(\varepsilon_f \cdot s)$

Proof of Lower Bound Lemma: Random Walk

- Recall: $X(S) = |\widetilde{MM}(S)|$
- Let $X'(S) = |V(MM_f) \cap S|$
- $U(S)$ = number of element of $V(MM_f) \cap S$ left unmatched by $\widetilde{MM}(S)$
- Then $X(S) = \frac{X'(S) U(S)}{2}$ 2
- $X'(S)$ is binomial with mean $2\varepsilon_f \cdot s$ and variance $\leq 2\varepsilon_f \cdot s$
- To understand $U(S)$ define a random walk that at step $i \in [\ell]$ moves by

$$
g_i = \begin{cases} 1 & \text{if } \{a_i, b_i\} \cap S = \{b_i\} \\ -1 & \text{if } \{a_i, b_i\} \cap S = \{a_i\} \\ 0 & \text{otherwise} \end{cases}
$$

- Define $m(S)$ = the maximum value reached by the walk
- Define $p(S)$ = the final position reached by the walk

$$
\begin{array}{c}\n\hline\n\text{Claim} \\
U(S) \le 2m(S) - p(S)\n\end{array}
$$

Analyzing $2m(S) - p(S)$

Claim 2

$Pr[m(S) \geq z] \leq Pr[|p(S)| \geq z]$ for all $z \in [\ell]$

Analyzing the Expectation and Variance of $U(S)$

Claim

 $U(S) \leq 2m(S) - p(S)$

Claim 2

 $Pr[m(S) \geq z] \leq Pr[|p(S)| \geq z]$ for all $z \in [\ell]$

 $\mathbb{E}[U] \leq \mathbb{E}[2m(S) + |p(S)|] \leq 3\mathbb{E}[|p(S)|]$

Completing the Analysis

Lower Bound Lemma

(a) $X(S) \leq Z(S)$, (b) $\mathbb{E}[X(S)] \geq \varepsilon_f \cdot s - \sqrt{4.5\varepsilon_f \cdot s}$ and $\text{Var}[X(S)] = O(\varepsilon_f \cdot s)$

Upper Bound Lemma

(a) $Z(S) \leq Y(S)$, (b) $\mathbb{E}[Y(S)] = \varepsilon_f \cdot s$ and $\text{Var}[Y(S)] \leq \varepsilon_f \cdot s$

Theorem

$$
\varepsilon_f - \sqrt{2\varepsilon_f/s} \le \mathbb{E}[\tilde{\varepsilon}] \le \varepsilon_f
$$

Var $[\tilde{\varepsilon}] = O(\varepsilon_f/s)$