Sublinear Algorithms

LECTURE 25

Last time

- Local Computation Algorithms (LCAs)
- Distributed LOCAL model
- Maximal Independent Set (MIS)
- **Today**
- Finish LCA for MIS

Project Reports are due today, presentations next week

Sofya Raskhodnikova; Boston University

Local Computation Algorithms (LCAs)

Motivation: to have sublinear-time algorithms for problems with long output

User should be able to "probe" bits of the output.

- If there are multiple possible outputs, LCA should be giving answers consistent with one.
- The order of the probes should not affect the answers (instantiations of LCA should be able to consistently answer probes in parallel)
- They can have access to the same random string.
- [Rubinfeld, Tamir, Vardi, Xie 11]

Maximal Independent Set (MIS)

For a graph $G = (V, E)$, a set $M \subseteq V$ is a maximal independent set if

- M is independent: $\forall u, v \in M$, the pair $(u, v) \notin E$
- M is maximal: no larger independent set contains M as a subset. Example:

- MIS can be found in poly time by greedily adding vertices to M and removing them and their neighbors from consideration.
- It is NP-hard to compute a maximum independent set.
- Goal: An LCA for MIS
- Given query access to a graph G of maximum degree Δ , provide probe access to an MIS M :

```
in-MIS(v): Is v in M?
```
Main idea: modify an existing distributed algorithm for MIS.

3 *Based on Ronitt Rubinfeld's and Sepehr Assadi's lecture notes*

Distributed LOCAL Model

- The input graph is a communication network; each node is a processor.
- In each round:
	- Communication: each vertex can send any message to each neighbor (possibly different messages to different neighbors).
	- Computation: each vertex can decide on its actions for the next round, based on received messages.
- At the end of the last round, each vertex decides on its final status (e.g., whether it is in the MIS M)
- Goal: to minimize the number of rounds.

(A variant of) Luby's MIS Algorithm for the LOCAL Model

- 1. Initialize $Active(v) = True; M(v) = False$ for all $v \in V$.
- 2. For each (out of R) rounds, all vertices v run the following in parallel:
	- a. Vertex v selects itself with probability $\frac{1}{2}$ 2Δ
	- b. Vertex v wins if v is selected, and no neighbor of v is selected
	- c. If v won and $Active(v) = True$, then set $M(v) = True$ and $Active(u) = False \ \forall u \in \{v\} \cup N(v)$

Analyzing the Number of Rounds (New)

Termination Theorem

Fix $v \in V$ and round $R \geq 1$. Let $L(v)$ be the event that v lost in all R rounds. Then $Pr[Active(v) = True$ after R rounds of Luby's algorithm] \overline{R} .

$$
\leq \Pr[L(v)] \leq \exp\left(-\frac{n}{4\Delta}\right)
$$

Proof: For each $v \in V$ and round $r \geq 1$, define the following events.

 $S_r(v)$: the event that v is selected in round r

 $W_r(v)$: the event that v wins round r, i.e., v is the only selected vertex in $\{v\} \cup N(v)$

$$
Pr[W_r(v)] = Pr[S_r(v) \land \forall u \in N(v): S_r(u)]
$$

=
$$
Pr[S_r(v)] \cdot Pr[\forall u \in N(v): S_r(u)]
$$

Exents
$$
S_r(v)
$$
 are independent

$$
\geq Pr[S_r(v)] \cdot \left(1 - \sum_{u \in N(v)} Pr[S_r(u)]\right)
$$

$$
\geq \frac{1}{2\Delta} \cdot \left(1 - \Delta \cdot \frac{1}{2\Delta}\right) = \frac{1}{4\Delta}
$$

Analyzing the Number of Rounds (New)

Termination Theorem

Fix $v \in V$ and round $R \geq 1$. Let $L(v)$ be the event that v lost in all R rounds. Then $Pr[Active(v) = True$ after R rounds of Luby's algorithm]

$$
\leq \Pr[L(v)] \leq \exp\left(-\frac{R}{4\Delta}\right)
$$

.

Proof: $W_r(v)$: the event that v wins round r

- Pr $[W_r(v)] \geq \frac{1}{4}$ 4Δ
- Events $W_r(v)$ are independent for different rounds
- The probability that v is active after R rounds is at most

$$
\Pr[L(v)] \le \prod_{r=1}^{R} \Pr\left[\overline{W_r(v)}\right] \le \left(1 - \frac{1}{4\Delta}\right)^R \le \exp\left(-\frac{R}{4\Delta}\right)
$$

If v wins, it is no longer active

Conclusion: Set $R = 8\Delta \cdot \ln n$.

- Then a specific vertex remains active after R rounds w.p. at most $1/n^2$
- By a union bound, no vertex remains active w.p. at least $1-1/n$

Converting Luby's MIS Algorithm to LCA

Key observation: What happens to vertex v in R rounds depends only on R-hop neighborhood of ν

2-hop neighborhood

- If we simulate Luby's algorithm for $R = \Theta(\Delta \log n)$ rounds, we need to consider R-hop neighborhood of ν , which takes $\Delta^{\Theta(\Delta\log n)} = \Omega(n)$ time.
- Idea 1: Simulate it for $R = \Theta(\Delta \log \Delta)$ rounds instead (no dependence on n)
- Idea 2: Prove that, at the end, active vertices form small connected components. (We say that the graph is shattered.)
- For each probe v , if its MIS status has not been decided (i.e., v is still active) after *rounds, we will find MIS for its connected component* deterministically.

LCA for MIS

LubyStatus(v, R)

- 1. Simulate Luby's algorithm on vertex v for R rounds
- 2. If $Active(v) = False$ then
- 3. if $M(v) = True$, return IN-MIS; otherwise, return NOT-IN-MIS
- 4. else return ACTIVE

Answer Probe in-MIS (v)

- 1. Set $R = 12\Delta \cdot \ln(2\Delta)$
- 2. Compute $status \leftarrow$ LubyStatus(v, R)
- 3. If status is IN-MIS or NOT-IN-MIS, return status
- 4. Otherwise, find the connected component $C₁$, of v as follows:
- 5. Run DFS on ν
- 6. For every visited node u, compute LubyStatus(u, R)
- 7. Continue DFS only on active nodes
- 8. Compute lexicographically first MIS of C_v greedily, ordering vertices according to their ID.
- 9. Return whether v belongs to MIS of C_{ν}

Correctness

The output is an independent set

- Luby's algorithm maintains an independent set.
- Active vertices are not adjacent to vertices already in MIS.

The output is an independent set

- Luby's algorithm maintains an independent set.
- Active vertices are not adjacent to vertices already in MIS.
- If $C_{\nu} \neq C_{\nu}$ then $(u, v) \notin E$, so when we add independent sets for connected components, the resulting set is independent

The output is a maximal independent set

- Each deactivated vertex that is not in the output M is adjacent to a vertex in M , so it cannot be added.
- If ν was in a connected component C_{ν} , but is not in M , it cannot be added because M includes an MIS for C_v .

Running Time

Runtime Theorem

W.p. \geq 2/3 over random strings, each probe in-MIS(v) is answered in $\Delta^{O(\Delta\cdot\log\Delta)}\cdot \log n$ time when the algorithm uses the chosen random string.

Lemma

For each ν , it take time $\Delta^{O(\Delta \cdot \log \Delta)} \cdot |\mathcal{C}_{\nu}|$ to answer probe in-MIS (ν) .

Proof: Consider running LubyStatus(*u*, R) for some $u \in V$.

- There are at most Δ^R vertices in the R-hop neighborhood of u .
- Since $R = O(\Delta \log \Delta)$, the running time is $\Delta^{O(\Delta \cdot \log \Delta)}$.

To answer probe in-MIS(v), we might run LubyStatus(*u*, R) on nodes in C_v and their neighbors, resulting in time at most

$$
\Delta^{O(\Delta \cdot \log \Delta)} \cdot O(\Delta) \cdot |\mathcal{C}_{\nu}| = \Delta^{O(\Delta \cdot \log \Delta)} \cdot |\mathcal{C}_{\nu}|.
$$

It remains to analyze $|C_v|$.

Analyzing the Sizes of Connected Components

For each $v \in V$, define $A(v)$: the event that $Active(v) = True$ after round R

By Termination Theorem, for each $v \in V$,

$$
\Pr[A(v)] \le \exp\left(-\frac{R}{4\Delta}\right) = \exp\left(-\frac{12\Delta \cdot \ln(2\Delta)}{4\Delta}\right) = \frac{1}{8\Delta^3}
$$

One difficulty is that events $A(v)$ are not independent. For each $v \in V$, define $Pr[L(v)] \leq \frac{1}{24}$ $8\Delta^3$, as before. $L(v)$: the event that v is a loser (in all R rounds)

Claim. Events $L(v)$ are independent for all vertices u , v at distance at least 3.

- $L(v)$ is only a function of randomness at $\{v\} \cup N(v)$
- Sets $\{u\} \cup N(u)$ and $\{v\} \cup N(v)$ are disjoint

Idea: Let H be the subgraph of G induced by losers.

We will show: if H has a large CC then it also has many `independent'' nodes

 $\overline{\nu}$

 \overline{u}

Graph

- Let $d_G(u, v)$ denote the distance from u to v in G
- Let $G^{(3)}$ be a graph on nodes $V(G)$ with $(u, v) \in E(G^{(3)})$ iff $d_G(u, v) \geq 3$
- Max degree in $G^{(3)}$ is at most Δ^3
- For $S \subseteq V$, let $G[S]$ denote the induced subgraph of G on S

Big-Tree Claim

If $H[S]$ is connected then $H^{(3)}[S]$ contains a tree with a vertex set T as a subgraph, where $|T| \geq \frac{|S|}{\sqrt{2}}$ $\frac{131}{\Delta^2+1}$ and $d_H(u,v) \geq 3$ for all nodes $u, v \in T$.

Proof: We construct T greedily:

- 1. Pick an arbitrary $v \in S$
- 2. Repeat until no node remains in S :
- 3. Move v from S to T; remove all u with $d_H(u, v) < 3$ from S
- 4. Pick a new node $v \in S$ such that $d_H(u, v) = 3$ for some $u \in T$

For each node added to T, we exclude $\leq \Delta^2$ nodes from its 2-hop neighborhood, so T has the desired size.

Counting Trees in

Tree-Counting Claim

For $s \geq 1$, let T_s denote the set of all s-node trees that are subgraphs of $G^{(3)}$.

Then $|\mathcal{T}_{\scriptscriptstyle \mathcal{S}}| \leq n \cdot \left(4 \Delta^3\right)^s$.

Proof: We enumerate trees in T_s using the following steps.

- 1. Chose the root. *n* choices
- 2. Choose an unlabeled s -node rooted tree by choosing its DFS sequence represented as $2(s - 1)$ -bit string. $|$ < 4^s choices $\leq 2^{2(s-1)}$
- 3. Label the tree starting from the root in the order given by the DFS sequence. To go from a parent to a child,

$$
\frac{\leq \Delta^{3(s-1)}}{< \Delta^{3s} \text{ choices}}
$$

↓↓↑↓↑↑↓↓↑↑

pick one of $\leq \Delta^3$ neighbors of the parent in $G^{(3)}$ as its child.

The Size of Connected Components

• Let $s = \log \frac{n}{2}$ 3

 $L(T) = \Lambda_{\nu \in T} L(\nu)$ the event that all vertices in T are losers

- Let $\mathcal{T}_{s}^{*} = \{T \subseteq V : |T| = s, G^{(3)}[T]$ contains a tree, $d_{H}(u, v) \geq 3 \forall u, v \in T$
- The probability that there is a set $T \in \mathcal{T}_{s}^*$ where all nodes are losers is

$$
\leq \sum_{T \in \mathcal{T}_s^*} \Pr[L(T)] \leq |\mathcal{T}_s^*| \cdot \left(\frac{1}{(8\Delta)^3}\right)^s \leq n \cdot \left(4\Delta^3\right)^s \cdot \left(\frac{1}{8\Delta^3}\right)^s = n \cdot \frac{1}{2^s} = \frac{1}{3}
$$

• But if there are no such trees, all CCs in H have size

$$
\leq (\Delta^2 + 1) \log \frac{n}{3} = O(\Delta^2 \log n)
$$

- That is, with probability at least 2/3, each probe takes $\Delta^{O(\Delta\log\Delta)}\cdot O\big(\Delta^2\log n\big)=\Delta^{O(\Delta\log\Delta)}\cdot\log n$
- Currently best run time of LCA for MIS is $\Delta^{O(\log \log \Delta)} \cdot \log n$ [Ghaffari Uitto 19]