
11/23/2020

Sublinear Algorithms

LECTURE 23
Last time
• 𝐿𝑝-testing

• Today
• 𝐿𝑝-testing of monotonicity

• Work investment strategy

• Testing via learning

Sofya Raskhodnikova;Boston University

2

Tolerant Property Tester

Far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

𝑳𝒑-Testing and Tolerant 𝑳𝒑-Testing

Property Tester

Close to YES

Far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

𝜀 𝜀1
𝜀2

Functions 𝑓, 𝑔: 𝐷 → [0,1] are at distance 𝜀 if 𝑑𝑝 =
𝑓−𝑔 𝑝

𝟏 𝑝
= 𝜀.

Monotonicity

• Domain D=[𝑛]𝑑 (vertices of 𝑑-dim hypercube)

• A function 𝑓: 𝐷 → ℝ is monotone

if increasing a coordinate of 𝑥 does

not decrease 𝑓 𝑥 .

• Special case 𝑑 = 1

𝑓: [𝑛] → ℝ is monotone ⇔𝑓 1 ,…𝑓(𝑛) is sorted.

3

(1,1,1)

(𝑛, 𝑛, 𝑛)

Monotonicity Testers: Running Time

4

𝑓 𝐿0 𝐿𝑝

𝑛
→ [0,1]

Θ
log 𝑛

𝜺
[Ergün Kannan Kumar Rubinfeld

Viswanathan 00, Fischer 04]

Θ
1

𝜺𝑝

𝑛 𝑑

→ [0,1]
Θ

𝑑 ⋅ log 𝑛

𝜺
[Chakrabarty Seshadhri 13]

O
𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

∗
Hiding some log 1/𝜀 dependence

𝐿1-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error 𝐿0-test for monotonicity of

𝑓: 𝐷 → {0,1} is also an 𝐿1-test for monotonicity of 𝑓: 𝐷 → [0,1].

5

𝑳𝟎-Testing Monotonicity of 𝒇: 𝒏 𝒅 → {𝟎, 𝟏}

Idea: 1. Pick axis-parallel lines ℓ.

2. Sample points from each ℓ,

and check for violations of 𝑓|ℓ.

[DGLRRS 99]

• Testing sortedness: If 𝑓: 𝑛 → {0,1} is 𝜀-far from sorted then

𝑂
1

𝜀
samples are sufficient to find a violation w/ const. prob.

• Dimension reduction: For 𝑓: 𝑛 𝑑 → {0,1}

𝔼 𝑑0 𝑓|ℓ, 𝑀 ≥
𝑑0 𝑓,𝑀

2𝑑
.

How many lines should we sample?

How many points form each line?

6

General Work Investment Problem [Goldreich 13]

• Algorithm needs to find ``evidence’’ (e.g., a violation).

• It can select an element from distr. Π (e.g., a uniform line).

• Elements 𝑒 have different quality 𝑞 𝑒 ∈ [0,1]

(e.g., 𝒅𝟎 𝒇|ℓ,𝑴).

• Algorithm must invest more work into 𝑒 with lower 𝑞(𝑒) to

extract evidence from 𝑒 (e.g., need 𝚯
𝟏

𝒒(𝒆)
samples).

• 𝔼𝒆←𝚷[𝑞(𝑒)] ≥ 𝜇.

What’s a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich

Ron 97], testing properties of images [R 03], multi-input testing problems [G13]

7

Work Investment Strategies

• ``Reverse’’ Markov Inequality

For a random variable 𝑋 ∈ [0,1] with expectation 𝔼 𝑋 ≥ 𝜇,

Pr 𝑋 ≥
𝜇

2
≥
𝜇

2
.

Proof: 𝜇 ≤ 𝔼 𝑋 ≤ Pr 𝑋 ≥
𝜇

2
⋅ 1 + Pr 𝑋 <

𝜇

2
⋅
𝜇

2
.

``Reverse’’ Markov Strategy:

1. Sample Θ
1

𝜇
lines.

2. Sample Θ
1

𝜇
points from each line.

Cost: Θ
1

𝜇2
queries.

8

Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

Invest in elements of quality 𝑞 𝑒 ≥
1

2𝑖
separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑝𝑖 = Pr 𝑋 ≥
1

2𝑖
and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then ς𝑖=1
log 4/𝜇

1 − 𝑝𝑖
𝑘𝑖 ≤ 1/3.

Bucketing Strategy: For each bucket 𝑖 ∈ log
4

𝜇

Cost: Θ
1

𝜇
log

1

𝜇
queries (for monotonicity, 𝝁 =

𝜺

𝟐𝒅
)

9

1. Sample 𝑘𝑖 = Θ
1

2𝑖𝜇
lines.

2. Sample Θ 2𝑖 points from each line.

Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
, 𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖
, and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖
≥

𝜇

4

10

Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
, 𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖
, and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖
≥

𝜇

4

11

Monotonicity Testers: Running Time

12

𝑓 𝐿0 𝐿𝑝
𝑛
→ {0,1}

Θ
1

𝜺
Θ

1

𝜺𝑝

𝑛 𝑑

→ {0,1}

O
𝑑

𝜺
⋅ log

𝑑

𝜺
O

𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

Θ
1

𝜺𝑝
for constant 𝑑

adaptive 1-sided error

Testing Monotonicity of 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}

• For nonadaptive, 1-sided error testers, Ω
1

𝜀
log

1

𝜀
queries are

needed.

• There is an adaptive, 1-sided error tester with 𝑂
1

𝜀
queries.

Method: testing via learning.

13

Partial Learning

• An ε-partial function 𝑔 with domain 𝐷 and range 𝑅 is a function
𝑔 ∶ 𝐷 → 𝑅 ∪ {?} that satisfies Pr𝑥∈𝐷[𝑔(𝑥) = ?] ≤ ε.

• An ε-partial function 𝑔 agrees with a function 𝑓 if
𝑔(𝑥) = 𝑓(𝑥) for all 𝑥 on which 𝑔 𝑥 ≠?.

• Given a function class 𝓒, let 𝓒𝜺 denote the class of ε-partial functions,
each of which agrees with some function in 𝓒.

• An ε-partial learner for a function class 𝓒 is an algorithm that,
given a parameter ε and oracle access to a function 𝑓,
outputs a hypothesis 𝑔 ∈ 𝓒𝜺 or fails.
Moreover, if 𝑓 ∈ 𝓒 then it outputs 𝑔 that agrees with 𝑓.

14

Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.

Proof of the Conversion Lemma

15

Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.

Proof of the Conversion Lemma (continued)

16

Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.

Partial Learner of Monotone functions 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}

17

Lemma

There is an 𝜀-partial learner for the class of monotone Boolean functions
over 𝑛 2 that makes 𝑂(1/𝜀) queries.

Image credit: Pradeep Pujari

𝟏

𝟎
𝟎

𝟏
𝟏

𝟎
?

𝟏

𝟎
?Idea:

• Divide the grid into quarters.

• Query the bottom left and the top right corner for each quarter.

• If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at log
1

𝜀
+ 1 levels.

• If ≥ 2𝑗+1 nodes at level 𝑗 are ?, fail.

Correctness of the Learner

18

Claim

If the input function is monotone, level 𝑗 will have fewer than 2𝑗+1 nodes ?.

Monotonicity Testers: Running Time

19

𝑓 𝐿0 𝐿𝑝
𝑛
→ {0,1}

Θ
1

𝜺
Θ

1

𝜺𝑝

𝑛 𝑑

→ {0,1}

O
𝑑

𝜺
⋅ log

𝑑

𝜺
O

𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

Θ
1

𝜺𝑝
for constant 𝑑

adaptive 1-sided error

Monotonicity Testers: Running Time

20

𝑓 𝐿0 𝐿𝑝

𝑛
→ [0,1]

Θ
log 𝑛

𝜺
[Ergün Kannan Kumar Rubinfeld

Viswanathan 00, Fischer 04]

Θ
1

𝜺𝑝

𝑛 𝑑

→ [0,1]
Θ

𝑑 ⋅ log 𝑛

𝜺
[Chakrabarty Seshadhri 13]

O
𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

∗
Hiding some log 1/𝜀 dependence

Distance Approximation and Tolerant Testing

21

𝑓 𝐿0 𝐿1

𝑛
→ [0,1] polylog 𝑛 ⋅

𝟏

𝜺

𝑶 𝟏/𝜺

[Saks Seshadhri 10]

Θ
𝟏

𝜺𝟐

Approximating 𝑳𝟏-distance to monotonicity ±𝜺 𝒘.𝒑.≥ 𝟐/𝟑

• Time complexity of tolerant 𝐿1-testing for monotonicity is

O
𝜺𝟐

(𝜺𝟐 − 𝜺𝟏)
𝟐

.

Open Problems

• Our 𝐿1-tester for monotonicity is nonadaptive, but
adaptivity helps for Boolean range.

Is there a better adaptive tester?

• All our algorithms for 𝐿𝑝-testing for 𝑝 ≥ 1 were

obtained directly from 𝐿1-testers.

Can one design better algorithms by working directly
with 𝐿𝑝-distances?

• We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?

Other properties?
23

