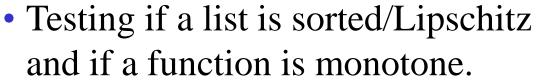
Sublinear Algorithms

LECTURE 3

Last time



Today

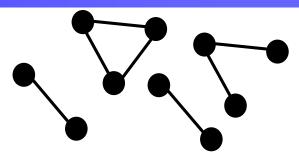
- Testing if a graph is connected.
- Estimating the number of connected components.
- Estimating the weight of a MST

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph G = (V, E) on n vertices

in adjacency lists representation
 (a list of neighbors for each vertex)



• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v, i), where $v \in V$ and $i \in [d]$: entry i of adjacency list of vertex v Exact Answer: $\Omega(dn)$ time

Approximate version:

Is the graph connected or ϵ -far from connected?

$$dist(G_1, G_2) = \frac{\# of \ entires \ in \ adjacency \ lists \ on \ which \ G_1 \ and \ G_2 \ differ}{dn}$$

Time: $O\left(\frac{1}{\varepsilon^2 d}\right)$ today

+ improvement on HW

Testing Connectedness: Algorithm

Connectedness Tester(n, d, ε, query access to G)

- 1. Repeat $s=8/\epsilon d$ times:
- 2. pick a random vertex u
- 3. determine if connected component of u is small:

perform BFS from u, stopping after at most $4/\epsilon d$ new nodes

4. Reject if a small connected component was found, otherwise accept.

Run time: $O(d/\epsilon^2 d^2) = O(1/\epsilon^2 d)$

Analysis:

- Connected graphs are always accepted.
- Remains to show:

If a graph is ϵ -far from connected, it is rejected with probability $\geq \frac{2}{3}$

Testing Connectedness: Analysis

Claim 1

If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

Claim 2

If G is ϵ -far from connected, it has $\geq \frac{\epsilon dn}{4}$ connected components of size at most $4/\epsilon d$.

- By Claim 2, at least $\frac{\mathcal{E}dn}{4}$ nodes are in small connected components.
- By Witness lemma, it suffices to sample $\frac{2\cdot 4}{\epsilon dn/n} = \frac{8}{\epsilon d}$ nodes to detect one from a small connected component.

Testing Connectedness: Proof of Claim 1

Claim 1

If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

We prove the contrapositive:

If G has $<\frac{\varepsilon dn}{2}$ connected components, one can make G connected by modifying $< \varepsilon$ fraction of its representation, i.e., $< \varepsilon dn$ entries.

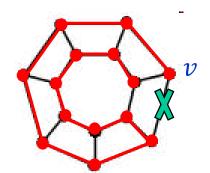
- If there are no degree restrictions, k components can be connected by adding k-1 edges, each affecting 2 nodes. Here, $k < \frac{\epsilon dn}{2}$, so $2k 2 < \epsilon dn$.
- What if adjacency lists of all vertices in a component are full,
 i.e., all vertex degrees are d?

Freeing up an Adjacency List Entry

Claim 1

If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

What if adjacency lists of all vertices in a component are full, i.e., all vertex degrees are d?



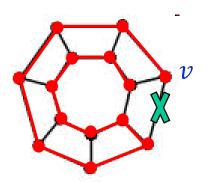
- Consider an MST of this component.
- Let v be a leaf of the MST.
- Disconnect v from a node other than its parent in the MST.
- Two entries are changed while keeping the same number of components.

Freeing up an Adjacency List Entry

Claim 1

If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

What if adjacency lists of all vertices in a component are full, i.e., all vertex degrees are d?



- Apply this to each component with <2 free spots in adjacency lists.
- Now we can connect all the components using the freed up spots while ensuring that we never change more than 2 spots per component.
- Thus, k components can be connected by changing 2k spots.

Here,
$$k < \frac{\varepsilon dn}{2}$$
, so $2k < \varepsilon dn$.

Testing Connectedness: Proof of Claim 2

Claim 1

If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

Claim 2

If G is ϵ -far from connected, it has $\geq \frac{\epsilon dn}{4}$ connected components of size at most $4/\epsilon d$.

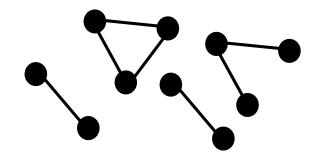
- By Claim 1, there are at least $\frac{\varepsilon dn}{2}$ connected components.
- Their average size is at most $\frac{n}{\epsilon dn/2} = \frac{2}{\epsilon d}$.
- By an averaging argument (or Markov inequality), at least half of the components are of size at most twice the average.

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph G = (V, E) on n vertices

- in adjacency lists representation

 (a list of neighbors for each vertex)
- maximum degree d



Connected or ε -far from connected?

$$O\left(\frac{1}{\varepsilon^2 d}\right)$$
 time (no dependence on n)

Randomized Approximation in sublinear time

A Simple Example

Randomized Approximation: a Toy Example

Input: a string $w \in \{0,1\}^n$

0 0 1 ... 0 1 0 0

Goal: Estimate the fraction of 1's in w (like in polls)

It suffices to sample $s=1/\varepsilon^2$ positions and output the average to get the fraction of 1's $\pm \varepsilon$ (i.e., additive error ε) with probability $\geq 2/3$

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1].

Let
$$Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$$
 (called *sample mean*). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.

$$\begin{aligned} \mathbf{Y_i} &= \text{value of sample } i. \text{ Then E}[\mathbf{Y}] = \frac{1}{s} \cdot \sum_{i=1}^{s} \mathrm{E}[\mathbf{Y_i}] = (\text{fraction of 1's in } w) \\ & \mathrm{Pr}[|(\text{sample mean}) - (\text{fraction of 1's in } w)| \geq \varepsilon] \\ & \leq 2\mathrm{e}^{-2s\varepsilon^2} = 2e^{-2} < 1/3 \\ & \uparrow \end{aligned}$$
 Apply Hoeffding Bound substitute $s = 1 / \varepsilon^2$

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on n vertices

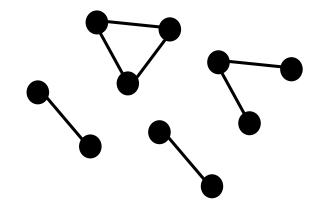
- in adjacency lists representation
 (a list of neighbors for each vertex)
- maximum degree d

Exact Answer: $\Omega(dn)$ time

Additive approximation: # of CC ±ɛn

with probability $\geq 2/3$

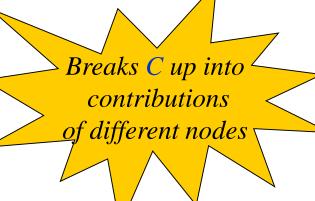
- Known: $O\left(\frac{d}{\varepsilon^2}\log\frac{1}{\varepsilon}\right)$, $\Omega\left(\frac{d}{\varepsilon^2}\right)$
- Today: $O\left(\frac{d}{\varepsilon^3}\right)$.



Approximating # of CCs: Main Idea

- Let C = number of components
- For every vertex u, define n_u = number of nodes in u's component
 - for each component **A**: $\sum_{u \in A} \frac{1}{n_u} = 1$

$$\sum_{u \in V} \frac{1}{n_u} = C$$



- Estimate this sum by estimating n_u 's for a few random nodes
 - If u's component is small, its size can be computed by BFS.
 - If u's component is big, then $1/n_u$ is small, so it does not contribute much to the sum
 - Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

Approximating # of CCs: Algorithm

Estimating n_u = the number of nodes in u's component:

- Let estimate $\hat{n}_u = \min \{n_u, \frac{2}{s}\}$
- $\text{ When } u\text{'s component has } \leq 2/\epsilon \text{ nodes }, \ \hat{n}_u = n_u \\ \text{ Else } \ \hat{n}_u = 2/\epsilon \text{, and so } 0 < \frac{1}{\hat{n}_u} \frac{1}{n_u} < \frac{1}{\hat{n}_u} = \frac{\epsilon}{2} \\ \bullet \text{ Corresponding estimate for C is } \ \hat{C} = \sum_{u \in V} \frac{1}{\hat{n}_u}. \ \text{ It is a good estimate:}$

$$\left| \hat{C} - C \right| = \left| \sum_{u \in V} \frac{1}{\hat{n}_u} - \sum_{u \in V} \frac{1}{n_u} \right| \le \sum_{u \in V} \left| \frac{1}{\hat{n}_u} - \frac{1}{n_u} \right| \le \frac{\varepsilon n}{2}$$

APPROX_#_CCs (n, d, ε, query access to G)

- **Repeat** $s=\Theta(1/\epsilon^2)$ times:
- pick a random vertex u
- compute \hat{n}_u via BFS from u, stopping after at most $2/\epsilon$ new nodes
- **Return** \tilde{C} = (average of the values $1/\hat{n}_u$) · n

Run time: O(d $/\epsilon^3$)

Approximating # of CCs: Analysis

Want to show:
$$\Pr\left[\left|\tilde{C} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] \leq \frac{1}{3}$$

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1].

Let
$$Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$$
 (called *sample mean*). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.

Let $Y_i = 1/\hat{n}_u$ for the ith vertex u in the sample

•
$$Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i = \frac{\tilde{c}}{n}$$

•
$$E[Y] = \frac{1}{s} \cdot \sum_{i=1}^{s} E[Y_i] = E[Y_1] = \frac{1}{n} \sum_{u \in V} \frac{1}{\hat{n}_u} = \frac{\hat{c}}{n}$$

$$\Pr\left[\left|\frac{\tilde{c}}{\tilde{c}} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[\left|n\frac{\mathbf{Y}}{\tilde{c}} - nE[Y]\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[\left|\frac{\mathbf{Y}}{\tilde{c}} - E[Y]\right| > \frac{\varepsilon}{2}\right] \le 2e^{-\frac{\varepsilon^2 s}{2}}$$

• Need $s = \Theta\left(\frac{1}{\varepsilon^2}\right)$ samples to get probability $\leq \frac{1}{3}$

Approximating # of CCs: Analysis

So far:
$$\left|\hat{C} - C\right| \le \frac{\varepsilon n}{2}$$

$$\Pr\left[\left|\tilde{C} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] \le \frac{1}{3}$$

• With probability $\geq \frac{2}{3}$,

$$\left|\tilde{c} - c\right| \le \left|\tilde{c} - \hat{c}\right| + \left|\hat{c} - c\right| \le \frac{\varepsilon n}{2} + \frac{\varepsilon n}{2} \le \varepsilon n$$

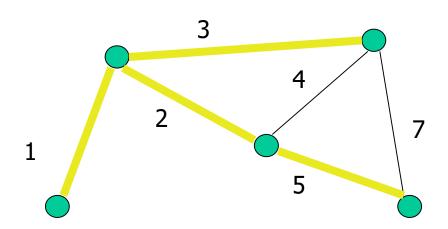
Summary:

The number of connected components in n-vetex graphs of degree at most d can be estimated within $\pm \varepsilon n$ in time $O\left(\frac{d}{\varepsilon^3}\right)$.

Minimum spanning tree (MST)

What is the cheapest way to connect all the dots?

Input: a weighted graph with n vertices and m edges



- Exact computation:
 - Deterministic $O(m \cdot \text{inverse-Ackermann}(m))$ time [Chazelle]
 - Randomized O(m) time [Karger Klein Tarjan]

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on n vertices

- in adjacency lists representation
- maximum degree d and maximum allowed weight w
- weights in {1,2,...,w}

Output: $(1+\varepsilon)$ -approximation to MST weight, w_{MST}

Time:

- Known: $O\left(\frac{dw}{\varepsilon^3}\log\frac{dw}{\varepsilon}\right)$, $\Omega\left(\frac{dw}{\varepsilon^2}\right)$
- Today: $O\left(\frac{dw^4 \log w}{\varepsilon^3}\right)$

Idea Behind Algorithm

- Characterize MST weight in terms of number of connected components in certain subgraphs of G
- Already know that number of connected components can be estimated quickly

MST and Connected Components: Warm-up

• Recall Kruskal's algorithm for computing MST exactly.

Suppose all weights are 1 or 2. Then MST weight

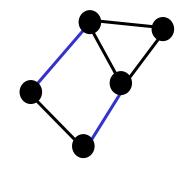
= (# weight-1 edges in MST) + $2 \cdot$ (# weight-2 edges in MST)

$$= n - 1 + (\# \text{ of weight-2 edges in MST})$$

MST has n-1 edges

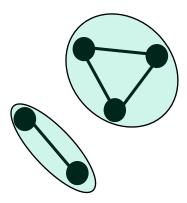
= n - 1 + (# of CCs induced by weight-1 edges) - 1

By Kruskal

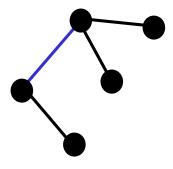


weight 1

weight 2



connected components induced by weight-1 edges



MST

MST and Connected Components

In general: Let G_i = subgraph of G containing all edges of weight $\leq i$ C_i = number of connected components in G_i Then MST has $C_i - 1$ edges of weight > i.

Claim

$$w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$$

- Let β_i be the number of edges of weight > i in MST
- Each MST edge contributes 1 to w_{MST} , each MST edge of weight >1 contributes 1 more, each MST edge of weight >2 contributes one more, ...

$$w_{MST}(G) = \sum_{i=0}^{w-1} \beta_i = \sum_{i=0}^{w-1} (C_i - 1) = -w + \sum_{i=0}^{w-1} C_i = n - w + \sum_{i=1}^{w-1} C_i$$

Algorithm for Approximating W_{MST}

$\triangle PPROX_MSTweight (n, d, w, \varepsilon; G)$

Claim. $w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$

- **1.** For i = 1 to w 1 do:
- 2. $\tilde{C}_i \leftarrow APPROX_\#CCs(n, d, \frac{\varepsilon}{w}; G_i).$
- 3. Return $\widetilde{w}_{MST} = n w + \sum_{i=1}^{w-1} \widetilde{C}_i$.

Analysis:

- Suppose all estimates of C_i 's are good: $\left| \tilde{C}_i C_i \right| \leq \frac{\varepsilon}{w} n$. Then $\left| \widetilde{w}_{MST} - w_{MST} \right| = \left| \sum_{i=1}^{w-1} (\tilde{C}_i - C_i) \right| \leq \sum_{i=1}^{w-1} \left| \tilde{C}_i - C_i \right| \leq w \cdot \frac{\varepsilon}{w} n = \varepsilon n$
- Pr[all w-1 estimates are good] $\geq (2/3)^{w-1}$
- Not good enough! Need error probability $\leq \frac{1}{3w}$ for each iteration
- Then, by Union Bound, $Pr[error] \le w \cdot \frac{1}{3w} = \frac{1}{3}$
 - Can amplify success probability of any algorithm by repeating it and taking the median answer.
 - Can take more samples in APPROX_#CCs. What's the resulting run time?

Multiplicative Approximation for W_{MST}

For MST cost, additive approximation \Rightarrow multiplicative approximation

$$w_{MST} \ge n - 1 \implies w_{MST} \ge n/2 \text{ for } n \ge 2$$

• εn -additive approximation:

$$w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n$$

• $(1 \pm 2\varepsilon)$ -multiplicative approximation:

$$w_{MST}(1-2\varepsilon) \le w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n \le w_{MST}(1+2\varepsilon)$$