Sublinear Algorithms

LECTURE 3

Last time

- Properties of lists and functions.
- Testing if a list is sorted/Lipschitz and if a function is monotone.

Today

- Testing if a graph is connected.
- Estimating the number of connected components.
- Estimating the weight of a MST

Sofya Raskhodnikova;Boston University

Graph Properties

Testing if a Graph is Connected **[Goldreich Ron]**

Input: a graph $G = (V, E)$ on *n* vertices

in adjacency lists representation (a list of neighbors for each vertex)

- maximum degree *d*, i.e., adjacency lists of length *d* with some empty entries Query (v, i) , where $v \in V$ and $i \in [d]$: entry i of adjacency list of vertex v Exact Answer: Ω (dn) time
- Approximate version:

Is the graph connected or ϵ -far from connected? $\operatorname{\sf dist}(G_1, G_2) =$ # of entires in adjacency lists on which $\bm{{G_1}}$ and $\bm{{G_2}}$ differ dn Time: $\bm{0}$ 1 $\varepsilon^2 d$ today + improvement on HW *No dependence on n!*

Testing Connectedness: Algorithm

Connectedness Tester(n, d, ε, query access to G)

- **1. Repeat** s=8/ed times:
- 2. pick a random vertex u
- 3. determine if connected component of u is small:

perform BFS from u , stopping after at most 4/ ε d new nodes

4. Reject if a small connected component was found, otherwise **accept.**

Run time: $O(d/\varepsilon^2 d^2)$ =O(1/ $\varepsilon^2 d$)

Analysis:

- Connected graphs are always accepted.
- Remains to show:

If a graph is ϵ -far from connected, it is rejected with probability $\geq \frac{2}{3}$ 3

Testing Connectedness: Analysis

Claim 2 If G is ε -far from connected, it has \geq $\overline{\epsilon d n}$ 4 connected components of size at most 4/ed.

- By Claim 2, at least $\frac{\varepsilon d n}{4}$ 4 nodes are in small connected components.
- By Witness lemma, it suffices to sample $\frac{2.4}{5}$ $\frac{2}{\epsilon}$ dn/n = 8 $\overline{\epsilon d}$ nodes to detect one from a small connected component.

Testing Connectedness: Proof of Claim 1

We prove the contrapositive:

If G is ε -far from connected, it has \geq

Claim 1

If G has $< \frac{\varepsilon d n}{2}$ 2 connected components, one can make G connected by modifying $\leq \varepsilon$ fraction of its representation, i.e., $\leq \varepsilon dn$ entries.

 $\overline{\epsilon d n}$

2

connected components.

- If there are no degree restrictions, k components can be connected by adding k -1 edges, each affecting 2 nodes. Here, $k <$ ϵ dn 2 , so $2k - 2 < \varepsilon dn$.
- What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, i.e., all vertex degrees are d?

- Consider an **MST** of this component.
- Let ν be a leaf of the MST.
- Disconnect ν from a node other than its parent in the MST.
- Two entries are changed while keeping the same number of components.

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, i.e., all vertex degrees are d?

- Apply this to each component with <2 free spots in adjacency lists.
- Now we can connect all the components using the freed up spots while ensuring that we never change more than 2 spots per component.
- Thus, k components can be connected by changing 2k spots.

Here,
$$
k < \frac{\varepsilon d n}{2}
$$
, so $2k < \varepsilon d n$.

Testing Connectedness: Proof of Claim 2

Claim 1

If G is ε -far from connected, it has \geq $\overline{\epsilon d n}$ 2 connected components.

Claim 2 If G is ε -far from connected, it has \geq $\overline{\epsilon d n}$ 4 connected components of size at most 4/ed.

- By Claim 1, there are at least $\frac{\varepsilon d n}{2}$ 2 connected components.
- Their average size is at most $\frac{n}{\epsilon dm}$ $\frac{2}{\epsilon}$ = 2 $\overline{\epsilon d}$.
- By an averaging argument (or Markov inequality), at least half of the components are of size at most twice the average.

Testing if a Graph is Connected **[Goldreich Ron]**

Input: a graph $G = (V, E)$ on *n* vertices

- in adjacency lists representation (a list of neighbors for each vertex)
- maximum degree *d*

Connected or

 ε -far from connected?

$$
O\left(\frac{1}{\varepsilon^2 d}\right)
$$
 time
(no dependence on *n*)

Randomized Approximation in sublinear time

A Simple Example

Randomized Approximation: a Toy Example

Input: a string $w \in \{0,1\}^n$

Goal: Estimate the fraction of 1's in w (like in polls)

It suffices to sample $s = 1 / \varepsilon^2$ positions and output the average to get the fraction of 1's $\pm \varepsilon$ (i.e., additive error ε) with probability $\geq 2/3$

Y_i = value of sample i. Then E[Y] $=$ $\frac{1}{s}$ \mathcal{S}_{0} ⋅ ∑ \mathcal{S}_{0} $i=1$ $E[Y_i] =$ (fraction of 1's in w) $Pr[|$ (sample mean) – (fraction of 1's in w) $\geq \varepsilon$] $\leq 2e^{-2s\varepsilon^2} = 2e^{-2} < 1/3$ Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1]. Let $Y=\frac{1}{s}$ $\overline{\mathcal{S}}$ ⋅ ∑ \mathcal{S}_{0} $i=1$ \rm{Y}_i (called *sample mean*). Then $\rm{Pr}[|Y - E[Y]| \geq \varepsilon] \leq 2e^{-2s\varepsilon^2}.$ Hoeffding Bound Apply Hoeffding Bound substitute $s = 1 / \varepsilon^2$

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph $G = (V, E)$ on n vertices

- in adjacency lists representation (a list of neighbors for each vertex)
- maximum degree *d*

Exact Answer: Ω (dn) time Additive approximation: # of CC ±εn with probability $> 2/3$

Time:

- Known: O \boldsymbol{d} $\frac{d}{\varepsilon^2}$ log $\frac{1}{\varepsilon}$ $\mathcal{E}_{\mathcal{L}}$, Ω \boldsymbol{d} ε^2
- Today: O \boldsymbol{d} $\frac{a}{\varepsilon^3}$.

13 *Partially based on slides by Ronitt Rubinfeld: http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf*

Approximating # of CCs: Main Idea

- Let C = number of components
- *Breaks C up into* For every vertex u , define n_{ν} = number of nodes in *u's component*
	- $-$ for each component $\mathsf{A}\colon\thinspace \Sigma_{u\in A} \frac{1}{n}$ n_u $= 1$ ∑ $u \overline{\in} V n_u$ 1 $= C$
- Estimate this sum by estimating n_u 's for a few random nodes
	- If u' s component is small, its size can be computed by BFS.
	- $-$ If u' s component is big, then $1/n_u$ is small, so it does not contribute much to the sum
	- Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

contributions

of different nodes

Approximating # of CCs: Algorithm

Estimating n_u = the number of nodes in u's component:

• Let estimate $\hat{n}_u = \min\left\{n_u, \frac{2}{s}\right\}$ $\mathcal{E}_{\mathcal{L}}$

– When u' s component has $\leq 2/\varepsilon$ nodes , $\hat{n}_u = n_u$

- Else $\hat{n}_u = 2/\varepsilon$, and so $0 < \frac{1}{\hat{n}_u}$ $\hat{n}_{\boldsymbol{u}}$ $-\frac{1}{n}$ n_u $\frac{1}{\hat{}}$ $\hat{n}_{\boldsymbol{u}}$ $=\frac{\varepsilon}{2}$ 2 $\left\{ \right\}$ 1 \hat{n}_{u} − 1 n_u ≤ $\mathcal{E}_{\mathcal{E}}$ 2
- Corresponding estimate for C is $\hat{C} = \sum_{u \in V} \frac{1}{\hat{n}}$ $\boldsymbol{\hat{n}_u}$. It is a good estimate:

$$
\hat{C} - C = \left| \sum_{u \in V} \frac{1}{\hat{n}_u} - \sum_{u \in V} \frac{1}{n_u} \right| \le \sum_{u \in V} \left| \frac{1}{\hat{n}_u} - \frac{1}{n_u} \right| \le \frac{\varepsilon n}{2}
$$

APPROX_#_CCs (n, d, ε, query access to G)

- **1. Repeat** s= $\Theta(1/\epsilon^2)$ times:
- 2. pick a random vertex u
- 3. compute \hat{n}_u via BFS from u, stopping after at most $2/\varepsilon$ new nodes
- 4. **Return** \tilde{C} = (average of the values $1/\hat{n}_u$) \cdot n

Run time: $O(d / \varepsilon^3)$

Approximating # of CCs: Analysis

Want to show:
$$
Pr\left[|\tilde{C} - \hat{C}| > \frac{\varepsilon n}{2}\right] \le \frac{1}{3}
$$

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1].

Let $Y = \frac{1}{s}$ $\overline{\mathcal{S}}$ ⋅ ∑ \mathcal{S}_{0} $i=1$ $\rm Y_i$ (called *sample mean*). Then $\rm Pr[|Y-E[Y]| \geq \varepsilon] \leq 2e^{-2s\varepsilon^2}.$

Let $Y_i = 1/\hat{n}_u$ for the ith vertex u in the sample

\n- \n
$$
Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i = \frac{\tilde{c}}{n}
$$
\n
\n- \n
$$
E[Y] = \frac{1}{s} \cdot \sum_{i=1}^{s} E[Y_i] = E[Y_1] = \frac{1}{n} \sum_{u \in V} \frac{1}{\hat{n}_u} = \frac{\hat{c}}{n}
$$
\n
\n- \n
$$
Pr\left[|\tilde{C} - \hat{C}| > \frac{\varepsilon n}{2}\right] = Pr\left[|nY - nE[Y]|\right] > \frac{\varepsilon n}{2}\right] = Pr\left[|Y - E[Y]|\right] > \frac{\varepsilon}{2}\right] \leq 2e^{-\frac{\varepsilon^2 s}{2}}
$$
\n
\n- \n Need $s = \Theta\left(\frac{1}{\varepsilon^2}\right)$ samples to get probability $\leq \frac{1}{3}$ \n
\n

Approximating # of CCs: Analysis

So far:
$$
|\hat{C} - C| \le \frac{\varepsilon n}{2}
$$

\n
$$
\Pr\left[|\tilde{C} - \hat{C}| > \frac{\varepsilon n}{2}\right] \le \frac{1}{3}
$$
\n• With probability $\ge \frac{2}{3}$,
\n
$$
|\tilde{C} - C| \le |\tilde{C} - \hat{C}| + |\hat{C} - C| \le \frac{\varepsilon n}{2} + \frac{\varepsilon n}{2} \le \varepsilon n
$$

Summary:

The number of connected components in n -vetex graphs of degree at most d can be estimated within $\pm \varepsilon n$ in time O \boldsymbol{d} $\frac{a}{\varepsilon^3}$.

Minimum spanning tree (MST)

• What is the cheapest way to connect all the dots? Input: a weighted graph with n vertices and m edges 3

- Exact computation:
	- Deterministic (*∙* inverse-Ackermann()) time [Chazelle]
	- Randomized $O(m)$ time [Karger Klein Tarjan]

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph $G = (V, E)$ on n vertices

- in adjacency lists representation
- maximum degree *d* and maximum allowed weight *w*
- weights in $\{1, 2, ..., w\}$

Output: $(1+ε)$ -approximation to MST weight, W_{MST} Time:

• Known:
$$
O\left(\frac{dw}{\varepsilon^3} \log \frac{dw}{\varepsilon}\right), \Omega\left(\frac{dw}{\varepsilon^2}\right)
$$

• Today:
$$
O\left(\frac{dw^4 \log w}{\varepsilon^3}\right)
$$

- Characterize MST weight in terms of number of connected components in certain subgraphs of *G*
- Already know that number of connected components can be estimated quickly

MST and Connected Components: Warm-up

• Recall Kruskal's algorithm for computing MST exactly.

MST and Connected Components

In general: Let G_i = subgraph of G containing all edges of weight $\leq i$ C_i = number of connected components in G_i

Then MST has $C_i - 1$ edges of weight $> i$.

- Let β_i be the number of edges of weight $> i$ in MST
- Each MST edge contributes 1 to w_{MST} , each MST edge of weight >1 contributes 1 more, each MST edge of weight >2 contributes one more, …

$$
w_{MST}(G) = \sum_{i=0}^{w-1} \beta_i = \sum_{i=0}^{w-1} (C_i - 1) = -w + \sum_{i=0}^{w-1} C_i = n - w + \sum_{i=1}^{w-1} C_i
$$

Algorithm for Approximating

APPROX_MSTweight (n, d, w, ε; G)

1. For $i = 1$ to $w - 1$ **do**:

2.
$$
\tilde{C}_i \leftarrow \text{APPROX_HCCs}(n, d, \frac{\varepsilon}{w}; G_i).
$$

3. Return
$$
\widetilde{W}_{MST} = n - w + \sum_{i=1}^{w-1} \widetilde{C}_i
$$
.

Claim. $w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$

Analysis:

• Suppose all estimates of C_i 's are good: $|\tilde{C}_i - C_i| \leq \frac{\varepsilon}{w_i}$ \boldsymbol{w} \overline{n} .

Then $|\widetilde{w}_{MST} - w_{MST}| = |\sum_{i=1}^{W-1} (\widetilde{C}_i - C_i)| \leq \sum_{i=1}^{W-1} |\widetilde{C}_i - C_i| \leq w \cdot \frac{\varepsilon}{w}$ \boldsymbol{w} $n = \varepsilon n$

- Pr[all $w 1$ estimates are good] $\geq (2/3)^{w-1}$
- Not good enough! Need error probability $\leq \frac{1}{2v}$ $3w$ for each iteration
- Then, by Union Bound, Pr[error] $\leq w \cdot \frac{1}{2w}$ $3w$ $=\frac{1}{2}$ 3 Can amplify success probability of any algorithm by repeating it and taking the median answer.
	- Can take more samples in APPROX #CCs. What's the resulting run time?

Multiplicative Approximation for

For MST cost, additive approximation \implies multiplicative approximation $w_{MST} \ge n-1 \implies w_{MST} \ge n/2$ for $n \ge 2$

• εn -additive approximation:

$$
w_{MST} - \varepsilon n \le \hat{w}_{MST} \le w_{MST} + \varepsilon n
$$

• $(1 \pm 2\varepsilon)$ -multiplicative approximation: $w_{MST}(1-2\varepsilon) \leq w_{MST} - \varepsilon n \leq \widehat{w}_{MST} \leq w_{MST} + \varepsilon n \leq w_{MST}(1+2\varepsilon)$