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Sublinear Algorithms

LECTURE 20
Last time
• Testing linearity

• Tolerant testing and distance approximation

Today
• Approximating the distance to sortedness

(length of LIS) of 0/1 sequences

Sofya Raskhodnikova; Boston University



Approximating Distance to Monotonicity for 0/1 Sequences
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Input: Parameter 𝜀 ∈ (0,1/2] and 

a list of 𝑛 zeros and ones (equivalently, 𝑓: 𝑛 → {0,1})

Question: How far is this list to being sorted?

(Equivalently, how far is 𝑓 from monotone?)

dist 𝑓,𝑀𝑂𝑁𝑂 =distance from 𝑓 to monotone

Dist 𝑓,𝑀𝑂𝑁𝑂 = 𝑛 ⋅ dist 𝑓,𝑀𝑂𝑁𝑂

Note: Dist 𝑓,𝑀𝑂𝑁𝑂 = 𝑛 − 𝐿𝐼𝑆 ,
where LIS is the longest increasing subsequence

Output: An estimate Ƹ𝜀 such that w.p. ≥
2
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Ƹ𝜀 − dist 𝑓,𝑀𝑂𝑁𝑂 ≤ 𝜀

Today: can answer in 𝑂
1

𝜀2
time [Berman Raskhodnikova Yaroslavtsev]



Distance to Monotonicity over POset Domains

• Let 𝑓 be a function over a partially ordered domain 𝐷.

• Violated pair: 

• The violation graph 𝐺𝑓 is a directed graph with vertex set 𝐷 whose edge set 

is the set of pairs (𝑥, 𝑦) violated by 𝑓. 

• 𝑉𝐶𝑓 is a minimum vertex cover of 𝐺𝑓

• 𝑀𝑀𝑓 is a maximum matching in 𝐺𝑓
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Characterization of Dist 𝑓,Mono for 𝑓: 𝐷 → 0,1 [FLNRRS 02]
Dist 𝑓,Mono = MM𝑓 = |𝑉𝐶𝑓|
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Distance to Monotonicity for 0/1 Sequences

• Let 𝑓: 𝑛 → 0,1

• Great notation switch: 𝑔𝑖 = −1 𝑓(𝑖) for 𝑖 ∈ [𝑛]

• Cumulative sums: 𝑠0 = 0 and 𝑠𝑖 = 𝑠𝑖−1 + 𝑔𝑖 for 𝑖 ∈ [𝑛]

• Final sum: 𝑠𝑓 = 𝑠𝑛

• Maximum sum: 𝑚𝑓 = max𝑖=0
𝑛 𝑠𝑖

Proof:

1. Construct a matching of that size

2. Construct a vertex cover of that size.
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dist(𝑓,𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1 [Berman Raskhodnikova Yaroslavtsev]

Dist 𝑓,Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓
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Distance to Monotonicity for 0/1 Sequences

Proof: (1) Construct a matching that leaves 2𝑚𝑓 − 𝑠𝑓 nodes unmatched
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Characterization dist(𝑓,𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1

Dist 𝑓,Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓
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Distance to Monotonicity for 0/1 Sequences

Proof: (2) Construct a vertex cover.
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Characterization dist(𝑓,𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1

Dist 𝑓,Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓
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Distance to Monotonicity: Algorithm

• Let 𝜀𝑓 = 𝑑𝑖𝑠𝑡 𝑓,𝑀𝑜𝑛𝑜 = 𝐷𝑖𝑠𝑡(𝑓,𝑀𝑜𝑛𝑜)/𝑛

Proof idea: Let 𝑍 𝑆 = 𝐷𝑖𝑠𝑡( ሚ𝑓,𝑀𝑜𝑛𝑜)

We’ll define random variables 𝑋(𝑆) and Y(𝑆), such that 𝑋 𝑆 ≤ 𝑍 𝑆 ≤ 𝑌(𝑆)

𝑋(𝑆) will be in terms of matching 𝑀𝑀𝑓;     𝑌(𝑆) in terms of vertex cover 𝑉𝐶𝑓
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Algorithm (Input: 𝜀, 𝑛; query 𝑎𝑐𝑒𝑠𝑠 𝑡𝑜 𝑓: 𝑛 → {0,1}

1. Sample a random subset 𝑺 ⊂ [𝑛]

2. Let ሚ𝑓 = 𝑓|𝑆
3. Compute ǁ𝜀 = 𝐷𝑖𝑠𝑡( ሚ𝑓,𝑀𝑜𝑛𝑜)/𝑠
4. Return ǁ𝜀

where each element is included w.p. 𝑠/𝑛 independently 

Theorem

𝜀𝑓 − 2𝜀𝑓/𝑠 ≤ 𝔼 ǁ𝜀 ≤ 𝜀𝑓

Var[ ǁ𝜀]= 𝑂(𝜀𝑓/𝑠)



Upper Bound on 𝒁(𝑺)

• Define Y 𝑆 = |𝑉𝐶𝑓 ∩ 𝑆|

Proof: (a) 𝑍 𝑆 = 𝐷𝑖𝑠𝑡 ሚ𝑓,𝑀𝑜𝑛𝑜 = VC ሚ𝑓

• Each pair violated by ሚ𝑓 is also violated by 𝑓

• 𝑉𝐶𝑓 ∩ 𝑆 is a vertex cover (not necessarily minimum) of 𝐺 ሚ𝑓

𝑍 𝑆 = 𝐷𝑖𝑠𝑡 ሚ𝑓,𝑀𝑜𝑛𝑜 = VC ሚ𝑓 ≤ 𝑉𝐶𝑓 ∩ 𝑆 = 𝑌(𝑆)

(b) Recall that 𝑉𝐶𝑓 = 𝜀𝑓 ⋅ 𝑛

• Each element of 𝑉𝐶𝑓 appears in 𝑆 independently w.p. 𝑠/𝑛

• 𝑌(𝑆) is binomial with mean 𝑉𝐶𝑓 ⋅
𝑠

𝑛
= 𝜀𝑓 ⋅ 𝑠 and                                           

variance 𝑉𝐶𝑓 ⋅
𝑠

𝑛
1 −

𝑠

𝑛
≤ 𝜀𝑓 ⋅ 𝑠
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Upper Bound Lemma

(a) 𝑍 𝑆 ≤ 𝑌(𝑆),   (b)  𝔼[𝑌(𝑆)]= 𝜀𝑓 ⋅ 𝑠 and  Var 𝑌 𝑆 ≤ 𝜀𝑓 ⋅ 𝑠



Lower Bound on 𝒁(𝑺)

• Let ℓ = 𝑀𝑀𝑓 = 𝜀𝑓 ⋅ 𝑛

• 𝑀𝑀𝑓 consist of ℓ pairs of the form 𝑎, 𝑏

• Let 𝑎1 < 𝑎2 < ⋯ < 𝑎ℓ be the lower endpoints of pairs in 𝑀𝑀𝑓

• Let 𝑏1 < 𝑏2 < ⋯ < 𝑏ℓ be the upper endpoints of pairs in 𝑀𝑀𝑓

• Then 𝑎𝑖 < 𝑏𝑖 for all 𝑖 ∈ [ℓ]

• Guaranteed edges are pairs of the form 𝑎𝑖 , 𝑏𝑗 where 𝑖 ≤ 𝑗

• Let ෪𝑀𝑀(𝑆) denote a maximum matching that consists of guaranteed edges

• Define 𝑋 𝑆 = | ෪𝑀𝑀(𝑆)|
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𝑓 𝑏 = 0𝑓 𝑎 = 1

𝑎 𝑏

𝑓 𝑎𝑖 = 1

𝑓 𝑏𝑖 = 0

Lower Bound Lemma

(a) 𝑋 𝑆 ≤ 𝑍(𝑆),   (b)  𝔼[𝑋(𝑆)]≥ 𝜀𝑓 ⋅ 𝑠 − 4.5𝜀𝑓 ⋅ 𝑠 and  Var 𝑋 𝑆 = 𝑂(𝜀𝑓 ⋅ 𝑠)



Proof of Lower Bound Lemma: Random Walk

• Recall: 𝑋 𝑆 = | ෪𝑀𝑀(𝑆)|

• Let 𝑋′ 𝑆 = |𝑉 𝑀𝑀𝑓 ∩ 𝑆|

• 𝑈 𝑆 = number of element of 𝑉 𝑀𝑀𝑓 ∩ 𝑆 left unmatched by ෪𝑀𝑀(𝑆)

• Then 𝑋 𝑆 =
𝑋′ 𝑆 −𝑈 𝑆
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• 𝑋′ 𝑆 is binomial with mean 2𝜀𝑓 ⋅ 𝑠 and  variance ≤ 2𝜀𝑓 ⋅ 𝑠

• To understand 𝑈(𝑆) define a random walk that at step 𝑖 ∈ [ℓ] moves by

𝑔𝑖 = ቐ
1 if 𝑎𝑖, 𝑏𝑖 ∩ 𝑆 = {𝑏𝑖}

−1 if 𝑎𝑖 , 𝑏𝑖 ∩ 𝑆 = {𝑎𝑖}
0 otherwise

• Define 𝑚 𝑆 = the maximum value reached by the walk

• Define 𝑝 𝑆 = the final position reached by the walk
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Claim

𝑈 𝑆 ≤ 2𝑚 𝑆 − 𝑝(𝑆)



Analyzing 2𝑚 𝑆 − 𝑝(𝑆)
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Claim 2

Pr 𝑚 𝑆 ≥ 𝑧 ≤ Pr 𝑝 𝑆 ≥ 𝑧 for all 𝑧 ∈ [ℓ]



Analyzing the Expectation and Variance of 𝑼(𝑺)

𝔼 𝑈 ≤ 𝔼 2𝑚 𝑆 + 𝑝 𝑆 ≤ 3𝔼 𝑝 𝑆
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Claim 2

Pr 𝑚 𝑆 ≥ 𝑧 ≤ Pr 𝑝 𝑆 ≥ 𝑧 for all 𝑧 ∈ [ℓ]

Claim

𝑈 𝑆 ≤ 2𝑚 𝑆 − 𝑝(𝑆)



Completing the Analysis
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Lower Bound Lemma

(a) 𝑋 𝑆 ≤ 𝑍(𝑆),   (b)  𝔼[𝑋(𝑆)]≥ 𝜀𝑓 ⋅ 𝑠 − 4.5𝜀𝑓 ⋅ 𝑠 and  Var 𝑋 𝑆 = 𝑂(𝜀𝑓 ⋅ 𝑠)

Upper Bound Lemma

(a) 𝑍 𝑆 ≤ 𝑌(𝑆),   (b)  𝔼[𝑌(𝑆)]= 𝜀𝑓 ⋅ 𝑠 and  Var 𝑌 𝑆 ≤ 𝜀𝑓 ⋅ 𝑠

Theorem

𝜀𝑓 − 2𝜀𝑓/𝑠 ≤ 𝔼 ǁ𝜀 ≤ 𝜀𝑓

Var[ ǁ𝜀]= 𝑂(𝜀𝑓/𝑠)


