
12/3/2020

Sublinear Algorithms

LECTURE 25
Last time
• Local Computation Algorithms (LCAs)

• Distributed LOCAL model

• Maximal Independent Set (MIS)

• Today
• Finish LCA for MIS

Sofya Raskhodnikova; Boston University

Local Computation Algorithms (LCAs)

Motivation: to have sublinear-time algorithms for problems with long output

• User should be able to ``probe’’ bits of the output.

• If there are multiple possible outputs, LCA should be giving answers
consistent with one.

• The order of the probes should not affect the answers (instantiations of LCA
should be able to consistently answer probes in parallel)

• They can have access to the same random string.

• [Rubinfeld, Tamir, Vardi, Xie 11]
2

Input

Output bit 𝑦𝑖Probe 𝑖

User

LCA

Input bits 𝑥𝑎, 𝑥𝑏, …Queries 𝑎, 𝑏, …

Maximal Independent Set (MIS)

For a graph 𝐺 = 𝑉, 𝐸 , a set 𝑀 ⊆ 𝑉 is a maximal independent set if

• 𝑀 is independent: ∀𝑢, 𝑣 ∈ 𝑀, the pair 𝑢, 𝑣 ∉ 𝐸

• 𝑀 is maximal: no larger independent set contains 𝑀 as a subset.

Example:

• MIS can be found in poly time by greedily adding vertices to 𝑀 and
removing them and their neighbors from consideration.

• It is NP-hard to compute a maximum independent set.

Goal: An LCA for MIS

• Given query access to a graph 𝐺 of maximum degree Δ, provide probe
access to an MIS 𝑀:

in-MIS(𝑣): Is 𝑣 in 𝑀?

Main idea: modify an existing distributed algorithm for MIS.
3Based on Ronitt Rubinfeld’s and Sepehr Assadi’s lecture notes

Distributed LOCAL Model

• The input graph is a communication network; each node is a processor.

• In each round:

– Communication: each vertex can send any message to each neighbor
(possibly different messages to different neighbors).

– Computation: each vertex can decide on its actions for the next round,
based on received messages.

• At the end of the last round, each vertex decides on its final status (e.g.,
whether it is in the MIS 𝑀)

• Goal: to minimize the number of rounds.

4

(A variant of) Luby’s MIS Algorithm for the LOCAL Model

1. Initialize 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒;𝑀 𝑣 = 𝐹𝑎𝑙𝑠𝑒 for all 𝑣 ∈ 𝑉.

2. For each (out of 𝑅) rounds, all vertices 𝑣 run the following in parallel:

a. Vertex 𝑣 selects itself with probability
1

2Δ
b. Vertex 𝑣 wins if 𝑣 is selected, and no neighbor of 𝑣 is selected

c. If 𝑣 won and 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒, then set 𝑀 𝑣 = 𝑇𝑟𝑢𝑒 and
𝐴𝑐𝑡𝑖𝑣𝑒 𝑢 = 𝐹𝑎𝑙𝑠𝑒 ∀𝑢 ∈ 𝑣 ∪ 𝑁(𝑣)

Analyzing the Number of Rounds (New)

Proof: For each 𝑣 ∈ 𝑉 and round 𝑟 ≥ 1, define the following events.

Pr 𝑊𝑟 𝑣 = Pr 𝑆𝑟 𝑣 ∧ ∀𝑢 ∈ 𝑁 𝑣 : 𝑆𝑟 𝑢

= Pr 𝑆𝑟 𝑣 ⋅ Pr ∀𝑢 ∈ 𝑁 𝑣 : 𝑆𝑟 𝑢

≥ Pr 𝑆𝑟 𝑣 ⋅ 1 −

𝑢∈𝑁 𝑣

Pr 𝑆𝑟 𝑢

≥
1

2Δ
⋅ 1 − Δ ⋅

1

2Δ
=

1

4Δ

5

Termination Theorem

Fix 𝑣 ∈ 𝑉 and round 𝑅 ≥ 1. Let 𝐿(𝑣) be the event that 𝑣 lost in all 𝑅 rounds.
Then Pr[𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after 𝑅 rounds of Luby’s algorithm]

≤ Pr 𝐿 𝑣 ≤ exp −
𝑅

4Δ
.

𝑆𝑟(𝑣): the event that 𝑣 is selected in round 𝑟

𝑊𝑟(𝑣): the event that 𝑣 wins round 𝑟, i.e., 𝑣 is the only selected vertex in 𝑣 ∪ 𝑁(𝑣)

By a union bound

Events 𝑆𝑟(𝑣) are independent

Analyzing the Number of Rounds (New)

Proof:

• Pr 𝑊𝑟 𝑣 ≥
1

4Δ

• Events 𝑊𝑟(𝑣) are independent for different rounds

• The probability that 𝑣 is active after 𝑅 rounds is at most

Pr 𝐿 𝑣 ≤ෑ

𝑟=1

𝑅

Pr 𝑊𝑟 𝑣 ≤ 1 −
1

4Δ

𝑅

≤ exp −
𝑅

4Δ

• If 𝑣 wins, it is no longer active

Conclusion: Set 𝑅 = 8Δ ⋅ ln 𝑛.

• Then a specific vertex remains active after 𝑅 rounds w.p. at most 1/𝑛2

• By a union bound, no vertex remains active w.p. at least 1−1/𝑛
6

𝑊𝑟(𝑣): the event that 𝑣 wins round 𝑟

Termination Theorem

Fix 𝑣 ∈ 𝑉 and round 𝑅 ≥ 1. Let 𝐿(𝑣) be the event that 𝑣 lost in all 𝑅 rounds.
Then Pr[𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after 𝑅 rounds of Luby’s algorithm]

≤ Pr 𝐿 𝑣 ≤ exp −
𝑅

4Δ
.

Converting Luby’s MIS Algorithm to LCA

• Key observation: What happens to vertex 𝑣 in 𝑅 rounds depends only on
𝑅-hop neighborhood of 𝑣

• If we simulate Luby’s algorithm for 𝑅 = Θ(Δ log 𝑛) rounds, we need to

consider 𝑅-hop neighborhood of 𝑣, which takes ΔΘ Δ log 𝑛 = Ω(𝑛) time.

• Idea 1: Simulate it for 𝑅 = Θ(Δ log Δ) rounds instead (no dependence on 𝑛)

• Idea 2: Prove that, at the end, active vertices form small connected
components. (We say that the graph is shattered.)

• For each probe 𝑣, if its MIS status has not been decided (i.e., 𝑣 is still active)
after 𝑅 rounds, we will find MIS for its connected component
deterministically.

7

2-hop neighborhood

LCA for MIS

8

LubyStatus(𝑣, 𝑅)

1. Simulate Luby’s algorithm on vertex 𝑣 for 𝑅 rounds
2. If 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝐹𝑎𝑙𝑠𝑒 then
3. if 𝑀 𝑣 = 𝑇𝑟𝑢𝑒, return IN-MIS; otherwise, return NOT-IN-MIS
4. else return ACTIVE

Answer Probe in-MIS(𝑣)

1. Set 𝑅 = 12Δ ⋅ ln(2Δ)
2. Compute 𝑠𝑡𝑎𝑡𝑢𝑠 ← LubyStatus(𝑣, 𝑅)
3. If 𝑠𝑡𝑎𝑡𝑢𝑠 is IN-MIS or NOT-IN-MIS, return 𝑠𝑡𝑎𝑡𝑢𝑠
4. Otherwise, find the connected component 𝐶𝑣 of 𝑣 as follows:
5. Run DFS on 𝑣
6. For every visited node 𝑢, compute LubyStatus(𝑢, 𝑅)
7. Continue DFS only on active nodes
8. Compute lexicographically first MIS of 𝐶𝑣 greedily, ordering vertices

according to their ID.
9. Return whether 𝑣 belongs to MIS of 𝐶𝑣

Correctness

The output is an independent set
• Luby’s algorithm maintains an independent set.

• Active vertices are not adjacent to vertices already in MIS.

9

Correctness

The output is an independent set
• Luby’s algorithm maintains an independent set.

• Active vertices are not adjacent to vertices already in MIS.

• If 𝐶𝑢 ≠ 𝐶𝑣 then 𝑢, 𝑣 ∉ 𝐸, so when we add independent sets for
connected components, the resulting set is independent

The output is a maximal independent set
• Each deactivated vertex that is not in the output 𝑀 is adjacent to a vertex in

𝑀, so it cannot be added.

• If 𝑣 was in a connected component 𝐶𝑣, but is not in 𝑀, it cannot be added
because 𝑀 includes an MIS for 𝐶𝑣.

10

Running Time

Proof: Consider running LubyStatus(u, 𝑅) for some 𝑢 ∈ 𝑉.

• There are at most Δ𝑅 vertices in the 𝑅-hop neighborhood of 𝑢.

• Since 𝑅 = 𝑂 Δ logΔ , the running time is Δ𝑂 Δ⋅log Δ .

To answer probe in-MIS(𝑣), we might run LubyStatus(u, 𝑅) on nodes in 𝐶𝑣 and
their neighbors, resulting in time at most

Δ𝑂 Δ⋅log Δ ⋅ O Δ ⋅ 𝐶𝑣 = Δ𝑂 Δ⋅log Δ ⋅ 𝐶𝑣 .

It remains to analyze 𝐶𝑣 .

11

Runtime Theorem

W.p. ≥2/3 over random strings, each probe in-MIS(𝑣) is answered in

Δ𝑂 Δ⋅log Δ ⋅ log 𝑛 time when the algorithm uses the chosen random string.

Lemma

For each 𝑣, it take time Δ𝑂 Δ⋅log Δ ⋅ |𝐶𝑣| to answer probe in-MIS(𝑣).

Analyzing the Sizes of Connected Components

For each 𝑣 ∈ 𝑉, define

• By Termination Theorem, for each 𝑣 ∈ 𝑉,

Pr 𝐴 𝑣 ≤ exp −
𝑅

4Δ
= exp −

12Δ ⋅ ln(2Δ)

4Δ
=

1

8Δ3

• One difficulty is that events 𝐴(𝑣) are not independent.

For each 𝑣 ∈ 𝑉, define

Pr 𝐿 𝑣 ≤
1

8Δ3
, as before.

Claim. Events 𝐿(𝑣) are independent for all vertices 𝑢, 𝑣 at distance at least 3.

• 𝐿(𝑣) is only a function of randomness at 𝑣 ∪ 𝑁 𝑣

• Sets 𝑢 ∪ 𝑁 𝑢 and 𝑣 ∪ 𝑁 𝑣 are disjoint

Idea: Let 𝐻 be the subgraph of 𝐺 induced by losers.

We will show: if 𝐻 has a large CC then it also has many ``independent’’ nodes

12

L(𝑣): the event that 𝑣 is a loser (in all 𝑅 rounds)

𝐴(𝑣): the event that 𝐴𝑐𝑡𝑖𝑣𝑒 𝑣 = 𝑇𝑟𝑢𝑒 after round 𝑅

𝑢

𝑣

Graph 𝑮 𝟑

• Let 𝑑𝐺 𝑢, 𝑣 denote the distance from 𝑢 to 𝑣 in 𝐺

• Let 𝐺 3 be a graph on nodes 𝑉(𝐺) with 𝑢, 𝑣 ∈ 𝐸 𝐺 3 iff 𝑑𝐺 𝑢, 𝑣 ≥ 3

• Max degree in 𝐺 3 is at most Δ3

• For 𝑆 ⊆ 𝑉, let 𝐺[𝑆] denote the induced subgraph of 𝐺 on 𝑆

Proof: We construct 𝑇 greedily:

1. Pick an arbitrary 𝑣 ∈ 𝑆

2. Repeat until no node remains in 𝑆:

3. Move 𝑣 from 𝑆 to 𝑇; remove all 𝑢 with 𝑑𝐻 𝑢, 𝑣 < 3 from 𝑆

4. Pick a new node 𝑣 ∈ 𝑆 such that 𝑑𝐻 𝑢, 𝑣 = 3 for some 𝑢 ∈ 𝑇

For each node added to 𝑇, we exclude ≤ Δ2 nodes from its 2-hop neighborhood,
so 𝑇 has the desired size.

13

Big-Tree Claim

If 𝐻[𝑆] is connected then 𝐻 3 [𝑆] contains a tree with a vertex set 𝑇 as a

subgraph, where T ≥
𝑆

Δ2+1
and 𝑑𝐻 𝑢, 𝑣 ≥ 3 for all nodes 𝑢, 𝑣 ∈ 𝑇.

Counting Trees in 𝑮 𝟑

Proof: We enumerate trees in 𝒯𝑠 using the following steps.

1. Chose the root.

2. Choose an unlabeled 𝑠-node rooted tree
by choosing its DFS sequence
represented as 2(𝑠 − 1)-bit string.

3. Label the tree starting from the root
in the order given by the DFS sequence.
To go from a parent to a child,

pick one of ≤ Δ3 neighbors of the parent in 𝐺 3 as its child.

14

Tree-Counting Claim

For 𝑠 ≥ 1, let 𝒯𝑠 denote the set of all 𝑠-node trees that are subgraphs of 𝐺 3 .

Then 𝒯𝑠 ≤ 𝑛 ⋅ 4Δ3
𝑠
.

↓↓↑↓↑↑↓↓↑↑

n choices

≤ 22 𝑠−1

< 4𝑠 choices

≤ Δ3 𝑠−1

< Δ3𝑠 choices

The Size of Connected Components

• Let 𝑠 = log
𝑛

3

• Let 𝒯𝑠
∗ = 𝑇 ⊆ 𝑉: 𝑇 = 𝑠, 𝐺 3 𝑇 contains a tree, 𝑑𝐻 𝑢, 𝑣 ≥ 3 ∀𝑢, 𝑣 ∈ 𝑇

• The probability that there is a set T ∈ 𝒯𝑠
∗ where all nodes are losers is

≤

𝑇∈𝒯𝑠
∗

Pr 𝐿 𝑇 ≤ 𝒯𝑠
∗ ⋅

1

8Δ 3

𝑠

≤ 𝑛 ⋅ 4Δ3
𝑠
⋅

1

8Δ3

𝑠

= 𝑛 ⋅
1

2𝑠
=
1

3

• But if there are no such trees, all CCs in 𝐻 have size

≤ Δ2 + 1 log
𝑛

3
= 𝑂 Δ2 log 𝑛

• That is, with probability at least 2/3, each probe takes

Δ𝑂 Δ log Δ ⋅ 𝑂 Δ2 log 𝑛 = Δ𝑂 Δ log Δ ⋅ log 𝑛

• Currently best run time of LCA for MIS is Δ𝑂 log log Δ ⋅ log 𝑛 [Ghaffari Uitto 19]

15

𝐿 𝑇 = ⋀𝑣∈𝑇𝐿 𝑣
the event that all vertices in 𝑇 are losers

