Sublinear Algorithms

LECTURE 24

Last time
* L,-testing of monotonicity
« Work investment strategy
» Testing via learning
 Today
* Finish testing via learning
 |_ocal Computation Algorithms (LCAS)
* Distributed LOCAL model
» Maximal Independent Set (MIS)
Project Reports are due Thursday, presentutions next week

Sofya Raskhodnikova; Boston University

12/1/2020

Monotonicity Testers: Running Time

B °(3) ()

O (E - log E) U (ilog i)

¢ ¢ Q(log)ford—Z

nonadaptlve 1-sided error

Q) (ep) for constant d
adaptive 1-sided error

Testing Monotonicity of f: [n]? - {0, 1}

: : 1 1 :
e For nonadaptive, 1-sided error testers, () (Elog;) gueries are

needed.

e There is an adaptive, 1-sided error tester with O e) queries.

Method: testing via learning.

Partial Learning

e An e-partial function g with domain D and range R is a function
g: D — R U{?}that satisfies Pell‘)[g(x) = ?] <e.
X

e An g-partial function g agrees with a function f if
g(x) = f(x) forall x on which g(x) #>.

e Given a function class C, let C, denote the class of e-partial functions,
each of which agrees with some function in C.

e An e-partial learner for a function class C is an algorithm that,
given a parameter € and oracle access to a function f,
outputs a hypothesis g € C; or fails.

Moreover, if f € C then it outputs g that agrees with f.

(Lemma (Conversion from Learner to Tester)

~

If there is an e-partial learner for a function class C that makes q(&) queries

then C can be e-tested with 1-sided error with q(¢/2) + 0(1/¢) queries.
-

Partial Learner of Monotone functions f:[n]* - {0, 1}

(Lemma A
There is an g-partial learner for the class of monotone Boolean functions
over [n]? that makes O(1/¢) queries.
N\ /
1
_ ?
ldea: 0o |1 1
e Divide the grid into quarters. 00 ? 1
0

e Query the bottom left and the top right corner for each quarter.
e If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at log é + 1 levels.
e If>2/%1 nodes at level j are ?, fail. ﬁ\

(&)
SOOI

Correctness of the Learner

(Claim

Llf the input function is monotone, level j will have fewer than 2/*1 nodes ?. J

Proof:

Monotonicity Testers: Running Time

B °(3) ()

O (E - log E) U (ilog i)

¢ ¢ Q(log)ford—Z

nonadaptlve 1-sided error

Q) (ep) for constant d
adaptive 1-sided error

Monotonicity Testers: Running Time

-_—
- [0,1] G(Oin) @()

[Erglin Kannan Kumar Rubinfeld
Viswanathan 00, Fischer 04]

[n]4 o (d - log n) 0 (ilogi)

&

[Chakrabarty Seshadhri 13] Q(log) ford = 2

nonadaptlve 1-sided error

" Hiding some log 1/¢ dependence

Distance Approximation and Tolerant Testing

[n] 1)\°4/9 1
Sloa) woviesn(3) o(2)

[Saks Seshadhri 10]

e Time complexity of tolerant L;-testing for monotonicity is

€2
0 ((52 — 81)2) |

Open Problems

e Qur L,-tester for monotonicity is nonadaptive, but
adaptivity helps for Boolean range.

Is there a better adaptive tester?

* All our algorithms for L,,-testing forp = 1 were
obtained directly from L,-testers.

Can one design better algorithms by working directly
with L,-distances?

e We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?
Other properties?

10

Local Computation Algorithms (LCAS)

Motivation: to have sublinear-time algorithms for problems with long output
e User should be able to "probe” bits of the output.

Input

Queries a, b, ... H Input bits x,, x, ...

LCA

Probe i HOutput bit y;

User

e If there are multiple possible outputs, LCA should be giving answers
consistent with one.

e The order of the probes should not affect the answers (instantiations of LCA
should be able to consistently answer probes in parallel)

e They can have access to the same random string.

e [Rubinfeld, Tamir, Vardi, Xie 11]
11

Maximal Independent Set (MIS)

Foragraph G = (V,E),aset M € V is a maximal independent set if
e Misindependent: Vu,v € M, the pair (u,v) € E
e M is maximal: no larger independent set contains M as a subset.

Example: { {

e MIS can be found in poly time by greedily adding vertices to M and
removing them and their neighbors from consideration.

e |t is NP-hard to compute a maximum independent set.
Goal: An LCA for MIS

e Given probe access to a graph ¢ of maximum degree A, provide query
access toan MIS M:
in-MIS(v): Isv in M?
Main idea: modify an existing distributed algorithm for MIS.

Based on Ronitt Rubinfeld s and Sepehr Assadi s lecture notes 12

Distributed LOCAL Model

e The input graph is a communication network; each node is a processor.

e |n each round:

— Communication: each vertex can send any message to each neighbor
(possibly different messages to different neighbors).

— Computation: each vertex can decide on its actions for the next round,
based on received messages.

e At the end of the last round, each vertex decides on its final status (e.g.,
whether it is in the MIS M)

e Goal: to minimize the number of rounds.
ﬁA variant of) Luby’s MIS Algorithm for the LOCAL Model \
1. Initialize Active(v) = True; M(v) = False forallv € V.
2. For each (out of R) rounds, all vertices v run the following in parallel:

a. Vertex v selects itself with probability i

b. If Active(v) = True, v is selected, and no neighbor of v is selected

K then set M(v) = True and Active(u) = False Vu € {v} U N(v) /
13

Correctness of Luby’s Algorithm

/(A variant of) Luby’s MIS Algorithm for the LOCAL Model N\

1. Initialize Active(v) = True; M(v) = False forallv € V.
2. Foreach (out of R) rounds, all vertices v run the following in parallel:

a. Vertex v selects itself with probability i

b. If Active(v) = True, v is selected, and no neighbor of v is selected
_ then set M(v) = True and Active(u) = False Vu € {v} U N(v) 4

/"Correctness Theorem)
Let M be the set of vertices for which M(v) = True.
1. After every round, M is an independent set

\2- When Active(v) = False forall v € V then M is an MIS.)

Proof:

Analyzing the Number of Rounds

" Termination Theorem
Fixv € Vandround R = 1. Then
Pr[Active(v) = True after R rounds of Luby’s algorithm] < exp (— E) y

Proof: For each v € V and round r = 1, define the following events.

~

A, (v): the event that Active(v) = True after round r
S, (v): the event that v is selected in round r

M,.(v): the event that v is added to M in round r
If v is added to M, it is no longer
Pr|4,(0) | Ar-1 (@) | 2 Pr[M,(0) | A,y ()] 1V S FCEER ;

= Pr[S,(v) AVu € N(v): 5, (¥)]
= Pr[s, (v)] - Pr|vu € N(v): 5, (v)|

> Pr[S,(v)] - (1 — z Pr[Sr(u)]> By union bound
UEN (v)
1 1 1 If v is active, it will be deactivated
>—-[1-A-— | =— o 1
2A 2A AN\ In this round w.p. > A 15

Analyzing the Number of Rounds

/Termination Theorem N
Fix v € Vandround R = 1. Then

. _ : - 3
\Pr[Actwe(v) = True after R rounds of Luby’s algorithm] < exp (4A) y

Proof: For each v € V and round r = 1, define the following events.
A, (v): the event that Active(v) = True after round r

PI‘[Ar(U) | Ar—l(v)] Zﬁ

R
Pr[A,(v)] = 1_[Pr[A, (v) | A, (1)] By Product Rule

r=1 R
<l|1 1 < R
= an) =P\ T aa

Conclusion: Set R = 8A - Inn.
e Then a specific vertex remains active after R rounds w.p. at most 1/n2

e By a union bound, no vertex remains active w.p. at least 1—1/n
16

