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Sublinear Algorithms

LECTURE 23
Last time
• 𝐿𝑝-testing

• Today
• 𝐿𝑝-testing of monotonicity

• Work investment strategy

• Testing via learning

Sofya Raskhodnikova;Boston University
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𝑳𝒑-Testing and Tolerant 𝑳𝒑-Testing 
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𝜀 𝜀1
𝜀2

Functions 𝑓, 𝑔: 𝐷 → [0,1] are at distance 𝜀 if  𝑑𝑝 =
𝑓−𝑔 𝑝

𝟏 𝑝
= 𝜀.



Monotonicity

• Domain D=[𝑛]𝑑 (vertices of 𝑑-dim hypercube)

• A function 𝑓: 𝐷 → ℝ is monotone

if increasing a coordinate of 𝑥 does

not decrease 𝑓 𝑥 .

• Special case 𝑑 = 1

𝑓: [𝑛] → ℝ is monotone ⇔𝑓 1 ,…𝑓(𝑛) is sorted.
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(1,1,1)

(𝑛, 𝑛, 𝑛)



Monotonicity Testers: Running Time
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𝑓 𝐿0 𝐿𝑝
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∗
Hiding some log 1/𝜀 dependence



𝐿1-Testers from Testers for Boolean Ranges 

A nonadaptive, 1-sided error 𝐿0-test for monotonicity of 

𝑓: 𝐷 → {0,1} is also an 𝐿1-test for monotonicity of 𝑓: 𝐷 → [0,1].
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𝑳𝟎-Testing Monotonicity of 𝒇: 𝒏 𝒅 → {𝟎, 𝟏}

Idea: 1. Pick axis-parallel lines ℓ.

2. Sample points from each ℓ,

and check for violations of 𝑓|ℓ.

[DGLRRS 99]

• Testing sortedness: If 𝑓: 𝑛 → {0,1} is 𝜀-far from sorted then 

𝑂
1

𝜀
samples are sufficient to find a violation w/ const. prob.

• Dimension reduction: For 𝑓: 𝑛 𝑑 → {0,1}

𝔼 𝑑0 𝑓|ℓ, 𝑀 ≥
𝑑0 𝑓,𝑀

2𝑑
.

How many lines should we sample? 

How many points form each line?
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General Work Investment Problem [Goldreich 13]

• Algorithm needs to find ``evidence’’ (e.g., a violation).

• It can select an element from distr. Π (e.g., a uniform line).

• Elements 𝑒 have different quality 𝑞 𝑒 ∈ [0,1]

(e.g., 𝒅𝟎 𝒇|ℓ,𝑴 ).

• Algorithm must invest more work into 𝑒 with lower 𝑞(𝑒) to 

extract evidence from 𝑒 (e.g., need 𝚯
𝟏

𝒒(𝒆)
samples).

• 𝔼𝒆←𝚷[𝑞(𝑒)] ≥ 𝜇.

What’s a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich

Ron 97], testing properties of images [R 03], multi-input testing problems [G13]
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Work Investment Strategies

• ``Reverse’’ Markov Inequality

For a random variable 𝑋 ∈ [0,1] with expectation 𝔼 𝑋 ≥ 𝜇,

Pr 𝑋 ≥
𝜇

2
≥
𝜇

2
.

Proof:  𝜇 ≤ 𝔼 𝑋 ≤ Pr 𝑋 ≥
𝜇

2
⋅ 1 + Pr 𝑋 <

𝜇

2
⋅
𝜇

2
.

``Reverse’’ Markov Strategy:

1. Sample Θ
1

𝜇
lines.

2. Sample Θ
1

𝜇
points from each line.

Cost: Θ
1

𝜇2
queries.
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Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]: 

Invest in elements of quality 𝑞 𝑒 ≥
1

2𝑖
separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑝𝑖 = Pr 𝑋 ≥
1

2𝑖
and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then  ς𝑖=1
log 4/𝜇

1 − 𝑝𝑖
𝑘𝑖 ≤ 1/3.

Bucketing Strategy: For each bucket 𝑖 ∈ log
4

𝜇

Cost: Θ
1

𝜇
log

1

𝜇
queries (for monotonicity, 𝝁 =

𝜺

𝟐𝒅
)
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1. Sample 𝑘𝑖 = Θ
1

2𝑖𝜇
lines.

2. Sample Θ 2𝑖 points from each line.



Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
, 𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖
,    and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then  ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖
≥

𝜇

4
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Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
, 𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖
,    and 𝑘𝑖 = Θ

1

2𝑖𝜇
.

Then  ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖
≥

𝜇

4
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Monotonicity Testers: Running Time
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Testing Monotonicity of 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}

• For nonadaptive, 1-sided error testers, Ω
1

𝜀
log

1

𝜀
queries are 

needed.

• There is an adaptive, 1-sided error tester with 𝑂
1

𝜀
queries.

Method: testing via learning.
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Partial Learning

• An ε-partial function 𝑔 with domain 𝐷 and range 𝑅 is a function 
𝑔 ∶ 𝐷 → 𝑅 ∪ {?} that satisfies Pr𝑥∈𝐷[𝑔(𝑥) = ?] ≤ ε. 

• An ε-partial function 𝑔 agrees with a function 𝑓 if                                   
𝑔(𝑥) = 𝑓(𝑥) for all 𝑥 on which 𝑔 𝑥 ≠?. 

• Given a function class 𝓒, let 𝓒𝜺 denote the class of ε-partial functions,     
each of which agrees with some function in 𝓒.

• An ε-partial learner for a function class 𝓒 is an algorithm that,                   
given a parameter ε and oracle access to a function 𝑓, 
outputs a hypothesis 𝑔 ∈ 𝓒𝜺 or fails. 
Moreover, if 𝑓 ∈ 𝓒 then it outputs 𝑔 that agrees with 𝑓.
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Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries 
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.



Proof of the Conversion Lemma
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Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries 
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.



Proof of the Conversion Lemma (continued)
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Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries 
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.



Partial Learner of Monotone functions 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}
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Lemma

There is an 𝜀-partial learner for the class of monotone Boolean functions 
over 𝑛 2 that makes 𝑂(1/𝜀) queries.

Image credit: Pradeep Pujari

𝟏

𝟎
𝟎

𝟏
𝟏

𝟎
?

𝟏

𝟎
?Idea:

• Divide the grid into quarters.

• Query the bottom left and the top right corner for each quarter.

• If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at  log 
1

𝜀
+ 1 levels.

• If ≥ 2𝑗+1 nodes at level 𝑗 are ?, fail.



Correctness of the Learner
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Claim

If the input function is monotone, level 𝑗 will have fewer than 2𝑗+1 nodes ?.



Monotonicity Testers: Running Time
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Monotonicity Testers: Running Time
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Distance Approximation and Tolerant Testing
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𝑓 𝐿0 𝐿1

𝑛
→ [0,1] polylog 𝑛 ⋅

𝟏

𝜺

𝑶 𝟏/𝜺

[Saks Seshadhri 10]

Θ
𝟏

𝜺𝟐

Approximating 𝑳𝟏-distance to monotonicity ±𝜺 𝒘.𝒑.≥ 𝟐/𝟑

• Time complexity of tolerant 𝐿1-testing for monotonicity is

O
𝜺𝟐

(𝜺𝟐 − 𝜺𝟏)
𝟐

.



Open Problems

• Our 𝐿1-tester for monotonicity is nonadaptive, but 
adaptivity helps for Boolean range.

Is there a better adaptive tester?

• All our algorithms for 𝐿𝑝-testing for 𝑝 ≥ 1 were 

obtained directly from 𝐿1-testers.

Can one design better algorithms by working directly 
with 𝐿𝑝-distances?

• We designed tolerant tester only for monotonicity 
(d=1,2).

Tolerant testers for higher dimensions? 

Other properties?
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