Sublinear Algorithms

LECTURE 23

Last time

- *L*_p-testing
- Today
- L_p -testing of monotonicity
- Work investment strategy
- Testing via learning

Project Reports are due December 3

Sofya Raskhodnikova; Boston University

L_p-Testing and Tolerant L_p-Testing

Functions $f, g: D \to [0,1]$ are at distance ε if $d_p = \frac{\|f-g\|_p}{\|\mathbf{1}\|_p} = \varepsilon$.

Monotonicity

- Domain $D=[n]^d$ (vertices of d-dim hypercube) (n, n, n)
- A function $f: D \to \mathbb{R}$ is monotone if increasing a coordinate of x does not decrease f(x).
- Special case d = 1

 $f:[n] \to \mathbb{R}$ is monotone $\Leftrightarrow f(1), \dots f(n)$ is sorted.

Monotonicity Testers: Running Time

^{*} Hiding some $\log 1/\varepsilon$ dependence

L₁-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error L_0 -test for monotonicity of

 $f: D \to \{0,1\}$ is also an L_1 -test for monotonicity of $f: D \to [0,1]$.

L_0 -Testing Monotonicity of $f: [n]^d \rightarrow \{0, 1\}$

Idea: 1. Pick axis-parallel lines ℓ .

2. Sample points from each ℓ , and check for violations of $f_{|\ell}$.

[DGLRRS 99]

- Testing sortedness: If $f: [n] \to \{0,1\}$ is ε -far from sorted then $O\left(\frac{1}{\varepsilon}\right)$ samples are sufficient to find a violation w/ const. prob.
- Dimension reduction: For $f: [n]^d \rightarrow \{0,1\}$

$$\mathbb{E}\left[d_0(f_{|\ell}, M)\right] \ge \frac{d_0(f, M)}{2d}.$$

How many lines should we sample?

How many points form each line?

General Work Investment Problem [Goldreich 13]

- Algorithm needs to find ``evidence'' (e.g., a violation).
- It can select an element from distr. Π (e.g., a uniform line).
- Elements *e* have different quality $q(e) \in [0,1]$

(e.g., $d_0(f_{|\ell}, M)$).

- Algorithm must invest more work into *e* with lower q(e) to extract evidence from *e* (e.g., need $\Theta\left(\frac{1}{q(e)}\right)$ samples).
- $\mathbb{E}_{e \leftarrow \Pi}[q(e)] \ge \mu.$

What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich Ron 97], testing properties of images [R 03], multi-input testing problems [G13]

Work Investment Strategies

• ``Reverse'' Markov Inequality

For a random variable $X \in [0,1]$ with expectation $\mathbb{E}[X] \ge \mu$, $\Pr\left[X \ge \frac{\mu}{2}\right] \ge \frac{\mu}{2}$.

Proof:
$$\mu \leq \mathbb{E}[X] \leq \Pr\left[X \geq \frac{\mu}{2}\right] \cdot 1 + \Pr\left[X < \frac{\mu}{2}\right] \cdot \frac{\mu}{2}$$
.

``Reverse'' Markov Strategy:

1. Sample
$$\Theta\left(\frac{1}{\mu}\right)$$
 lines.

2. Sample
$$\Theta\left(\frac{1}{\mu}\right)$$
 points from each line.

Cost:
$$\Theta\left(\frac{1}{\mu^2}\right)$$
 queries.

Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

Invest in elements of quality $q(e) \ge \frac{1}{2^i}$ separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable
$$X \in [0,1]$$
 with $\mathbb{E}[X] \ge \mu$, let
 $p_i = \Pr\left[X \ge \frac{1}{2^i}\right]$ and $k_i = \Theta\left(\frac{1}{2^i\mu}\right)$.

Then
$$\prod_{i=1}^{\log 4/\mu} (1-p_i)^{k_i} \le 1/3.$$

Bucketing Strategy: For each bucket $i \in \left[\log \frac{4}{\mu}\right]$ 1. Sample $k_i = \Theta\left(\frac{1}{2^i\mu}\right)$ lines. 2. Sample $\Theta(2^i)$ points from each line. Cost: $\Theta\left(\frac{1}{\mu}\log \frac{1}{\mu}\right)$ queries (for monotonicity, $\mu = \frac{\varepsilon}{2d}$)

Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \ge \mu$, let $t = \log \frac{4}{\mu}, \quad p_i = \Pr\left[X \ge \frac{1}{2^i}\right], \text{ and } k_i = \Theta\left(\frac{1}{2^i\mu}\right).$ Then $\prod_{i=1}^t (1-p_i)^{k_i} \le \delta.$

Proof: It suffices to prove $\sum_{i \in [t]} \frac{p_i}{2^i} \ge \frac{\mu}{4}$

Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \ge \mu$, let $t = \log \frac{4}{\mu}, \quad p_i = \Pr\left[X \ge \frac{1}{2^i}\right], \text{ and } k_i = \Theta\left(\frac{1}{2^i\mu}\right).$ Then $\prod_{i=1}^t (1-p_i)^{k_i} \le \delta.$

Proof: It suffices to prove $\sum_{i \in [t]} \frac{p_i}{2^i} \ge \frac{\mu}{4}$

Monotonicity Testers: Running Time

f	L_0	L_p
[<i>n</i>] → {0,1}	$\Theta\left(\frac{1}{\epsilon}\right)$	$\Theta\left(\frac{1}{\boldsymbol{\varepsilon}^p}\right)$
[<i>n</i>] ^{<i>d</i>} → {0,1}	$O\left(\frac{d}{\varepsilon} \cdot \log \frac{d}{\varepsilon}\right)$	$O\left(\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}\right)$ $\Omega\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d = 2$ nonadaptive 1-sided error $\Theta\left(\frac{1}{\varepsilon^{p}}\right) \text{ for constant } d$ adaptive 1-sided error

Testing Monotonicity of $f: [n]^2 \rightarrow \{0, 1\}$

- For nonadaptive, 1-sided error testers, $\Omega\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ queries are needed.
- There is an adaptive, 1-sided error tester with $O\left(\frac{1}{\varepsilon}\right)$ queries. Method: testing via learning.

Partial Learning

- An ε -partial function g with domain D and range R is a function $g: D \to R \cup \{?\}$ that satisfies $\Pr_{x \in D}[g(x) = ?] \le \varepsilon$.
- An ε -partial function g agrees with a function f if g(x) = f(x) for all x on which $g(x) \neq$?.
- Given a function class C, let C_{ε} denote the class of ε -partial functions, each of which agrees with some function in C.
- An ε-partial learner for a function class C is an algorithm that, given a parameter ε and oracle access to a function f, outputs a hypothesis g ∈ C_ε or fails.
 Moreover, if f ∈ C then it outputs g that agrees with f.

Lemma (Conversion from Learner to Tester)

If there is an ε -partial learner for a function class C that makes $q(\varepsilon)$ queries then C can be ε -tested with 1-sided error with $q(\varepsilon/2) + O(1/\varepsilon)$ queries.

Proof of the Conversion Lemma

Lemma (Conversion from Learner to Tester)

If there is an ε -partial learner for a function class C that makes $q(\varepsilon)$ queries then C can be ε -tested with 1-sided error with $q(\varepsilon/2) + O(1/\varepsilon)$ queries.

Proof of the Conversion Lemma (continued)

Lemma (Conversion from Learner to Tester)

If there is an ε -partial learner for a function class C that makes $q(\varepsilon)$ queries then C can be ε -tested with 1-sided error with $q(\varepsilon/2) + O(1/\varepsilon)$ queries.

Partial Learner of Monotone functions $f: [n]^2 \rightarrow \{0, 1\}$

Lemma

There is an ε -partial learner for the class of monotone Boolean functions over $[n]^2$ that makes $O(1/\varepsilon)$ queries.

Idea:

• Divide the grid into quarters.

- Query the bottom left and the top right corner for each quarter.
- If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at $\log \frac{1}{\epsilon} + 1$ levels.

• If $\geq 2^{j+1}$ nodes at level *j* are ?, fail.

Correctness of the Learner

Claim

If the input function is monotone, level j will have fewer than 2^{j+1} nodes ?.

Monotonicity Testers: Running Time

f	L_0	L_p
[<i>n</i>] → {0,1}	$\Theta\left(\frac{1}{\epsilon}\right)$	$\Theta\left(\frac{1}{\boldsymbol{\varepsilon}^p}\right)$
[<i>n</i>] ^{<i>d</i>} → {0,1}	$O\left(\frac{d}{\varepsilon} \cdot \log \frac{d}{\varepsilon}\right)$	$O\left(\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}\right)$ $\Omega\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d = 2$ nonadaptive 1-sided error $\Theta\left(\frac{1}{\varepsilon^{p}}\right) \text{ for constant } d$ adaptive 1-sided error

Monotonicity Testers: Running Time

^{*} Hiding some $\log 1/\varepsilon$ dependence

Distance Approximation and Tolerant Testing

Approximating L_1 -distance to monotonicity $\pm \varepsilon w. p. \geq 2/3$

• Time complexity of tolerant L_1 -testing for monotonicity is

$$0\left(\frac{\boldsymbol{\varepsilon}_2}{(\boldsymbol{\varepsilon}_2-\boldsymbol{\varepsilon}_1)^2}\right)$$

Open Problems

• Our L₁-tester for monotonicity is nonadaptive, but adaptivity helps for Boolean range.

Is there a better adaptive tester?

- All our algorithms for L_p-testing for p ≥ 1 were obtained directly from L₁-testers.
 Can one design better algorithms by working directly with L_p-distances?
- We designed tolerant tester only for monotonicity (d=1,2).

Tolerant testers for higher dimensions? Other properties?