Sublinear Algorithms

LECTURE 5

Last time

- Limitations of sublinear-time algorithms
- Yao's Minimax Principle
 - Examples: testing 0^{*} and sortedness

Today

- Limitations of sublinear-time algorithms
- Yao's Minimax PrincipleCommunication complexity

HW1 resubmission, HW3 out, project guidelines

Sofya Raskhodnikova; Boston University

Recall: Yao's Minimax Principle

Statement 1

For any **probabilistic** algorithm A of complexity q there exists an input x s.t. $\Pr_{coin\ tosses\ of\ A}[A(x)\ is\ wrong] > 1/3.$

Statement 2

There is a distribution **D** on the inputs, s.t. for every deterministic algorithm of complexity q, $\Pr_{x \leftarrow D}[A(x) \text{ is wrong}] > 1/3.$

• Need for lower bounds

Yao's Minimax Principle (easy direction): Statement 2 \Rightarrow Statement 1.

NOTE: Also applies to restricted algorithms

- 1-sided error tests
- nonadaptive tests

Yao's Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Game1

Move 1. Al selects a q-query randomized algorithm A for the problem.

Move 2. Lola selects an input on which A errs with largest probability.

Game2

Move 1. Lola selects a distribution on inputs.

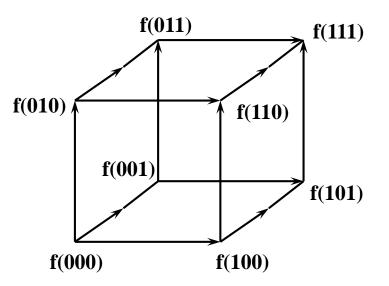
<u>Move 2.</u> Al selects a q-query **deterministic** algorithm with as large probability of success on Lola's distribution as possible.

Testing Monotonicity of functions on Hypercube

Non-adaptive 1-sided error Lower Bound

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube

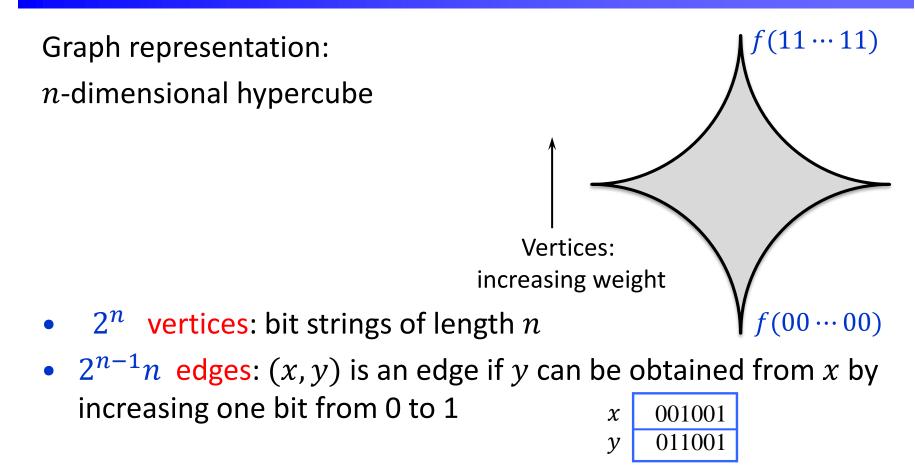


011001

y

- vertices: bit strings of length *n*
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

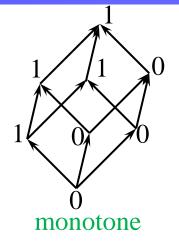


• each vertex x is labeled with f(x)

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

A function f : {0,1}ⁿ → {0,1} is monotone
 if increasing a bit of x does not decrease f(x).



• Is f monotone or ε -far from monotone

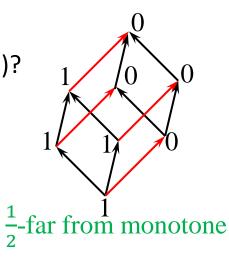
(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for 1-sided error, nonadaptive tests
- Advanced techniques: $\Theta(\sqrt{n}/\varepsilon^2)$ for nonadaptive tests, $\Omega(\sqrt[3]{n})$

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]



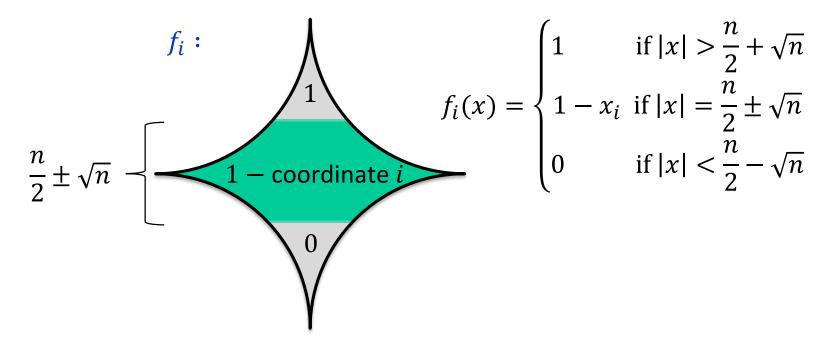
7

Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] Every 1-sided error nonadaptive test for monotonicity of functions f: $\{0,1\}^n \rightarrow \{0,1\}$ requires $\Omega(\sqrt{n})$ queries.

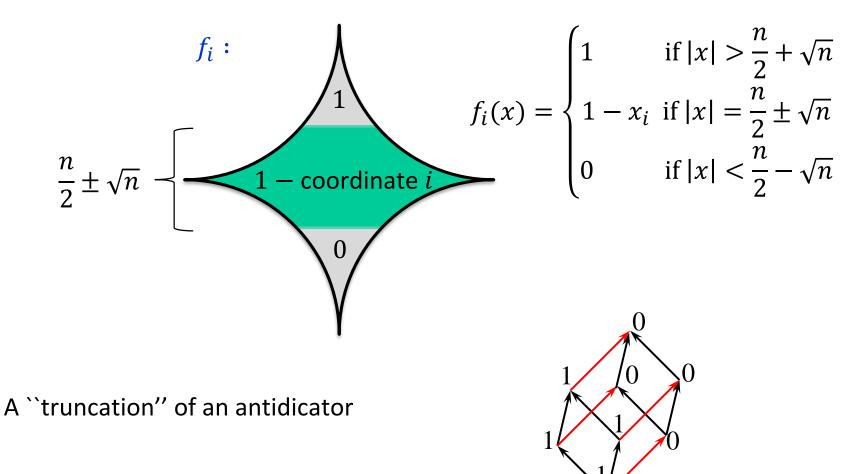
• 1-sided error test must accept if no violated pair is uncovered.

- A distribution on far from monotone functions suffices.

• Hard distribution: pick coordinate i at random and output f_i .



• Hard distribution: pick coordinate i at random and output f_i .

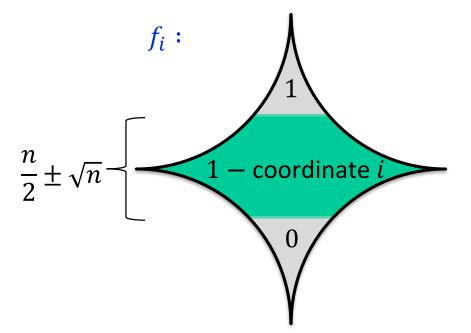


antidictator

The Fraction of Nodes in Middle Layers

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1]. Let $Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$ (called *sample mean*). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.



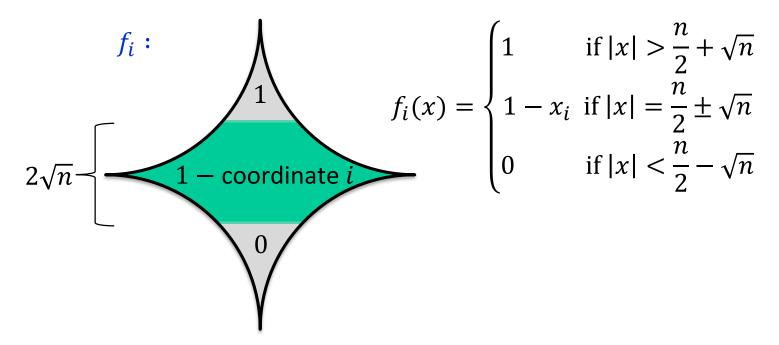
 $\epsilon =$

E[Y]=

11

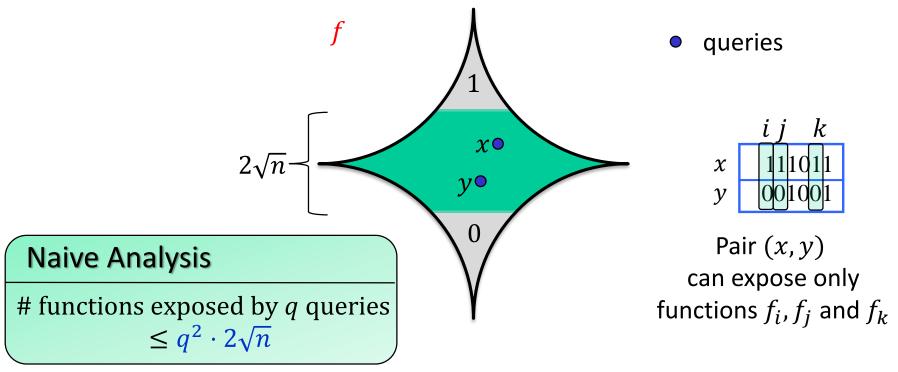
Hard Functions are Far

• Hard distribution: pick coordinate i at random and output f_i .



	Analysis
•	The middle contains a constant fraction of vertices.
•	Edges from $(x_1,, x_{i-1}, 0, x_{i+1},, x_n)$ to $(x_1,, x_{i-1}, 1, x_{i+1},, x_n)$ are
	violated if both endpoints are in the middle.
•	All <i>n</i> functions are ε -far from monotone for some constant ε .

• How many functions does a set of q queries expose?

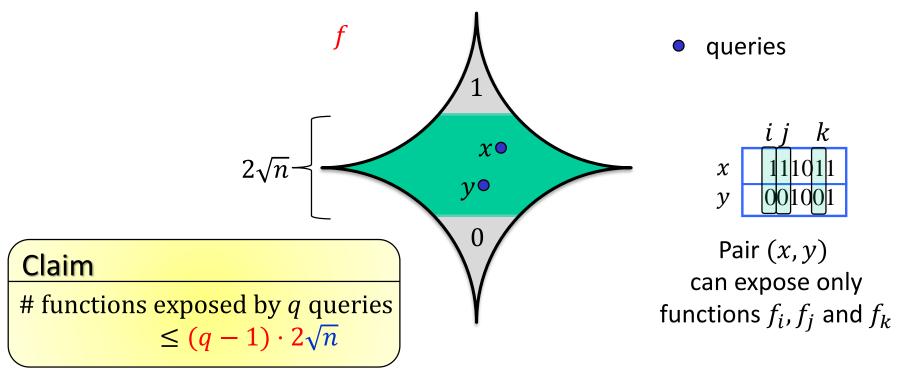


functions that a query pair (x, y) exposes \leq # coordinates on which *x* and *y* differ

 $\leq 2\sqrt{n}$

Only pairs of queries in the Green Band can be violated \Rightarrow disagreements $\leq 2\sqrt{n}$

• How many functions does a set of q queries expose?

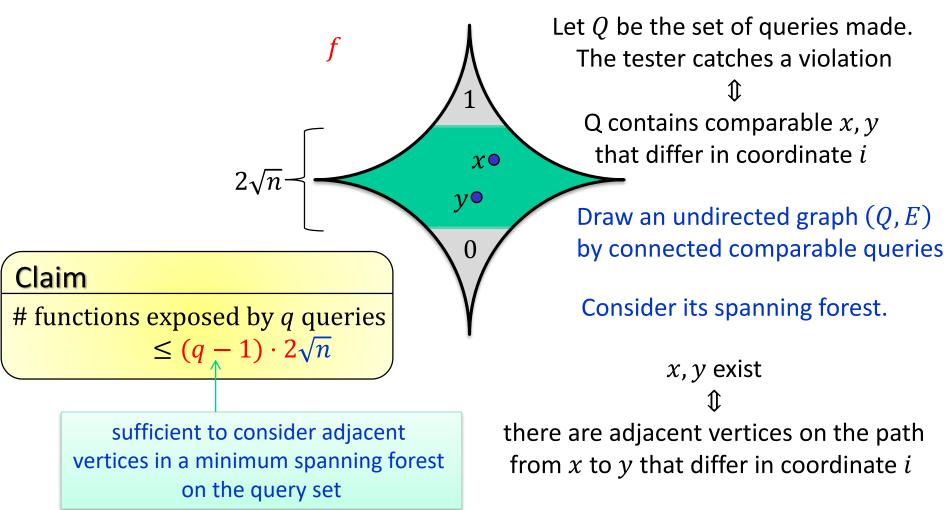


functions that a query pair (x, y) exposes \leq # coordinates on which *x* and *y* differ

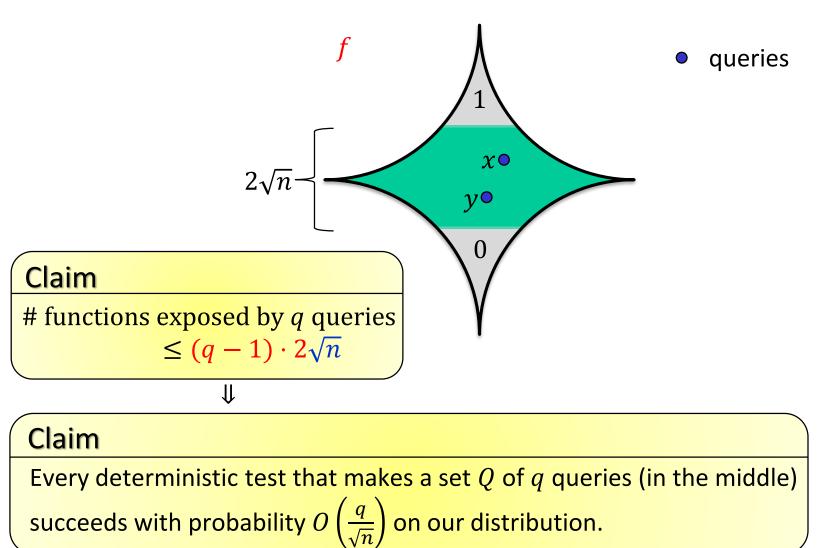
 $\leq 2\sqrt{n}$

Only pairs of queries in the Green Band can be violated \Rightarrow disagreements $\leq 2\sqrt{n}$

• How many functions does a set of q queries expose?



• How many functions does a set of q queries expose?



16

Communication Complexity

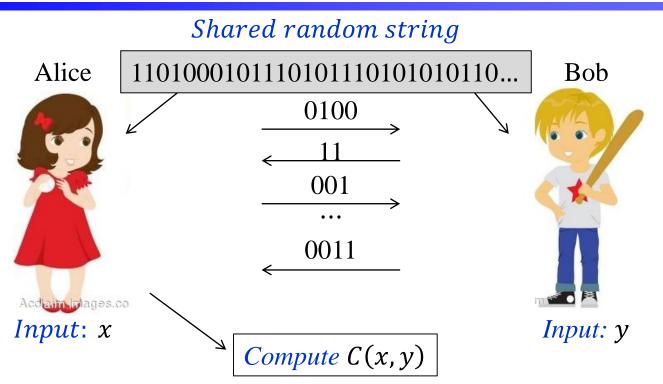
A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds for other models of computation

Partially based on slides by Eric Blais

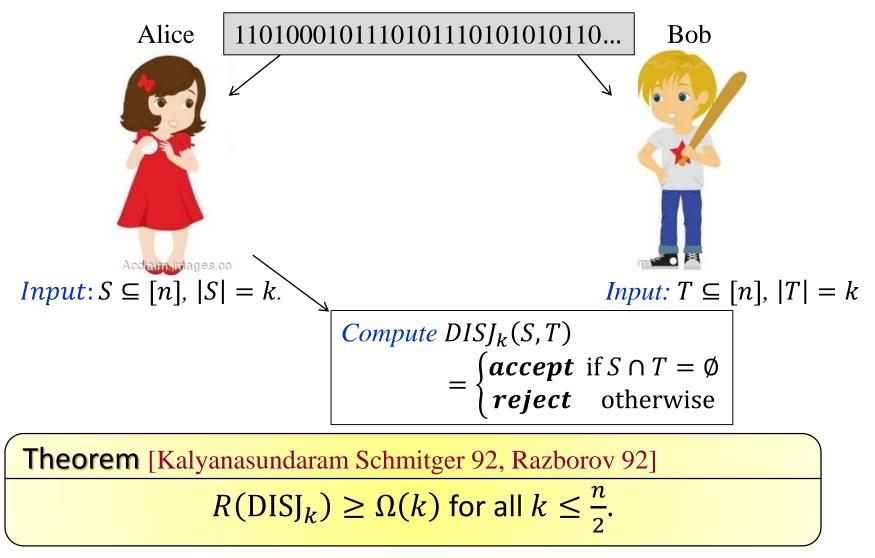
(Randomized) Communication Complexity



Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ_k



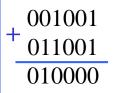
A lower bound using CC method

Testing if a Boolean function is a k-parity

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* (also called *parity*) if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example



Notation: $\chi_S(x) = \sum_{i \in S} x_i$.

Testing if a Boolean function is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear ($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in $O\left(\frac{1}{c}\right)$ time

k-Parity Functions

k-Parity Functions

A function $f : \{0,1\}^n \to \{0,1\}$ is a *k*-parity if $f(x) = \chi_S(x) = \sum_{i \in S} x_i$ for some set $S \subseteq [n]$ of size |S| = k.

Testing if a Boolean Function is a k-Parity

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and an integer k

Question: Is the function a k-parity or ε -far from a k-parity

($\geq \varepsilon 2^n$ values need to be changed to make it a k-parity)?

Time:

 $O(k \log k)$ [Chakraborty Garcia–Soriano Matsliah]

 $\Omega(\min(k, n - k))$ [Blais Brody Matulef 11]

• Today: $\Omega(k)$ for $k \le n/2$

 $\int Today's$ bound implies $\Omega(\min(k, n - k))$

Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

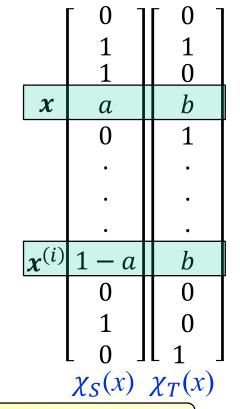
- Consider functions χ_S and χ_T where $S \neq T$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - For each such pair, $\chi_S(\mathbf{x}) \neq \chi_S(\mathbf{x}^{(i)})$ but $\chi_T(\mathbf{x}) = \chi_T(\mathbf{x}^{(i)})$

So, χ_S and χ_T differ on exactly one of x, $x^{(i)}$.

- Since all x's are paired up,

 χ_S and χ_T differ on half of the values.

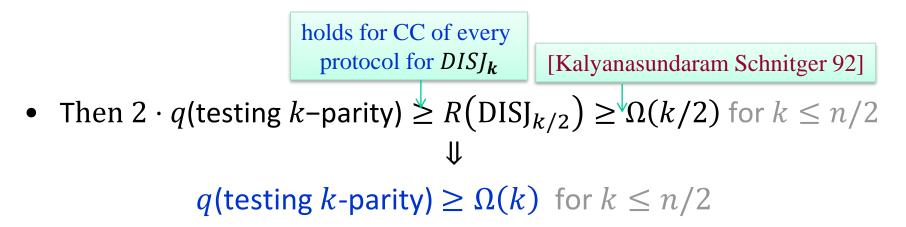
Corollary. A k'-parity function, where $k' \neq k$, is ½-far from any k-parity.



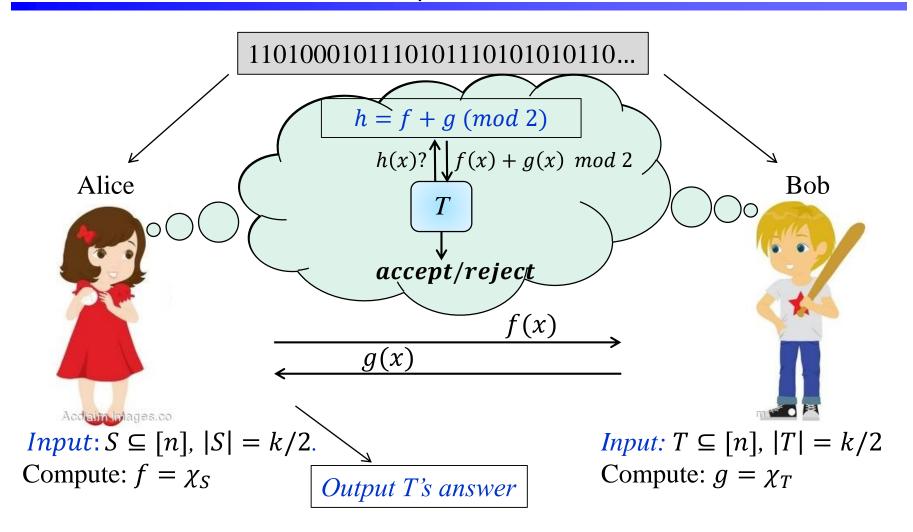
Reduction from $DISJ_{k/2}$ to Testing k-Parity

- Let *T* be the best tester for the *k*-parity property for ε = 1/2

 query complexity of T is *q* (testing *k*-parity).
- We will construct a communication protocol for $DISJ_{k/2}$ that runs T and has communication complexity $2 \cdot q$ (testing k-parity).



Reduction from $DISJ_{k/2}$ to Testing k-Parity



• *T* receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T Correctness:

•
$$h = f + g \pmod{2} = \chi_S + \chi_T \pmod{2} = \chi_{S\Delta T}$$

• $|S\Delta T| = |S| + |T| - 2|S \cap T|$

•
$$|S\Delta T| = \begin{cases} k & \text{if } S\cap T = \emptyset \\ \leq k - 2 & \text{if } S\cap T \neq \emptyset \end{cases}$$

$$h \text{ is } \begin{cases} k-\text{parity} & \text{if } S \cap T = \emptyset \\ k'-\text{parity where } k' \neq k & \text{if } S \cap T \neq \emptyset \end{cases}$$

$$\frac{1}{2-\text{far from every } k-\text{parity}}$$

Summary: q(testing k-parity) $\geq \Omega(k)$ for $k \leq n/2$

Testing Lipschitz Property on Hypercube

Lower Bound

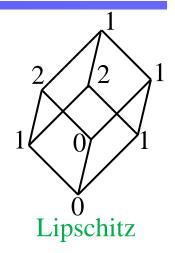
Lipschitz Property of Functions f: $\{0,1\}^n \rightarrow \mathbf{R}$

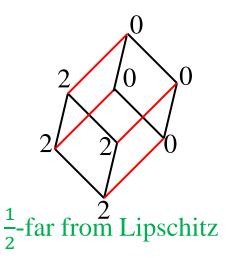
- A function f : {0,1}ⁿ → R is Lipschitz
 if changing a bit of x changes f(x) by at most 1.
- Is f Lipschitz or ε-far from Lipschitz
 (f has to change on many points to become Lipschitz)?
 Edge x y is violated by f if |f(x) f(y)| > 1.

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n

[Chakrabarty Seshadhri]





- $\Omega(n)$ [Jha Raskhodnikova]

Testing Lipschitz Property

Theorem

Testing Lipschitz property of functions f: $\{0,1\}^n \rightarrow \{0,1,2\}$ requires $\Omega(n)$ queries.

Prove it.

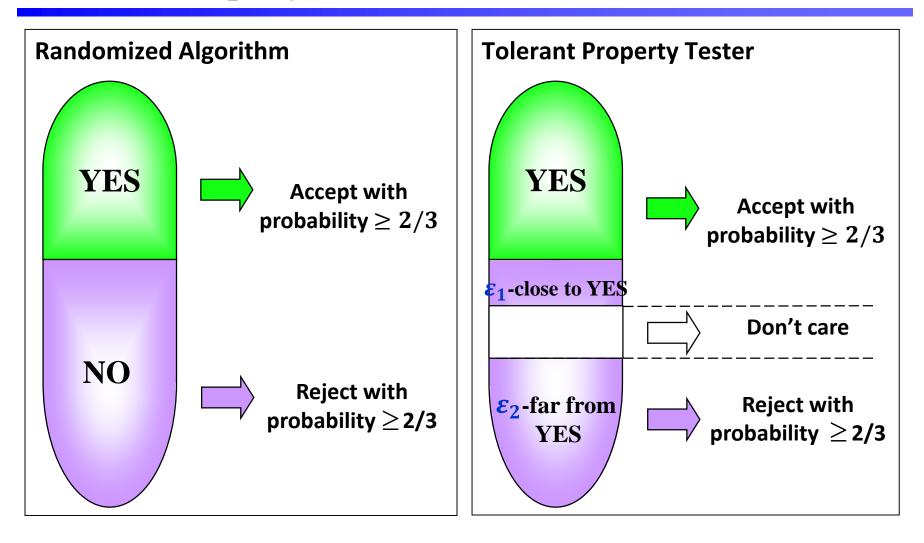
Summary of Lower Bound Methods

• Yao's Principle

- testing membership in 1*, sortedness of a list and monotonicity of Boolean functions
- Reductions from communication complexity problems
 - testing if a Boolean function is a k-parity

Other Models of Sublinear Computation

Tolerant Property Tester [Rubinfeld Parnas Ron]



Sublinear-Time "Restoration" Models

Local Decoding

Input: A slightly corrupted codeword Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

Program Checking

Input: A program P computing f correctly on most inputs.

Requirement: Self-correct program P: for a given input x, compute f(x) by making a few calls to P.

Local Reconstruction

Input: Function f nearly satisfying some property PRequirement: Reconstruct function f to ensure that the reconstructed function g satisfies P, changing f only when necessary. For each input x, compute g(x) with a few queries to f.

