
12/1/2020

Sublinear Algorithms

LECTURE 24
Last time
• 𝐿𝑝-testing of monotonicity

• Work investment strategy

• Testing via learning

• Today
• Finish testing via learning

• Local Computation Algorithms (LCAs)

• Distributed LOCAL model

• Maximal Independent Set (MIS)

Sofya Raskhodnikova; Boston University

Monotonicity Testers: Running Time

2

𝑓 𝐿0 𝐿𝑝
𝑛
→ {0,1}

Θ
1

𝜺
Θ

1

𝜺𝑝

𝑛 𝑑

→ {0,1}

O
𝑑

𝜺
⋅ log

𝑑

𝜺
O

𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

Θ
1

𝜺𝑝
for constant 𝑑

adaptive 1-sided error

Testing Monotonicity of 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}

• For nonadaptive, 1-sided error testers, Ω
1

𝜀
log

1

𝜀
queries are

needed.

• There is an adaptive, 1-sided error tester with 𝑂
1

𝜀
queries.

Method: testing via learning.

3

Partial Learning

• An ε-partial function 𝑔 with domain 𝐷 and range 𝑅 is a function
𝑔 ∶ 𝐷 → 𝑅 ∪ {?} that satisfies Pr

𝑥∈𝐷
[𝑔(𝑥) = ?] ≤ ε.

• An ε-partial function 𝑔 agrees with a function 𝑓 if
𝑔(𝑥) = 𝑓(𝑥) for all 𝑥 on which 𝑔 𝑥 ≠?.

• Given a function class 𝓒, let 𝓒𝜺 denote the class of ε-partial functions,
each of which agrees with some function in 𝓒.

• An ε-partial learner for a function class 𝓒 is an algorithm that,
given a parameter ε and oracle access to a function 𝑓,
outputs a hypothesis 𝑔 ∈ 𝓒𝜺 or fails.
Moreover, if 𝑓 ∈ 𝓒 then it outputs 𝑔 that agrees with 𝑓.

4

Lemma (Conversion from Learner to Tester)

If there is an ε-partial learner for a function class 𝓒 that makes 𝑞(𝜀) queries
then 𝓒 can be ε-tested with 1-sided error with 𝑞(𝜀/2) + 𝑂(1/𝜀) queries.

Partial Learner of Monotone functions 𝒇: 𝒏 𝟐 → {𝟎, 𝟏}

5

Lemma

There is an 𝜀-partial learner for the class of monotone Boolean functions
over 𝑛 2 that makes 𝑂(1/𝜀) queries.

Image credit: Pradeep Pujari

𝟏

𝟎
𝟎

𝟏
𝟏

𝟎
?

𝟏

𝟎
?Idea:

• Divide the grid into quarters.

• Query the bottom left and the top right corner for each quarter.

• If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at log
1

𝜀
+ 1 levels.

• If ≥ 2𝑗+1 nodes at level 𝑗 are ?, fail.

Correctness of the Learner

Proof:

6

Claim

If the input function is monotone, level 𝑗 will have fewer than 2𝑗+1 nodes ?.

𝒎 = 𝟐𝒋

𝒎 = 𝟐𝒋

Monotonicity Testers: Running Time

7

𝑓 𝐿0 𝐿𝑝
𝑛
→ {0,1}

Θ
1

𝜺
Θ

1

𝜺𝑝

𝑛 𝑑

→ {0,1}

O
𝑑

𝜺
⋅ log

𝑑

𝜺
O

𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

Θ
1

𝜺𝑝
for constant 𝑑

adaptive 1-sided error

Monotonicity Testers: Running Time

8

𝑓 𝐿0 𝐿𝑝

𝑛
→ [0,1]

Θ
log 𝑛

𝜺
[Ergün Kannan Kumar Rubinfeld

Viswanathan 00, Fischer 04]

Θ
1

𝜺𝑝

𝑛 𝑑

→ [0,1]
Θ

𝑑 ⋅ log 𝑛

𝜺
[Chakrabarty Seshadhri 13]

O
𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

∗
Hiding some log 1/𝜀 dependence

Distance Approximation and Tolerant Testing

9

𝑓 𝐿0 𝐿1

𝑛
→ [0,1] polylog 𝑛 ⋅

𝟏

𝜺

𝑶 𝟏/𝜺

[Saks Seshadhri 10]

Θ
𝟏

𝜺𝟐

Approximating 𝑳𝟏-distance to monotonicity ±𝜺 𝒘.𝒑.≥ 𝟐/𝟑

• Time complexity of tolerant 𝐿1-testing for monotonicity is

O
𝜺𝟐

(𝜺𝟐 − 𝜺𝟏)
𝟐

.

Open Problems

• Our 𝐿1-tester for monotonicity is nonadaptive, but
adaptivity helps for Boolean range.

Is there a better adaptive tester?

• All our algorithms for 𝐿𝑝-testing for 𝑝 ≥ 1 were

obtained directly from 𝐿1-testers.

Can one design better algorithms by working directly
with 𝐿𝑝-distances?

• We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?

Other properties?
10

Local Computation Algorithms (LCAs)

Motivation: to have sublinear-time algorithms for problems with long output

• User should be able to ``probe’’ bits of the output.

• If there are multiple possible outputs, LCA should be giving answers
consistent with one.

• The order of the probes should not affect the answers (instantiations of LCA
should be able to consistently answer probes in parallel)

• They can have access to the same random string.

• [Rubinfeld, Tamir, Vardi, Xie 11]
11

Input

Output bit 𝑦𝑖Probe 𝑖

User

LCA

Input bits 𝑥𝑎, 𝑥𝑏, …Queries 𝑎, 𝑏, …

Maximal Independent Set (MIS)

For a graph 𝐺 = 𝑉, 𝐸 , a set 𝑀 ⊆ 𝑉 is a maximal independent set if

• 𝑀 is independent: ∀𝑢, 𝑣 ∈ 𝑀, the pair 𝑢, 𝑣 ∉ 𝐸

• 𝑀 is maximal: no larger independent set contains 𝑀 as a subset.

Example:

• MIS can be found in poly time by greedily adding vertices to 𝑀 and
removing them and their neighbors from consideration.

• It is NP-hard to compute a maximum independent set.

Goal: An LCA for MIS

• Given probe access to a graph 𝐺 of maximum degree Δ, provide query
access to an MIS 𝑀:

in-MIS(𝑣): Is 𝑣 in 𝑀?

Main idea: modify an existing distributed algorithm for MIS.
12Based on Ronitt Rubinfeld’s and Sepehr Assadi’s lecture notes

Distributed LOCAL Model

• The input graph is a communication network; each node is a processor.

• In each round:

– Communication: each vertex can send any message to each neighbor
(possibly different messages to different neighbors).

– Computation: each vertex can decide on its actions for the next round,
based on received messages.

• At the end of the last round, each vertex decides on its final status (e.g.,
whether it is in the MIS 𝑀)

• Goal: to minimize the number of rounds.

13

(A variant of) Luby’s MIS Algorithm for the LOCAL Model

1. Initialize 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒;𝑀 𝑣 = 𝐹𝑎𝑙𝑠𝑒 for all 𝑣 ∈ 𝑉.

2. For each (out of 𝑅) rounds, all vertices 𝑣 run the following in parallel:

a. Vertex 𝑣 selects itself with probability
1

2Δ

b. If 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒, 𝑣 is selected, and no neighbor of 𝑣 is selected
then set 𝑀 𝑣 = 𝑇𝑟𝑢𝑒 and 𝐴𝑐𝑡𝑖𝑣𝑒 𝑢 = 𝐹𝑎𝑙𝑠𝑒 ∀𝑢 ∈ 𝑣 ∪ 𝑁(𝑣)

Correctness of Luby’s Algorithm

Proof:

14

(A variant of) Luby’s MIS Algorithm for the LOCAL Model

1. Initialize 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒;𝑀 𝑣 = 𝐹𝑎𝑙𝑠𝑒 for all 𝑣 ∈ 𝑉.
2. For each (out of 𝑅) rounds, all vertices 𝑣 run the following in parallel:

a. Vertex 𝑣 selects itself with probability
1

2Δ
b. If 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒, 𝑣 is selected, and no neighbor of 𝑣 is selected

then set 𝑀 𝑣 = 𝑇𝑟𝑢𝑒 and 𝐴𝑐𝑡𝑖𝑣𝑒 𝑢 = 𝐹𝑎𝑙𝑠𝑒 ∀𝑢 ∈ 𝑣 ∪ 𝑁(𝑣)

Correctness Theorem

Let 𝑀 be the set of vertices for which 𝑀 𝑣 = 𝑇𝑟𝑢𝑒.

1. After every round, 𝑀 is an independent set

2. When 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝐹𝑎𝑙𝑠𝑒 for all 𝑣 ∈ 𝑉 then 𝑀 is an MIS.

Analyzing the Number of Rounds

Proof: For each 𝑣 ∈ 𝑉 and round 𝑟 ≥ 1, define the following events.

Pr 𝐴𝑟 𝑣 𝐴𝑟−1 𝑣 ≥ Pr 𝑀𝑟 𝑣 𝐴𝑟−1 𝑣

= Pr 𝑆𝑟 𝑣 ∧ ∀𝑢 ∈ 𝑁 𝑣 : 𝑆𝑟 𝑣

= Pr 𝑆𝑟 𝑣 ⋅ Pr ∀𝑢 ∈ 𝑁 𝑣 : 𝑆𝑟 𝑣

≥ Pr 𝑆𝑟 𝑣 ⋅ 1 − ෍

𝑢∈𝑁 𝑣

Pr 𝑆𝑟 𝑢

≥
1

2Δ
⋅ 1 − Δ ⋅

1

2Δ
=

1

4Δ 15

Termination Theorem

Fix 𝑣 ∈ 𝑉 and round 𝑅 ≥ 1. Then

Pr[𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after 𝑅 rounds of Luby’s algorithm] ≤ exp −
𝑅

4Δ

𝐴𝑟(𝑣): the event that 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after round 𝑟

𝑆𝑟(𝑣): the event that 𝑣 is selected in round 𝑟

𝑀𝑟(𝑣): the event that 𝑣 is added to 𝑀 in round 𝑟

If 𝑣 is added to 𝑀, it is no longer

active

By union bound

If 𝑣 is active, it will be deactivated

in this round w.p. ≥
1

4Δ

Analyzing the Number of Rounds

Proof: For each 𝑣 ∈ 𝑉 and round 𝑟 ≥ 1, define the following events.

Pr 𝐴𝑟 𝑣 𝐴𝑟−1 𝑣 ≥
1

4Δ

Pr 𝐴𝑅 𝑣 = ෑ

𝑟=1

𝑅

Pr 𝐴𝑟 𝑣 ∣ 𝐴𝑟−1 𝑣

≤ 1 −
1

4Δ

𝑅

≤ exp −
𝑅

4Δ

Conclusion: Set 𝑅 = 8Δ ⋅ ln 𝑛.

• Then a specific vertex remains active after 𝑅 rounds w.p. at most 1/𝑛2

• By a union bound, no vertex remains active w.p. at least 1−1/𝑛
16

Termination Theorem

Fix 𝑣 ∈ 𝑉 and round 𝑅 ≥ 1. Then

Pr[𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after 𝑅 rounds of Luby’s algorithm] ≤ exp −
𝑅

4Δ

𝐴𝑟(𝑣): the event that 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after round 𝑟

By Product Rule

