Sublinear Algorithms

LECTURE 23

Last time

- L_p -testing
- **Today**
- L_p -testing of monotonicity
- Work investment strategy
- Testing via learning

Project Reports are due December 3

Sofya Raskhodnikova;Boston University

*L*_p-Testing and Tolerant L_p-Testing

Functions f, $g: D \to [0,1]$ are at distance ε if $d_p =$ $f-g\Vert_p$ $1\|_p$ $=\varepsilon$.

Monotonicity

- Domain D= $[n]^d$ (vertices of d-dim hypercube) (n, n, n)
- A function $f: D \to \mathbb{R}$ is monotone if increasing a coordinate of x does not decrease $f(x)$.
- Special case $d=1$

 $f:[n] \to \mathbb{R}$ is monotone $\Leftrightarrow f(1), ... f(n)$ is sorted.

Monotonicity Testers: Running Time

 $*$ Hiding some log $1/\varepsilon$ dependence

1*-Testers from Testers for Boolean Ranges*

A nonadaptive, 1-sided error L_0 -test for monotonicity of

 $f: D \to \{0,1\}$ is also an L_1 -test for monotonicity of $f: D \to [0,1]$.

L_0 -Testing Monotonicity of $f: [n]^d \rightarrow \{0, 1\}$

Idea: 1. Pick axis-parallel lines ℓ .

2. Sample points from each ℓ , and check for violations of $f_{|\ell}$.

[DGLRRS 99]

- Testing sortedness: If $f: [n] \rightarrow \{0,1\}$ is ε -far from sorted then $\overline{\mathcal{O}}$ 1 $\mathcal{E}_{\mathcal{E}}$ samples are sufficient to find a violation w/ const. prob.
- Dimension reduction: For $f: [n]^d \rightarrow \{0,1\}$

$$
\mathbb{E}\big[d_0\big(f_{|\ell},M\big)\big]\geq \frac{d_0(f,M)}{2d}.
$$

How many lines should we sample?

How many points form each line?

General Work Investment Problem **[Goldreich 13]**

- Algorithm needs to find ``evidence'' (e.g., **a violation**).
- It can select an element from distr. Π (e.g., **a uniform line**).
- Elements *e* have different quality $q(e) \in [0,1]$

(e.g., $\boldsymbol{d}_0(\boldsymbol{f}_{|\ell}, \boldsymbol{M})).$

- Algorithm must invest more work into e with lower $q(e)$ to extract evidence from e (e.g., need Θ $\mathbf{1}$ $q(e)$ **samples**).
- $\mathbb{E}_{e \leftarrow \Pi}[q(e)] \geq \mu$.

What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich Ron 97], testing properties of images [R 03], multi-input testing problems [G13]

Work Investment Strategies

• ``Reverse'' Markov Inequality

For a random variable $X \in [0,1]$ with expectation $\mathbb{E}[X] \geq \mu$, $Pr|X \geq$ μ 2 ≥ μ 2 .

Proof:
$$
\mu \leq \mathbb{E}[X] \leq \Pr\left[X \geq \frac{\mu}{2}\right] \cdot 1 + \Pr\left[X < \frac{\mu}{2}\right] \cdot \frac{\mu}{2}
$$
.

``Reverse'' Markov Strategy:

1. Sample
$$
\Theta\left(\frac{1}{\mu}\right)
$$
 lines.

2. Sample Θ 1 μ points from each line.

Cost:
$$
\Theta\left(\frac{1}{\mu^2}\right)
$$
 queries.

Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

Invest in elements of quality $q(e) \ge$ 1 $\frac{1}{2^i}$ separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable
$$
X \in [0,1]
$$
 with $\mathbb{E}[X] \ge \mu$, let
\n
$$
p_i = \Pr\left[X \ge \frac{1}{2^i}\right] \text{ and } k_i = \Theta\left(\frac{1}{2^i\mu}\right).
$$

Then
$$
\prod_{i=1}^{\log 4/\mu} (1-p_i)^{k_i} \le 1/3
$$
.

Bucketing Strategy: For each bucket $i \in \left\lceil \log \frac{4}{n} \right\rceil$ μ 1. Sample $k_i = \Theta$ 1 $2^{i}\mu$ lines. 2. Sample $\Theta(2^i)$ points from each line.

Cost: Θ 1 μ $\log \frac{1}{n}$ μ queries (**for monotonicity,** $\mu =$ $\boldsymbol{\varepsilon}$ $\frac{c}{2d}$

Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \geq \mu$, let $t = \log \frac{4}{n}$ $\frac{1}{\mu}$, $p_i = \Pr[X \geq$ 1 $\left[\frac{1}{2^i}\right]$, and $k_i = \Theta$ 1 $2^{\dot{l}}\mu$

Then $\prod_{i=1}^t (1-p_i)^{k_i} \leq \delta$.

Proof: It suffices to prove $\Sigma_{i \in [t]}$ p_i $\frac{p_l}{2^i} \geq$ μ 4 .

Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \geq \mu$, let $t = \log \frac{4}{n}$ $\frac{1}{\mu}$, $p_i = \Pr[X \geq$ 1 $\left[\frac{1}{2^i}\right]$, and $k_i = \Theta$ 1 $2^{\dot{l}}\mu$

Then $\prod_{i=1}^t (1-p_i)^{k_i} \leq \delta$.

Proof: It suffices to prove $\Sigma_{i \in [t]}$ p_i $\frac{p_l}{2^i} \geq$ μ 4 .

Monotonicity Testers: Running Time

Testing Monotonicity of $f: [n]^2 \rightarrow \{0, 1\}$

- For nonadaptive, 1-sided error testers, Ω 1 $\mathcal{E}_{\mathcal{E}}$ $\log \frac{1}{2}$ $\mathcal{E}_{\mathcal{E}}$ queries are needed.
- There is an adaptive, 1-sided error tester with O 1 $\mathcal{E}_{\mathcal{E}}$ queries. Method: testing via learning.

Partial Learning

- An ϵ -partial function g with domain D and range R is a function $g: D \to R \cup \{?\}$ that satisfies $Pr_{x \in D}[g(x) = ?] \leq \varepsilon$.
- An ϵ -partial function g agrees with a function f if $g(x) = f(x)$ for all x on which $g(x) \neq ?$.
- Given a function class \mathcal{C} , let $\mathcal{C}_{\varepsilon}$ denote the class of ε -partial functions, each of which agrees with some function in C .
- An ϵ -partial learner for a function class $\mathcal C$ is an algorithm that, given a parameter ε and oracle access to a function f , outputs a hypothesis $g \in \mathcal{C}_{\varepsilon}$ or fails. Moreover, if $f \in \mathcal{C}$ then it outputs g that agrees with f.

Lemma (Conversion from Learner to Tester)

If there is an ϵ -partial learner for a function class C that makes $q(\epsilon)$ queries then C can be ϵ -tested with 1-sided error with $q(\epsilon/2) + O(1/\epsilon)$ queries.

Proof of the Conversion Lemma

Lemma (Conversion from Learner to Tester)

If there is an ϵ -partial learner for a function class C that makes $q(\epsilon)$ queries then C can be ϵ -tested with 1-sided error with $q(\epsilon/2) + O(1/\epsilon)$ queries.

Proof of the Conversion Lemma (continued)

Lemma (Conversion from Learner to Tester)

If there is an ϵ -partial learner for a function class C that makes $q(\epsilon)$ queries then C can be ϵ -tested with 1-sided error with $q(\epsilon/2) + O(1/\epsilon)$ queries.

Partial Learner of Monotone functions $f: [n]^2 \rightarrow \{0,1\}$

Lemma

There is an ε -partial learner for the class of monotone Boolean functions over $[n]^2$ that makes $O(1/\varepsilon)$ queries.

• Divide the grid into quarters.

- Query the bottom left and the top right corner for each quarter.
- If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at $\log \frac{1}{6}$ + 1 levels.

• If $\geq 2^{j+1}$ nodes at level j are ?, fail.

Correctness of the Learner

Claim

If the input function is monotone, level j will have fewer than 2^{j+1} nodes ?.

Monotonicity Testers: Running Time

Monotonicity Testers: Running Time

 $*$ Hiding some log $1/\varepsilon$ dependence

Distance Approximation and Tolerant Testing

Approximating L_1 -distance to monotonicity $\pm \varepsilon w$. $p \geq 2/3$

• Time complexity of tolerant L_1 -testing for monotonicity is

$$
O\left(\frac{\epsilon_2}{(\epsilon_2-\epsilon_1)^2}\right).
$$

Open Problems

• Our L_1 -tester for monotonicity is nonadaptive, but adaptivity helps for Boolean range.

Is there a better adaptive tester?

- All our algorithms for L_p -testing for $p \geq 1$ were obtained directly from L_1 -testers. Can one design better algorithms by working directly with L_p -distances?
- We designed tolerant tester only for monotonicity $(d=1,2)$.

Tolerant testers for higher dimensions? Other properties?