Sublinear Algorithms

LECTURE 22

Last time

- Approximating the distance to sortedness (length of LIS) of 0/1 sequences
- Gap Edit Distance

Today

• *L*_p-testing

Project Reports are due December 3

Sofya Raskhodnikova; Boston University

Testing Models

Two objects are at distance ε = they differ in an ε fraction of places *Equivalent problem:* approximating distance to the property.

Why Hamming Distance?

- Nice probabilistic interpretation
 - probability that two functions differ on a random point in the domain
- Natural measure for
 - algebraic properties (linearity, low degree)
 - properties of graphs and other combinatorial objects
- Motivated by applications to probabilistically checkable proofs (PCPs)
- It is equivalent to other natural distances for
 - properties of Boolean functions

Which stocks grew steadily?

Data from *http://finance.google.com*

$$L_p$$
-Testing

for properties of real-valued data [Berman Raskhodnikova Yaroslavtsev]

Use L_p-metrics to Measure Distances

• Functions $f, g: D \rightarrow [0,1]$ over (finite) domain D

Normalize the values, so they are between 0 and 1

• For
$$p \ge 1$$

 $L_p(f,g) = ||f - g||_p = \left(\sum_{x \in D} |f(x) - g(x)|^p\right)^{1/p}$

$$L_0(f,g) = ||f - g||_0 = |\{x \in D: f(x) \neq g(x)\}|$$

•
$$d_p(f,g) = \frac{||f-g||_p}{||1||_p}$$

Example:

L_p-Testing and Tolerant L_p-Testing

Functions $f, g: D \to [0,1]$ are at distance ε if $d_p = \frac{\|f-g\|_p}{\|\mathbf{1}\|_p} = \varepsilon$.

L_p-Testing Model for Real-Valued Data

- Generalizes standard L₀-testing
- For p > 0 still have a nice probabilistic interpretation: distance $d_p(f,g) = (\mathbf{E}[|f - g|^p])^{1/p}$
- Compatible with existing PAC-style learning models (preprocessing for model selection)
- For Boolean functions, $d_0(f,g) = d_p(f,g)^p$.

- 1. Relationships between L_p -testing models
- *2.* L_p -testing monotonicity

Relationships between L_p -Testing Models

Relationships Between L_p-**Testing Models**

 $C_p(P,\varepsilon)$ = complexity of L_p -testing property Pwith distance parameter ε

- e.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

For all properties **P**

- L_1 -testing is no harder than Hamming testing $C_1(P,\varepsilon) \leq C_0(P,\varepsilon)$
- L_p -testing for p > 1 is close in complexity to L_1 -testing $C_1(P,\varepsilon) \le C_p(P,\varepsilon) \le C_1(P,\varepsilon^p)$

Relationships Between L_p-**Testing Models**

 $C_p(P, \varepsilon)$ = complexity of L_p -testing property Pwith distance parameter ε

- e.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

For properties of Boolean functions $f: D \rightarrow \{0,1\}$

- L_1 -testing is equivalent to Hamming testing $C_1(P,\varepsilon) = C_0(P,\varepsilon)$
- L_p -testing for p > 1 is equivalent to L_1 -testing with appropriate distance parameter $C_p(P, \varepsilon) = C_1(P, \varepsilon^p)$

Property: Monotonicity of Functions

Monotonicity

- Domain $D=[n]^d$ (vertices of d-dim hypercube) (n, n, n)
- A function $f: D \to \mathbb{R}$ is monotone if increasing a coordinate of x does not decrease f(x).
- Special case d = 1

 $f:[n] \to \mathbb{R}$ is monotone $\Leftrightarrow f(1), \dots f(n)$ is sorted.

Monotonicity Testers: Running Time

^{*} Hiding some $\log 1/\varepsilon$ dependence

L_1 -Testing of Monotonicity

Monotonicity: Reduction to Boolean Functions

M = class of monotone functions

Characterization Theorem

$$L_{1}(f, M) = \int_{0}^{1} L_{1}(f_{(t)}, M) dt$$

Example:

) .5 .3 .2 .7

Characterization Theorem: One Direction

$$L_1(\boldsymbol{f}, \boldsymbol{M}) \leq \int_0^1 L_1(\boldsymbol{f}_{(\boldsymbol{t})}, \boldsymbol{M}) d\boldsymbol{t}$$

- $\forall t \in [0,1]$, let g_t =closest monotone (Boolean) function to $f_{(t)}$.
- Let $\boldsymbol{g} = \int_0^1 g_t d\boldsymbol{t}$. Then \boldsymbol{g} is monotone, since g_t are monotone.

$$L_{1}(f, M) \leq \|f - g\|_{1}$$

$$= \left\| \int_{0}^{1} f_{(t)} dt - \int_{0}^{1} g_{t} dt \right\|_{1}$$

$$= \left\| \int_{0}^{1} (f_{(t)} - g_{t}) dt \right\|_{1}$$

$$\leq \int_{0}^{1} \|f_{(t)} - g_{t}\|_{1} dt$$

$$= \int_{0}^{1} L_{1}(f_{(t)}, M) dt$$

Decomposition & definition of g
Triangle inequality
Definition of g_{t}

Characterization Theorem: the Other Direction

$$L_1(\boldsymbol{f}, \boldsymbol{M}) \ge \int_0^1 L_1(\boldsymbol{f}_{(\boldsymbol{t})}, \boldsymbol{M}) d\boldsymbol{t}$$

- Let **h** be closest monotone function to **f**.
- Then $h_{(t)}$ is monotone for all $t \in [0,1]$. $L_1(f, M) = \|f - h\|_1$ Because **h** is monotone $= \left\| \int_0^1 (f_{(t)} - h_{(t)}) dt \right\|_1$ Decomposition $\begin{aligned} f(x) &\geq h(x) \\ &\Leftrightarrow \\ f_{(t)} &\geq h_{(t)} \\ &\forall t \in [0,1] \end{aligned} = \sum_{x:f(x) \geq h(x)} \int_0^1 (f_{(t)} - h_{(t)}) dt + \sum_{x:f(x) < h(x)} \int_0^1 (h_{(t)} - f_{(t)}) dt \\ &= \int_0^1 \left(\sum_{x:f(x) \geq h(x)} (f_{(t)} - h_{(t)}) + \sum_{x:f(x) < h(x)} (h_{(t)} - f_{(t)}) \right) dt \end{aligned}$ $= \int_{0}^{1} \| f_{(t)} - h_{(t)} \|_{1} dt$ Triangle inequality $\geq \int_{0}^{1} L_{1}(\boldsymbol{f}_{(t)}, \boldsymbol{M}) d\boldsymbol{t}$ $h_{(t)}$ is monotone

Monotonicity: Using Characterization Theorem

Characterization Theorem

$$d_1(f, M) = \int_0^1 d_1(f_{(t)}, M) dt$$

We can use Characterization Theorem to get monotonicity L_1 -testers and tolerant testers from standard property testers for Boolean functions.

L₁-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error L_0 -test for monotonicity of $f: D \rightarrow \{0,1\}$ is also an L_1 -test for monotonicity of $f: D \rightarrow [0,1]$.

Proof:

• A violation (*x*, *y*):

- A nonadaptive, 1-sided error test queries a random set Q ⊆ D and rejects iff Q contains a violation.
- If $f: D \rightarrow [0,1]$ is monotone, Q will not contain a violation.
- If $d_1(f, M) \ge \varepsilon$ then $\exists t^* : d_0(f_{(t^*)}, M) \ge \varepsilon$
- W.p. $\geq 2/3$, set Q contains a violation (x, y) for $f_{(t^*)}$ $f_{(t^*)}(x) = 1, f_{(t^*)}(y) = 0$ \downarrow f(x) > f(y)

L_0 -Testing Monotonicity of $f: [n]^d \rightarrow \{0, 1\}$

Idea: 1. Pick axis-parallel lines ℓ .

2. Sample points from each ℓ , and check for violations of $f_{|\ell}$.

[DGLRRS 99]

- Testing sortedness: If $f: [n] \to \{0,1\}$ is ε -far from sorted then $O\left(\frac{1}{\varepsilon}\right)$ samples are sufficient to find a violation w/ const. prob.
- Dimension reduction: For $f: [n]^d \rightarrow \{0,1\}$

$$\mathbb{E}\left[d_0(f_{|\ell}, M)\right] \ge \frac{d_0(f, M)}{2d}.$$

How many lines should we sample?

How many points form each line?

General Work Investment Problem [Goldreich 13]

- Algorithm needs to find ``evidence'' (e.g., a violation).
- It can select an element from distr. Π (e.g., a uniform line).
- Elements *e* have different quality $q(e) \in [0,1]$

(e.g., $d_0(f_{|\ell}, M)$).

- Algorithm must invest more work into *e* with lower q(e) to extract evidence from *e* (e.g., need $\Theta\left(\frac{1}{q(e)}\right)$ samples).
- $\mathbb{E}_{e \leftarrow \Pi}[q(e)] \ge \mu.$

What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich Ron 97], testing properties of images [R 03], multi-input testing problems [G13]

Work Investment Strategies

• ``Reverse'' Markov Inequality

For a random variable $X \in [0,1]$ with expectation $\mathbb{E}[X] \ge \mu$, $\Pr\left[X \ge \frac{\mu}{2}\right] \ge \frac{\mu}{2}$.

Proof:
$$\mu \leq \mathbb{E}[X] \leq \Pr\left[X \geq \frac{\mu}{2}\right] \cdot 1 + \Pr\left[X < \frac{\mu}{2}\right] \cdot \frac{\mu}{2}$$
.

``Reverse'' Markov Strategy:

1. Sample
$$\Theta\left(\frac{1}{\mu}\right)$$
 lines.

2. Sample $\Theta\left(\frac{1}{\mu}\right)$ points from each line.

Cost:
$$\Theta\left(\frac{1}{\mu^2}\right)$$
 queries.

Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

Invest in elements of quality $q(e) \ge \frac{1}{2^i}$ separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable
$$X \in [0,1]$$
 with $\mathbb{E}[X] \ge \mu$, let
 $p_i = \Pr\left[X \ge \frac{1}{2^i}\right]$ and $k_i = \Theta\left(\frac{1}{2^i\mu}\right)$.

Then
$$\prod_{i=1}^{\log 4/\mu} (1-p_i)^{k_i} \le 1/3.$$

Bucketing Strategy: For each bucket $i \in \left[\log \frac{4}{\mu}\right]$ 1. Sample $k_i = \Theta\left(\frac{1}{2^i \mu}\right)$ lines. 2. Sample $\Theta(2^i)$ points from each line.

Cost: $\Theta\left(\frac{1}{\mu}\log\frac{1}{\mu}\right)$ queries (for monotonicity, $\mu = \frac{\varepsilon}{2d}$)

Monotonicity Testers: Running Time

f	L_0	L_p
[<i>n</i>] → {0,1}	$\Theta\left(\frac{1}{\epsilon}\right)$	$\Theta\left(\frac{1}{\boldsymbol{\varepsilon}^p}\right)$
[<i>n</i>] ^{<i>d</i>} → {0,1}	$O\left(\frac{d}{\varepsilon} \cdot \log \frac{d}{\varepsilon}\right)$	$O\left(\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}\right)$ $\Omega\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d = 2$ nonadaptive 1-sided error $\Theta\left(\frac{1}{\varepsilon^{p}}\right) \text{ for constant } d$ adaptive 1-sided error

Monotonicity Testers: Running Time

^{*} Hiding some $\log 1/\varepsilon$ dependence

Open Problems

- Our L₁-tester for monotonicity is nonadaptive, but we show that adaptivity helps for Boolean range.
 Is there a better adaptive tester?
- All our algorithms for L_p-testing for p ≥ 1 were obtained directly from L₁-testers.
 Can one design better algorithms by working directly with L_p-distances?
- We designed tolerant tester only for monotonicity (d=1,2).

Tolerant testers for higher dimensions? Other properties?