Sublinear Algorithms

LECTURE 20

Last time
e Testing linearity
» Tolerant testing and distance approximation

Today
» Approximating the distance to sortedness

(length of LIS) of 0/1 sequences

Thank yow for signing up to grade HW 4

11/12/2020 Sofya Raskhodnikova; Boston University



Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter € € (0,1/2] and
a list of n zeros and ones (equivalently, f: [n] = {0,1})
Question: How far is this list to being sorted?
(Equivalently, how far is f from monotone?)

dist(f, MONQ) =distance from f to monotone
Dist(f, MONO) = n - dist(f, MONO)

Note: Dist(f, MONO) = n — |LIS]|,

where LIS is the longest increasing subsequence

Output: An estimate & such that w.p. = %
|€ — dist(f, MONO)| < ¢

. 1) ,.
Today: can answer in O (;) time [Berman Raskhodnikova Yaroslavtsev]



Distance to Monotonicity over POset Domains

e Let f be afunction over a partially ordered domain D.

Violated pair;: e—=¢—¢—0—0—>0—0
o Vi pai : 3

* The violation graph Gy is a directed graph with vertex set D whose edge set
is the set of pairs (x, y) violated by f.

) VCf is @ minimum vertex cover of Gf

e MM;g is a maximum matching in Gy

( Characterization of Dist(f, Mono) for f: D — {0,1} [FLNRRS 02] )
L Dist(f, Mono) = |[MM;| = [V ;|




Distance to Monotonicity for 0/1 Sequences

e Letf:[n] - {0,1}

e Great notation switch: g; = (—=1)® for i € [n]

e Cumulative sums: sp = 0ands; = s;_; + g; fori € [n]
* Final sum: s = sy

e Maximum sum: mg = max;—, S;

(" dist(f, Mono) for f: [n] — {0,1} [Berman Raskhodnikova Yaroslavtsev] B
n—2ms + s¢
2

Dist(f,Mono) =

Proof:
1. Construct a matching of that size
2. Construct a vertex cover of that size.



Distance to Monotonicity for 0/1 Sequences

(" Characterization dist(f, Mono) for f: [n] = {0,1} )
L . n—2ms + s¢ J
Dist(f,Mono) = >

Proof: (1) Construct a matching that leaves 2m¢ — sy nodes unmatched



Distance to Monotonicity for 0/1 Sequences

(" Characterization dist(f, Mono) for f: [n] = {0,1}

n— me + S¢
Dist(f,Mono) = >

Proof: (2) Construct a vertex cover.



Distance to Monotonicity: Algorithm

/Algorithm (Input: &, n; query acess to f:[n] - {0,1}
1. Sample arandom subset S C [n]

where each element is included w.p. s/n independently

2. Letf =fis
3. Compute § = Dist(f, Mono)/s

QL Return & /

e Lletegr = dist(f,Mono) = Dist(f, Mono)/n

( Theorem

L Ef—1/2€f/SS IE[g]SEf

Var[€]= 0(&f/s)

Proof idea: Let Z(S) = Dist(f, Mono)
We'll define random variables X(S) and Y(S), such that X(§) < Z(S) < Y(S)
X (S) will be in terms of matching MMg;  Y(S) in terms of vertex cover V(s



Upper Bound on Z(S)

e DefineY(S) = V(N S|

(Upper Bound Lemma
L(a) Z(S) =Y(S), (b) E[Y(S)]=¢&F-s and Var[Y(S)] <& s

— |

Proof: (a) Z(S) = DiSt(f: MO"O) = ‘ch‘

e Each pair violated byf is also violated by f
e« VC(fNSisavertex cover (not necessarily minimum) of Gy

2(S) = Dist(f, Mono) = |VC| < |V n 5| = ¥(S)
(b) Recall that |VCf| =& N
e Eachelement of V'Cr appears in § independently w.p. s/n
e Y(S5)is binomial with mean |VCf| % =& - s and
. S S
variance |VCf| -;(1 — —) <é&-"S

n



Lower Bound on Z(S)

a b
. Letf:lMMf|=5f'n O—>0—>0—>0—>0—>0—>0

e MM; consist of £ pairs of the form (a,b)  f(a) =1 fb) =0
e leta; <a; <:--<aybethelower endpoints of pairsin MMy  f(a;) =1
* letb; < by <:- < bybethe upper endpoints of pairsin MMy f(b;)) =0

e Thena; < b; foralli € [£]

e Guaranteed edges are pairs of the form (ai, bj) where i < j

Let MM (S) denote a maximum matching that consists of guaranteed edges
e Define X(S) = |MM(S)|

( Lower Bound Lemma

)
L(a) X(S) <Z(S), (b) E[X(S)]= & -5 —,/4.5¢ -5 and Var[X(5)] = O(sf - S)J




Proof of Lower Bound Lemma: Random Walk

Recall: X(S) = |[MM(S)|
Let X'(S) = [V(MM;) n S|
U(S) = number of element of V(MMf) N S left unmatched by MM(S)

Then X(S) = * (5)2‘”(5)

X'(S) is binomial with mean 2&¢ - s and variance < 2& - s
To understand U(S) define a random walk that at step i € [£] moves by
1 if{a;, b;}nS = {b;}
9i =3y—1 if{a;,b;} NS ={a;}
0 otherwise
Define m(S) = the maximum value reached by the walk
Define p(S) = the final position reached by the walk

(Claim ]
L W) = 20(5) — ) J
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Analyzing 2m(S) — p(S)

( Claim 2

L Pr[m(S) = z] < Pr[|p(S)| = z] forall z € []

w
J
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Analyzing the Expectation and Variance of U(S)

(" Claim W(CIalmZ )
L U(s) < 2m(S) —p(S) J Pr[m(S) = z] < Pr[|p(S)| = z] forall z € [£] J

E[U] < E[2m(S) + [p(S)I] < 3E[Ip(S)]]

12



Completing the Analysis

( Lower Bound Lemma

L(a) X(S) < Z(S), (b) E[X(S)]= & s —/4.5¢ s and Var[X(S)] = O(gf - s)

w
)

(Upper Bound Lemma

L(a) Z(S) =Y(S), (b) E[Y(S)]=¢&F-s and Var[Y(S)] <& s

( Theorem

L Ef_,/zgf/SS [E[g]SEf

Var[€]= 0(&f/s)

. I,
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