
10/5/2020

Sublinear Algorithms

LECTURE 5
Last time
• Limitations of sublinear-time algorithms

• Yao’s Minimax Principle

• Examples: testing 0∗ and sortedness

Today
• Limitations of sublinear-time algorithms

• Yao’s Minimax Principle

• Communication complexity

Sofya Raskhodnikova;Boston University

Recall: Yao’s Minimax Principle

2

• Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 ⇒ Statement 1.

NOTE: Also applies to restricted algorithms

• 1-sided error tests

• nonadaptive tests

Statement 1

For any probabilistic algorithm A of complexity q there exists an input x s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(x) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs,
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(x) is wrong] > 1/3.

Yao’s Minimax Principle as a game

3

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Game1

Move 1. Al selects a q-query randomized algorithm A for the problem.

Move 2. Lola selects an input on which A errs with largest probability.

Game2

Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a q-query deterministic algorithm with as large
probability of success on Lola’s distribution as possible.

Testing Monotonicity of
functions on Hypercube
Non-adaptive 1-sided error

Lower Bound

5

f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001

011001

𝑥
𝑦

6

Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001

011001

𝑥
𝑦

𝑓(00⋯00)

𝑓(11⋯11)

Vertices:
increasing weight

Monotonicity of Functions

7

[Goldreich Goldwasser Lehman Ron Samorodnitsky,

Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).

• Is 𝑓 monotone or 𝜀-far from monotone
(𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by 𝑓 if 𝑓 (𝑥) > 𝑓 (𝑦).

Time:

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

– Ω(𝑛/𝜀) for 1-sided error, nonadaptive tests

– Advanced techniques: Θ(𝑛/𝜀2) for nonadaptive tests, Ω 3 𝑛

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone

Hypercube 1-sided Error Lower Bound

8

• 1-sided error test must accept if no violated pair is uncovered.

Violated pair:

– A distribution on far from monotone functions suffices.

Lemma
Every 1-sided error nonadaptive test for monotonicity of functions 𝑓 ∶

0,1 𝑛 → {0,1} requires Ω 𝑛 queries.

01

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

Hypercube 1-sided Error Lower Bound

9

• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖.

𝑛

2
± 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

𝑓𝑖(𝑥) =

1 if 𝑥 >
𝑛

2
+ 𝑛

1 − 𝑥𝑖 if 𝑥 =
𝑛

2
± 𝑛

0 if 𝑥 <
𝑛

2
− 𝑛

Hypercube 1-sided Error Lower Bound

10

• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖.

• A ``truncation’’ of an antidicator

𝑛

2
± 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

𝑓𝑖(𝑥) =

1 if 𝑥 >
𝑛

2
+ 𝑛

1 − 𝑥𝑖 if 𝑥 =
𝑛

2
± 𝑛

0 if 𝑥 <
𝑛

2
− 𝑛

1

1
0

00

0

1

1

antidictator

The Fraction of Nodes in Middle Layers

E[Y]=

𝜀 =

11

Let Y1, … , Ys be independently distributed random variables in [0,1].

Let Y =
1

𝑠
⋅ ∑

𝑠

𝑖=1
Yi (called sample mean). Then Pr Y − E Y ≥ 𝜀 ≤ 2e−2𝑠𝜀

2
.

Hoeffding Bound

𝑛

2
± 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

Hard Functions are Far

12

• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖.

Analysis

2 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

• The middle contains a constant fraction of vertices.
• Edges from (𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) to (𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛) are

violated if both endpoints are in the middle.
• All 𝑛 functions are 𝜀-far from monotone for some constant 𝜀.

𝑓𝑖(𝑥) =

1 if 𝑥 >
𝑛

2
+ 𝑛

1 − 𝑥𝑖 if 𝑥 =
𝑛

2
± 𝑛

0 if 𝑥 <
𝑛

2
− 𝑛

Hypercube 1-sided Error Lower Bound

13

• How many functions does a set of 𝑞 queries expose?

functions that a query pair (𝑥, 𝑦) exposes
≤ # coordinates on which 𝑥 and 𝑦 differ

≤ 2 𝑛

111011

001001

𝑥
𝑦

𝑖 𝑗 𝑘

Pair (𝑥, 𝑦)
can expose only

functions 𝑓𝑖 , 𝑓𝑗 and 𝑓𝑘

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Only pairs of queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛

Naive Analysis

functions exposed by 𝑞 queries
≤ 𝑞2 ⋅ 2 𝑛

Hypercube 1-sided Error Lower Bound

14

• How many functions does a set of 𝑞 queries expose?

functions that a query pair (𝑥, 𝑦) exposes
≤ # coordinates on which 𝑥 and 𝑦 differ

≤ 2 𝑛

111011

001001

𝑥
𝑦

𝑖 𝑗 𝑘

Pair (𝑥, 𝑦)
can expose only

functions 𝑓𝑖 , 𝑓𝑗 and 𝑓𝑘

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Only pairs of queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛

Claim
functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛

Hypercube 1-sided Error Lower Bound

15

• How many functions does a set of 𝑞 queries expose?

Let 𝑄 be the set of queries made.
The tester catches a violation

⇕
Q contains comparable 𝑥, 𝑦
that differ in coordinate 𝑖

2 𝑛

1

0

𝑓

𝑥

𝑦

Claim
functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛

Consider its spanning forest.

sufficient to consider adjacent
vertices in a minimum spanning forest

on the query set

Draw an undirected graph 𝑄, 𝐸
by connected comparable queries

𝑥, 𝑦 exist
⇕

there are adjacent vertices on the path
from 𝑥 to 𝑦 that differ in coordinate 𝑖

Hypercube 1-sided Error Lower Bound

16

• How many functions does a set of 𝑞 queries expose?

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Claim
functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛

⇓

Claim
Every deterministic test that makes a set 𝑄 of 𝑞 queries (in the middle)

succeeds with probability 𝑂
𝑞

𝑛
on our distribution. ⨳

Communication Complexity

A Method for Proving Lower Bounds
[Blais Brody Matulef 11]

Use known lower bounds

for other models of computation

Partially based on slides by Eric Blais

(Randomized) Communication Complexity

20

Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal: minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌

21

Theorem [Kalyanasundaram Schmitger 92, Razborov 92]

𝑅 DISJ𝑘 ≥ Ω 𝑘 for all 𝑘 ≤
𝑛

2
.

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

= ቊ
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…

A lower bound using CC method

Testing if a Boolean function is a k-parity

Linear Functions Over Finite Field 𝔽2

23

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2
– Other accepted notation for 𝔽2: 𝐺𝐹2 and ℤ2
– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

001001

011001

010000

+

example

Linear Functions Over Finite Field 𝔽2

24

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

⇕

𝑓 𝑥1, … , 𝑥𝑛 = ∑𝑖∈S 𝑥𝑖 for some 𝑆 ⊆ 𝑛 .

Notation: 𝜒𝑆 𝑥 = ∑𝑖∈𝑆 𝑥𝑖.

[𝑛] is a shorthand for {1, …𝑛}

Testing if a Boolean function is Linear

25

Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question:

Is the function linear or 𝜀-far from linear

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in 𝑂
1

𝜀
time

k-Parity Functions

26

𝑘-Parity Functions

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if

𝑓 𝑥 = 𝜒𝑆 𝑥 = ∑𝑖∈𝑆 𝑥𝑖
for some set 𝑆 ⊆ 𝑛 of size 𝑆 = 𝑘.

Testing if a Boolean Function is a k-Parity

27

Input: Boolean function 𝑓: 0,1 𝑛 → {0,1} and an integer 𝑘

Question: Is the function a 𝑘-parity or 𝜀-far from a 𝑘-parity

(≥ 𝜀2𝑛 values need to be changed to make it a 𝑘-parity)?

Time:

O 𝑘 log 𝑘 [Chakraborty Garcia−Soriano Matsliah]

W min(𝑘, 𝑛 − 𝑘) [Blais Brody Matulef 11]

• Today: Ω(𝑘) for 𝑘 ≤ 𝑛/2

• Today’s bound implies W min(𝑘, 𝑛 − 𝑘)

Important Fact About Linear Functions

• Consider functions 𝜒𝑆 and 𝜒𝑇 where 𝑆 ≠ 𝑇.

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ

(w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖)

where 𝒙 𝑖 is 𝒙 with the 𝑖th bit flipped.

– For each such pair, 𝜒𝑆(𝒙) ≠ 𝜒𝑆(𝒙
𝑖)

but 𝜒𝑇(𝒙) = 𝜒𝑇(𝒙
𝑖)

So, 𝜒𝑆 and 𝜒𝑇 differ on exactly one of 𝒙, 𝒙 𝑖 .

– Since all 𝒙’s are paired up,

𝜒𝑆 and 𝜒𝑇 differ on half of the values.

28

𝒙

𝒙 𝑖

𝜒𝑆(x) 𝜒𝑇(x)

0
1
1
𝑎
0
⋅
⋅
⋅

1 − 𝑎
0
1
0

0
1
0
𝑏
1
⋅
⋅
⋅
𝑏
0
0
1

Two different linear functions disagree on half of the values.Fact.

A 𝑘′−parity function, where 𝑘′ ≠ 𝑘, is ½-far from any k-parity.Corollary.

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2
– query complexity of T is 𝑞 testing 𝑘−parity .

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs

𝑇 and has communication complexity 2 ⋅ 𝑞(testing 𝑘−parity).

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2 for 𝑘 ≤ 𝑛/2

⇓

𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

29

holds for CC of every

protocol for 𝐷𝐼𝑆𝐽𝒌 [Kalyanasundaram Schnitger 92]

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

30

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2.

Compute: 𝑓 = 𝜒𝑆

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2
Compute: 𝑔 = 𝜒𝑇

1101000101110101110101010110…

Output T’s answer

T

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2)

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥 𝑚𝑜𝑑 2

𝑓(𝑥)
𝑔(𝑥)

• 𝑇 receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇

Correctness:

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇 𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇

• SΔ𝑇 = ቊ
𝑘 if S∩T = ∅

≤ 𝑘 − 2 if S∩T ≠ ∅

ℎ is ቊ
𝑘−parity if S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘 if S∩T ≠ ∅

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

31

1/2-far from every 𝑘-parity

Testing Lipschitz Property
on Hypercube

Lower Bound

Lipschitz Property of Functions f: 0,1 𝑛→R

33

• A function 𝑓 ∶ 0,1 𝑛 → R is Lipschitz

if changing a bit of 𝑥 changes 𝑓(𝑥) by at most 1.

• Is 𝑓 Lipschitz or 𝜀-far from Lipschitz
(𝑓 has to change on many points to become Lipschitz)?

– Edge 𝑥 − 𝑦 is violated by 𝑓 if 𝑓 𝑥 − 𝑓(𝑦) > 1.

Time:

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

[Chakrabarty Seshadhri]

– Ω(𝑛) [Jha Raskhodnikova]

0

0 1

12

1

2

1

2

2 0

00

0

2

2

Lipschitz

1

2
-far from Lipschitz

Testing Lipschitz Property

34

Prove it.

Theorem

Testing Lipschitz property of functions f: 0,1 𝑛 → {0,1,2}
requires Ω(𝑛) queries.

Summary of Lower Bound Methods

• Yao’s Principle

– testing membership in 1*, sortedness of a list and monotonicity
of Boolean functions

• Reductions from communication complexity problems

– testing if a Boolean function is a 𝑘-parity

35

Other Models of Sublinear
Computation

37

Tolerant Property Tester

𝜺𝟏-close to YES

𝜺𝟐-far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO

Sublinear-Time “Restoration” Models

Local Decoding

Program Checking

Local Reconstruction

38

Input: Function 𝑓 nearly satisfying some property 𝑃
Requirement: Reconstruct function 𝑓 to ensure that
the reconstructed function 𝑔 satisfies 𝑃, changing
𝑓 only when necessary. For each input 𝑥, compute
𝑔(𝑥) with a few queries to 𝑓.

𝑓

𝑃
Input: A program 𝑃 computing 𝑓 correctly on most
inputs.
Requirement: Self-correct program 𝑃: for a given
input 𝑥, compute 𝑓(𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

𝑓

