Sublinear Algorithms

LECTURE 4

Last time

- Testing if a graph is connected.
- Estimating the number of connected components.
- Estimating the weight of a MST

Today

- Limitations of sublinear-time algorithms
- Yao's Minimax Principle

HW2 is due Thursday at 10am

Sofya Raskhodnikova; Boston University

Query Complexity

- Query complexity of an algorithm is the maximum number of queries the algorithm makes.
 - Usually expressed as a function of input length (and other parameters)
 - Example: the test for sortedness (from Lecture 2) had query complexity $O(\log n)$ for constant ε , more precisely $O\left(\frac{\log n}{\varepsilon}\right)$
 - running time \geq query complexity
- Query complexity of a problem P, denoted q(P), is the query complexity of the best algorithm for the problem.
 - What is q(testing sortedness)? How do we know that there is no better algorithm?

Today: Techniques for proving lower bounds on q(P).

Yao's Principle

A Method for Proving Lower Bounds

Yao's Minimax Principle

Consider a computational problem on a finite domain.

• The following statements are equivalent.

$\left(\right)$	Statement 1
	For any probabilistic algorithm A of complexity q there exists an input x s.t.
	$\Pr_{coin \ tosses \ of \ A}[A(x) \ is \ wrong] > 1/3.$
1	coin tosses of A

Statement 2

There is a distribution **D** on the inputs,

s.t. for every deterministic algorithm of complexity q,

 $\Pr_{x \leftarrow D}[A(x) \text{ is wrong}] > 1/3.$

• Need for lower bounds

Yao's Minimax Principle (easy direction): Statement 2 \Rightarrow Statement 1.

Proof of Easy Direction of Yao's Principle

- Consider a finite set of inputs X (e.g., all inputs of length n).
- Consider a randomized algorithm that takes an input x ∈ X, makes ≤ q queries to x and outputs accept or reject.
- Every randomized algorithm can be viewed as a distribution μ on deterministic algorithms (which are decision trees).

• Let Y be the set of all q-query deterministic algorithms that run on inputs in X.

Proof of Easy Direction of Yao's Principle

- Consider a matrix M with
 - rows indexed by inputs x from X,
 - columns indexed by algorithms y from Y,

- entry $M(x, y) = \begin{cases} 1 & \text{if algorithm } y \text{ is correct on input } x \\ 0 & \text{if algorithm } y \text{ is wrong on input } x \end{cases}$

	<i>y</i> ₁	<i>y</i> ₂	•••	
<i>x</i> ₁	1	0		
<i>x</i> ₂	1	1		
•••			•.	

• Then an algorithm A is a distribution μ over columns Y with probabilities satisfying $\sum_{y \in Y} \mu(y) = 1$.

Rephrasing Statements 1 and 2 in Terms of M

Statement 1

For any **probabilistic** algorithm A of complexity q there exists an input x s.t. $\Pr_{coin\ tosses\ of\ A}[A(x)\ is\ wrong] > 1/3.$

• For all distributions μ over columns Y, there exists a row x s.t. $\Pr_{y \leftarrow \mu}[M(x, y) = 0] > 1/3.$

	Statement 2
There is	a distribution D on the inputs,
	s.t. for every deterministic algorithm of complexity q,
	$\Pr_{x \leftarrow D}[A(x) \text{ is wrong}] > 1/3.$
	$x \leftarrow D$

• There is a distribution D over rows X, s.t. for all columns y, $\Pr_{x \leftarrow D}[M(x, y) = 0] > 1/3.$

Statement $2 \Rightarrow Statement 1$

- Suppose there is a distribution D over X, s.t. for all columns y, $\Pr_{x \leftarrow D}[M(x, y) = 0] > 1/3.$
- Then for all distributions μ over Y, $\Pr_{\substack{x \leftarrow D \\ y \leftarrow \mu}}[M(x, y) = 0] > 1/3.$
- Then for all distributions μ over Y, there exists a row x, $\Pr_{\substack{y \leftarrow \mu}}[M(x, y) = 0] > 1/3.$

	<i>y</i> ₁	<i>y</i> ₂	•••	
<i>x</i> ₁	1	0		
<i>x</i> ₂	1	1		
			•.	

Yao's Principle (Easy Direction)

Statement 1

For any **probabilistic** algorithm A of complexity q there exists an input x s.t. $\Pr_{coin\ tosses\ of\ A}[A(x)\ is\ wrong] > 1/3.$

Statement 2

There is a distribution D on the inputs, s.t. for every deterministic algorithm of complexity q, $\Pr_{x \leftarrow D}[A(x) \text{ is wrong}] > 1/3.$

• Need for lower bounds

Yao's Minimax Principle (easy direction): Statement 2 \Rightarrow Statement 1.

NOTE: Also applies to restricted algorithms

- 1-sided error tests
- nonadaptive tests

Yao's Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Game1

Move 1. Al selects a q-query randomized algorithm A for the problem.

Move 2. Lola selects an input on which A errs with largest probability.

Game2

Move 1. Lola selects a distribution on inputs.

<u>Move 2.</u> Al selects a q-query **deterministic** algorithm with as large probability of success on Lola's distribution as possible.

Toy Example: a Lower Bound for Testing 0*

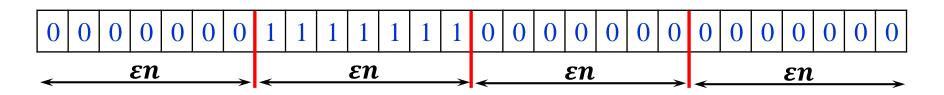
Input: string of *n* bits

Question: Does the string contain only 0's or is it ε -far form the all-0 string?

Claim. Any algorithm needs $\Omega(1/\varepsilon)$ queries to answer this question w.p. $\geq 2/3$. Proof: By Yao's Minimax Principle, enough to prove Statement 2.

Distribution D on **n**-bit strings

- Divide the input string into $1/\epsilon$ blocks of size ϵn .
- Let y_i be the string where the *i*th block is 1s and remaining bits are 0.
- Distribution D gives the all-0 string w.p. 1/2 and y_i with w.p. 1/2, where *i* is chosen uniformly at random from 1, ..., $1/\epsilon$.

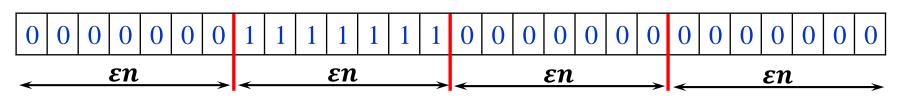


A Lower Bound for Testing 0*

Claim. Any ε -test for 0* needs $\Omega(1/\varepsilon)$ queries.

Proof (continued): Now fix a deterministic tester A making $q < 1/3\epsilon$ queries.

- 1. A must accept if all answers are 0. Otherwise, it would be wrong on all-0 string, that is, with probability 1/2 with respect to D.
- 2. Let i_1, \ldots, i_q be the positions A queries when it sees only 0s. The test can choose its queries based on previous answers. However, since all these answers are 0 and since A is deterministic, the query positions are fixed.
- At least $1/\epsilon q > \frac{2}{3\epsilon}$ of the blocks do not hold any queried indices.
- Therefore, A accepts > 2/3 of the inputs y_i . Thus, it is wrong with probability $> \frac{2}{3\varepsilon} \cdot \frac{\varepsilon}{2} = \frac{1}{3}$



Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in $O(1/\epsilon \text{ polylog } 1/\epsilon)$ time.

A Lower Bound for Testing Sortedness

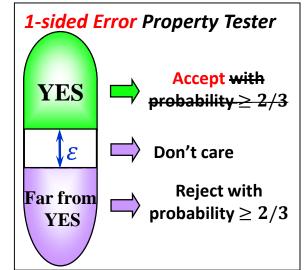
Input: a list of *n* numbers $x_1, x_2, ..., x_n$ Question: Is the list sorted or ε -far from sorted?

Already saw: two different $O((\log n)/\epsilon)$ time testers.

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

 $\Omega(\log n)$ queries are required for all constant $\varepsilon \leq 1/2$

- Today: $\Omega(\log n)$ queries are required for all constant $\varepsilon \le 1/2$ for every 1-sided error nonadaptive test.
- A test has 1-sided error if it always accepts all YES instances.
- A test is nonadaptive if its queries do not depend on answers to previous queries.



1-Sided Error Tests Must Catch "Mistakes"

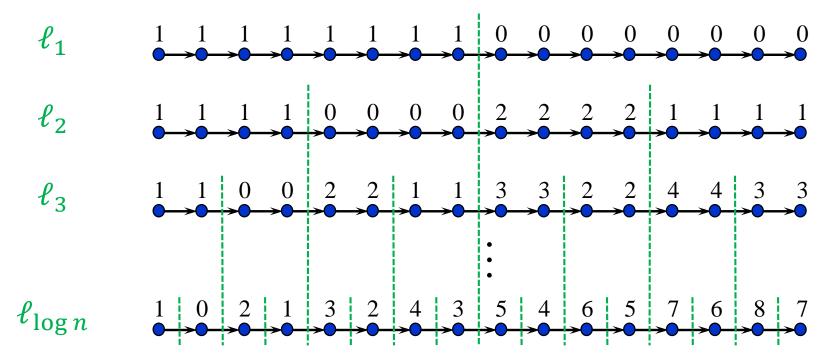
• A pair (i, j) is **violated** if i < j but $x_i > x_j$

Claim. A 1-sided error test can reject only if it finds a violated pair.

Proof: Every sorted partial list can be extended to a sorted list.

1	?	?	4		7	?	?	9
---	---	---	---	--	---	---	---	---

Lola's distribution is uniform over the following $\log n$ lists:



Claim 1. All lists above are 1/2-far from sorted.

Claim 2. Every pair (*i*, *j*) is violated in exactly one list above.

Yao's Principle Game: Al's Move



- His test must be correct, i.e., must find a violated pair with probability ≥ 2/3 when input is picked according to Lola's distribution.
- Q contains a violated pair $\Leftrightarrow (a_i, a_{i+1})$ is violated for some i

 $\Pr_{\ell \leftarrow \text{Lola's distribution}} [(a_i, a_{i+1}) \text{ for some } i \text{ is vilolated in list } \ell] \leq \frac{|Q| - 1}{\log n}$

• If $|Q| \le \frac{2}{3} \log n$ then this probability is $< \frac{2}{3}$

By the Union Bound

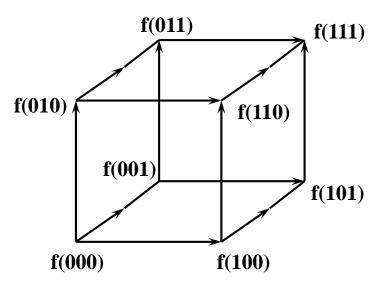
- So, $|Q| = \Omega(\log n)$
- By Yao's Minimax Principle, every randomized 1-sided error nonadaptive test for sortedness must make Ω(log n) queries.

Testing Monotonicity of functions on Hypercube

Non-adaptive 1-sided error Lower Bound

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube

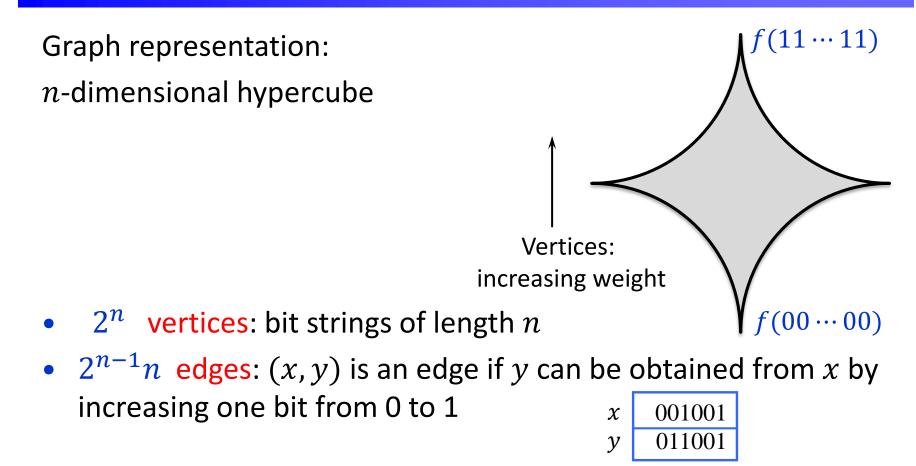


011001

y

- vertices: bit strings of length n
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

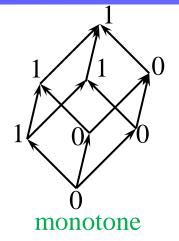


• each vertex x is labeled with f(x)

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

A function f : {0,1}ⁿ → {0,1} is monotone
if increasing a bit of x does not decrease f(x).



• Is f monotone or ε -far from monotone

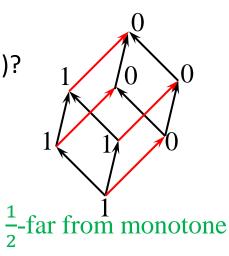
(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for 1-sided error, nonadaptive tests
- Advanced techniques: $\Theta(\sqrt{n}/\epsilon^2)$ for nonadaptive tests, $\Omega(\sqrt[3]{n})$

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]

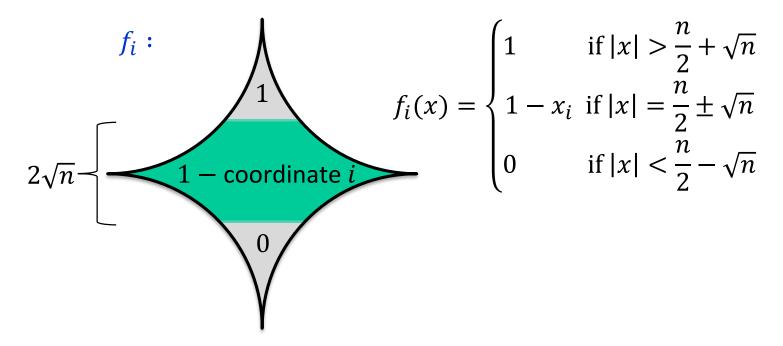


Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] Every 1-sided error nonadaptive test for monotonicity of functions f: $\{0,1\}^n \rightarrow \{0,1\}$ requires $\Omega(\sqrt{n})$ queries.

• 1-sided error test must accept if no violated pair is uncovered.

- A distribution on far from monotone functions suffices.

• Hard distribution: pick coordinate i at random and output f_i .



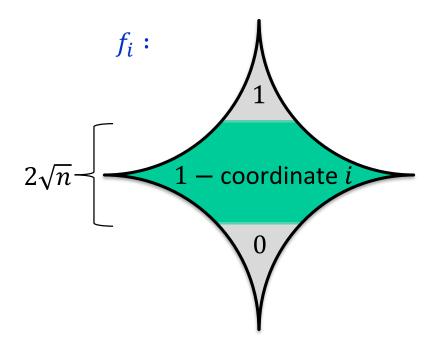
The Fraction of Nodes in Middle Layers

Hoeffding Bound

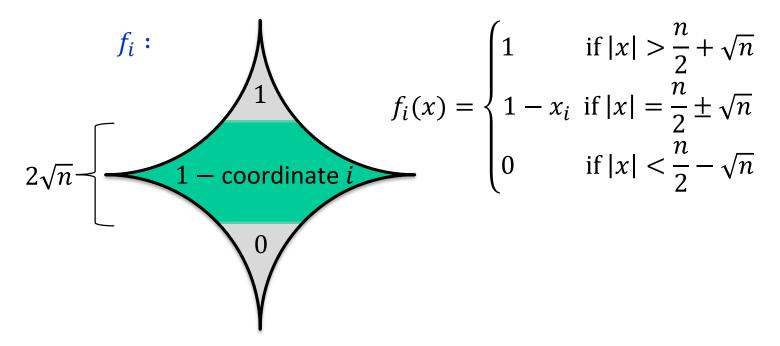
Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1]. Let $Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$ (called *sample mean*). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.

E[Y]=

 $\varepsilon =$



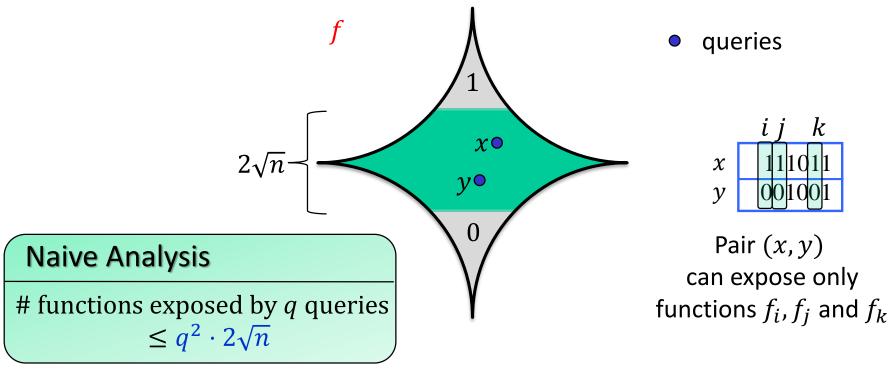
• Hard distribution: pick coordinate i at random and output f_i .



Analysis

- Edges from (x₁,..., x_{i-1}, 0, x_{i+1},..., x_n) to (x₁,..., x_{i-1}, 1, x_{i+1},..., x_n) are violated if both endpoints are in the middle.
- The middle contains a constant fraction of vertices.
- All *n* functions are ε -far from monotone for some constant ε .

• How many functions does a set of q queries expose?

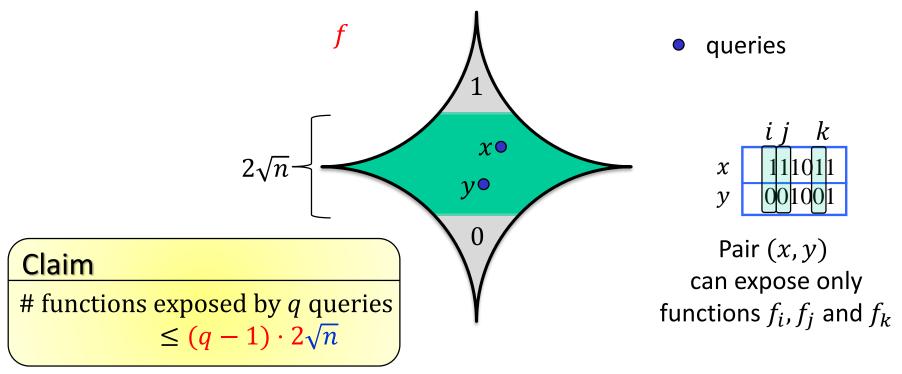


functions that a query pair (x, y) exposes \leq # coordinates on which *x* and *y* differ

 $\leq 2\sqrt{n}$

Only pairs of queries in the Green Band can be violated \Rightarrow disagreements $\leq 2\sqrt{n}$

• How many functions does a set of q queries expose?

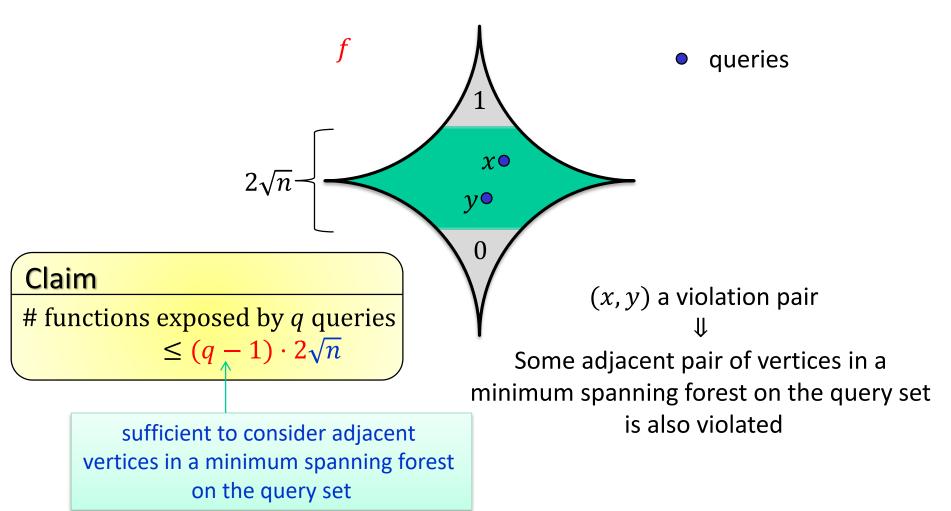


functions that a query pair (x, y) exposes \leq # coordinates on which *x* and *y* differ

 $\leq 2\sqrt{n}$

Only pairs of queries in the Green Band can be violated \Rightarrow disagreements $\leq 2\sqrt{n}$

• How many functions does a set of q queries expose?



• How many functions does a set of q queries expose?

