Sublinear Algorithms

LECTURE 24

Last time

- L_p -testing of monotonicity
- Work investment strategy
- Testing via learning
- **Today**
- Finish testing via learning
- Local Computation Algorithms (LCAs)
- Distributed LOCAL model
- Maximal Independent Set (MIS)

Project Reports are due Thursday, presentations next week

12/1/2020

Sofya Raskhodnikova; Boston University

Monotonicity Testers: Running Time

Testing Monotonicity of $f: [n]^2 \rightarrow \{0, 1\}$

- For nonadaptive, 1-sided error testers, Ω 1 $\mathcal{E}_{\mathcal{E}}$ $\log \frac{1}{2}$ $\mathcal{E}_{\mathcal{E}}$ queries are needed.
- There is an adaptive, 1-sided error tester with O 1 $\mathcal{E}_{\mathcal{E}}$ queries. Method: testing via learning.

Partial Learning

- An ϵ -partial function g with domain D and range R is a function $g: D \to R \cup \{?\}$ that satisfies Pr ∈ $[g(x) = ?] \leq \varepsilon.$
- An ϵ -partial function q agrees with a function f if $g(x) = f(x)$ for all x on which $g(x) \neq ?$.
- Given a function class C, let $\mathcal{C}_{\varepsilon}$ denote the class of ε -partial functions, each of which agrees with some function in C .
- An ϵ -partial learner for a function class $\mathcal C$ is an algorithm that, given a parameter ε and oracle access to a function f , outputs a hypothesis $g \in {\cal C}_\varepsilon$ or fails. Moreover, if $f \in \mathcal{C}$ then it outputs g that agrees with f.

Lemma (Conversion from Learner to Tester)

If there is an ϵ -partial learner for a function class C that makes $q(\epsilon)$ queries then C can be ϵ -tested with 1-sided error with $q(\epsilon/2) + O(1/\epsilon)$ queries.

Partial Learner of Monotone functions $f: [n]^2 \rightarrow \{0,1\}$

Lemma

There is an ε -partial learner for the class of monotone Boolean functions over $[n]^2$ that makes $O(1/\varepsilon)$ queries.

• Divide the grid into quarters.

- Query the bottom left and the top right corner for each quarter.
- If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at $\log \frac{1}{6}$ + 1 levels.

• If $\geq 2^{j+1}$ nodes at level j are ?, fail.

Correctness of the Learner

Claim

If the input function is monotone, level j will have fewer than 2^{j+1} nodes ?.

Proof:

Monotonicity Testers: Running Time

Monotonicity Testers: Running Time

 $*$ Hiding some log $1/\varepsilon$ dependence

Distance Approximation and Tolerant Testing

Approximating L_1 -distance to monotonicity $\pm \varepsilon w$. $p \geq 2/3$

• Time complexity of tolerant L_1 -testing for monotonicity is

$$
O\left(\frac{\epsilon_2}{(\epsilon_2-\epsilon_1)^2}\right).
$$

Open Problems

• Our L_1 -tester for monotonicity is nonadaptive, but adaptivity helps for Boolean range.

Is there a better adaptive tester?

- All our algorithms for L_p -testing for $p \geq 1$ were obtained directly from L_1 -testers. Can one design better algorithms by working directly with L_p -distances?
- We designed tolerant tester only for monotonicity $(d=1,2)$.

Tolerant testers for higher dimensions? Other properties?

Local Computation Algorithms (LCAs)

Motivation: to have sublinear-time algorithms for problems with long output

User should be able to "probe" bits of the output.

- If there are multiple possible outputs, LCA should be giving answers consistent with one.
- The order of the probes should not affect the answers (instantiations of LCA should be able to consistently answer probes in parallel)
- They can have access to the same random string.
- [Rubinfeld, Tamir, Vardi, Xie 11]

Maximal Independent Set (MIS)

For a graph $G = (V, E)$, a set $M \subseteq V$ is a maximal independent set if

- M is independent: $\forall u, v \in M$, the pair $(u, v) \notin E$
- M is maximal: no larger independent set contains M as a subset. Example:

- MIS can be found in poly time by greedily adding vertices to M and removing them and their neighbors from consideration.
- It is NP-hard to compute a maximum independent set.
- Goal: An LCA for MIS
- Given probe access to a graph G of maximum degree Δ , provide query access to an MIS M :

in-MIS (v) : Is v in M?

Main idea: modify an existing distributed algorithm for MIS.

12 *Based on Ronitt Rubinfeld's and Sepehr Assadi's lecture notes*

Distributed LOCAL Model

- The input graph is a communication network; each node is a processor.
- In each round:
	- Communication: each vertex can send any message to each neighbor (possibly different messages to different neighbors).
	- Computation: each vertex can decide on its actions for the next round, based on received messages.
- At the end of the last round, each vertex decides on its final status (e.g., whether it is in the MIS M)
- Goal: to minimize the number of rounds.

(A variant of) Luby's MIS Algorithm for the LOCAL Model

- 1. Initialize $Active(v) = True; M(v) = False$ for all $v \in V$.
- 2. For each (out of R) rounds, all vertices v run the following in parallel:
	- a. Vertex ν selects itself with probability $\frac{1}{2}$ 2Δ
	- b. If $Active(v) = True$, v is selected, and no neighbor of v is selected then set $M(v) = True$ and $Active(u) = False$ $\forall u \in \{v\} \cup N(v)$

Correctness of Luby's Algorithm

(A variant of) Luby's MIS Algorithm for the LOCAL Model

- 1. Initialize $Active(v) = True; M(v) = False$ for all $v \in V$.
- 2. For each (out of R) rounds, all vertices v run the following in parallel:
	- a. Vertex ν selects itself with probability $\frac{1}{2}$ 2Δ
	- b. If $Active(v) = True$, v is selected, and no neighbor of v is selected then set $\tilde{M}(v) = True$ and $Active(u) = False$ $\forall u \in \{v\} \cup N(v)$

Correctness Theorem

Let M be the set of vertices for which $M(v) = True$.

- After every round, M is an independent set
- 2. When $Active(v) = False$ for all $v \in V$ then M is an MIS.

Proof:

Analyzing the Number of Rounds

Termination Theorem

Fix $v \in V$ and round $R \geq 1$. Then

 $Pr[Active(v) = True$ after R rounds of Luby's algorithm] \leq $exp(-\frac{R}{4\pi})$ 4Δ

Proof: For each $v \in V$ and round $r \geq 1$, define the following events.

 $A_r(v)$: the event that $Active(v) = True$ after round r

 $S_r(v)$: the event that v is selected in round r

 $M_r(v)$: the event that v is added to M in round r

$$
\Pr\left[\overline{A_r(v)} \mid A_{r-1}(v)\right] \ge \Pr\left[M_r(v) \mid A_{r-1}(v)\right]
$$
\nIf *v* is added to *M*, it is no longer active
\n= $\Pr\left[S_r(v) \land \forall u \in N(v): \overline{S_r(v)}\right]$
\n= $\Pr\left[S_r(v)\right] \cdot \Pr\left[\forall u \in N(v): \overline{S_r(v)}\right]$
\n $\ge \Pr\left[S_r(v)\right] \cdot \left(1 - \sum_{u \in N(v)} \Pr\left[S_r(u)\right]\right)$ By union bound
\n $\ge \frac{1}{2\Delta} \cdot \left(1 - \Delta \cdot \frac{1}{2\Delta}\right) = \frac{1}{4\Delta}$ If *v* is active, it will be decivated in this round w.p. $\ge \frac{1}{4\Delta}$

Analyzing the Number of Rounds

Termination Theorem

Fix $v \in V$ and round $R \geq 1$. Then

 $Pr[Active(v) = True$ after R rounds of Luby's algorithm] \leq $exp(-\frac{R}{4\pi})$ 4Δ

Proof: For each $v \in V$ and round $r \geq 1$, define the following events.

 $A_r(v)$: the event that $Active(v) = True$ after round r

$$
\Pr\left[\overline{A_r(v)} \mid A_{r-1}(v)\right] \ge \frac{1}{4\Delta}
$$
\n
$$
\Pr[A_R(v)] = \prod_{r=1}^R \Pr[A_r(v) \mid A_{r-1}(v)]
$$
\n
$$
\le \left(1 - \frac{1}{4\Delta}\right)^R \le \exp\left(-\frac{R}{4\Delta}\right)
$$

By Product Rule

Conclusion: Set $R = 8\Delta \cdot \ln n$.

- Then a specific vertex remains active after R rounds w.p. at most $1/n^2$
- By a union bound, no vertex remains active w.p. at least $1-1/n$