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L,-Testing and Tolerant L,,-Testing
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Monotonicity

e Domain D=[n]? (vertices of d-dim hypercube) (n,n,n)

e Afunction f: D — Ris monotone /‘
if increasing a coordinate of x does g

not decrease f(x). f 1
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f:[n] = Ris monotone & f(1), ... f(n) is sorted.



Monotonicity Testers: Running Time
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L,-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error Ly-test for monotonicity of
f:D — {0,1}is also an L;-test for monotonicity of f: D — [0,1].




L,-Testing Monotonicity of f: [n]¢ - {0, 1}

Idea: 1. Pick axis-parallel lines .

2. Sample points from each 4,

and check for violations of f|,.

[DGLRRS 99] l
e Testing sortedness: If f:[n] — {0,1}is e-far from sorted then

1 . . . .
0 (E) samples are sufficient to find a violation w/ const. prob.

e Dimension reduction: For f:[n]¢ — {0,1}
do( M)
E[do(fie, M)] = 23

How many lines should we sample?

How many points form each line?



General Work Investment Problem [Goldreich 13]

e Algorithm needs to find “evidence” (e.g., a violation).
e |t can select an element from distr. II (e.g., a uniform line).
e Elements e have different quality q(e) € [0,1]

(e.g., do(fr, M)).
e Algorithm must invest more work into e with lower g(e) to

extract evidence from e (e.g., need 0 (L) samples).

q(e)
* Eeenlq(e)] = p.
What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich
Ron 97], testing properties of images [R 03], multi-input testing problems [G13]



Work Investment Strategies
A

“Reverse’” Markov Inequality A

For a random variable X € [0,1] with expectation E[X] > u,
Ul _ M

P [X = —] = .
=212

- J

Proof: u < E[X] SPr[XZ%]-1+Pr[X<§]-%.

“Reverse” Markov Strategy:

1. Sample © (i) lines.

2. Sample ® (i) points from each line.

Cost: 0 (u_12> gueries.



Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

: . 1
Invest in elements of quality g(e) = P separately.

@ucketing Inequality [Berman R Yaroslavtsev 14] N\
For a random variable X € [0,1] with E [X] > ,u, let
—Pr[X ]andk-@)( )
2tu
log 4/p k;
Then [[.25 " (1 —py)* < 1/3.
- /

Bucketing Strategy: For each bucket i € {log%‘
1. Samplek; =0 (i) lines.
2tu

2. Sample @(Zi) points from each line.

1. 1 . . _ £
Cost: © (;log;> queries (for monotonicity, u = 2d)



Proof of Bucketing Inequality

/Bucketing Inequality [Berman R Yaroslavtsev 14] B

For a random variable X € [0,1] with E [X] = p, let
4 1 1
t = log;, p; = Pr [X > ;], and k; =0 (ﬁ)

\_Then [Ti-,(1 —p)ki < 6. )

Proof: It suffices to prove X, % =
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Proof of Bucketing Inequality (Continued)

/Bucketing Inequality [Berman R Yaroslavtsev 14] B

For a random variable X € [0,1] with E [X] = p, let

t = log%, p; = Pr [X > %], and k; = @(ﬁ)

\_Then [Ti-,(1 —p)ki < 6. )

Proof: It suffices to prove X, % =

Ll RS
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Monotonicity Testers: Running Time
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Testing Monotonicity of f: [n]? - {0, 1}

: : 1 1 :
e For nonadaptive, 1-sided error testers, () (Elog;) gueries are

needed.
e There is an adaptive, 1-sided error tester with O e) queries.

Method: testing via learning.

13



Partial Learning

e An e-partial function g with domain D and range R is a function
g: D — R U{?}that satisfies Prep[g(x) = ?] <e.

e An g-partial function g agrees with a function f if
g(x) = f(x) forall x on which g(x) #>.

e Given a function class C, let C, denote the class of e-partial functions,
each of which agrees with some function in C.

e An e-partial learner for a function class C is an algorithm that,
given a parameter € and oracle access to a function f,
outputs a hypothesis g € C; or fails.

Moreover, if f € C then it outputs g that agrees with f.

" Lemma (Conversion from Learner to Tester) A

If there is an e-partial learner for a function class C that makes q(&) queries

then C can be e-tested with 1-sided error with q(¢/2) + 0(1/¢) queries.
-

14



Proof of the Conversion Lemma

" Lemma (Conversion from Learner to Tester)

~

If there is an e-partial learner for a function class C that makes q(¢) queries

then C can be e-tested with 1-sided error with g(¢/2) + O(1/¢) queries.
-
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Proof of the Conversion Lemma (continued)

" Lemma (Conversion from Learner to Tester)

~

If there is an e-partial learner for a function class C that makes q(¢) queries

then C can be e-tested with 1-sided error with g(¢/2) + O(1/¢) queries.
-
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Partial Learner of Monotone functions f:[n]* - {0, 1}

( Lemma A
There is an g-partial learner for the class of monotone Boolean functions
over [n]? that makes O(1/¢) queries.
N\ /
1
_ ?
ldea: 0o |1 1
e Divide the grid into quarters. 00 ? 1
0

e Query the bottom left and the top right corner for each quarter.
e If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at log é + 1 levels.
e If>2/%1 nodes at level j are ?, fail. ﬁ\

(&)
SOOI
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Correctness of the Learner

(Claim

Llf the input function is monotone, level j will have fewer than 2/*1 nodes ?.

:
)

18



Monotonicity Testers: Running Time
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Monotonicity Testers: Running Time
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Distance Approximation and Tolerant Testing

[n] 1)\°4/9 1
Sloa)  woviesn(3) o(2)

[Saks Seshadhri 10]

e Time complexity of tolerant L;-testing for monotonicity is

€2
0 ((52 — 81)2) |
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Open Problems

e Qur L,-tester for monotonicity is nonadaptive, but
adaptivity helps for Boolean range.

Is there a better adaptive tester?

* All our algorithms for L,,-testing forp = 1 were
obtained directly from L,-testers.

Can one design better algorithms by working directly
with L,-distances?

e We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?
Other properties?
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