Sublinear Algorithms

LECTURE 6

Last time

- Limitations of sublinear-time algorithms
- Yao's Minimax Principle
 - Example: testing monotonicity
- Communication complexity

Today

- Communication complexity
- Other models of computation

HIW1 resubmission, project guidelines Sign up for project meetings, scribing, grading

Sofya Raskhodnikova; Boston University

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds for other models of computation

Partially based on slides by Eric Blais

(Randomized) Communication Complexity

Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ_k

A lower bound using CC method

Testing if a Boolean function is a k-parity

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* (also called *parity*) if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* (also called *parity*) if $f(x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, \dots, a_n \in \{0,1\}$ $f(x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, \dots, a_n \in \{0,1\}$ $f(x_1, \dots, x_n) = \sum_{i \in S} x_i$ for some $S \subseteq [n]$.

Notation: $\chi_S(x) = \sum_{i \in S} x_i$.

k-Parity Functions

k-Parity Functions

A function $f : \{0,1\}^n \to \{0,1\}$ is a *k*-parity if $f(x) = \chi_S(x) = \sum_{i \in S} x_i$ for some set $S \subseteq [n]$ of size |S| = k.

Testing if a Boolean Function is a k-Parity

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and an integer k

Question: Is the function a k-parity or ε -far from a k-parity

($\geq \varepsilon 2^n$ values need to be changed to make it a k-parity)?

Time:

 $O(k \log k)$ [Buhrman, Carcia–Soriano, Matsliah, de Wolf 13]

 $\Omega(\min(k, n - k))$ [Blais Brody Matulef 12]

• Today: $\Omega(k)$ for $k \le n/2$

M Today's bound implies $\Omega(\min(k, n - k))$

Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

- Consider functions χ_S and χ_T where $S \neq T$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - For each such pair, $\chi_S(\mathbf{x}) \neq \chi_S(\mathbf{x}^{(i)})$ but $\chi_T(\mathbf{x}) = \chi_T(\mathbf{x}^{(i)})$

So, χ_S and χ_T differ on exactly one of x, $x^{(i)}$.

Since all x's are paired up,

 χ_S and χ_T differ on half of the values.

Corollary. A k'-parity function, where $k' \neq k$, is ½-far from any k-parity.

Reduction from $DISJ_{k/2}$ to Testing k-Parity

- Let *T* be the best tester for the *k*-parity property for ε = 1/2

 query complexity of T is *q* (testing *k*-parity).
- We will construct a communication protocol for $DISJ_{k/2}$ that runs T and has communication complexity $2 \cdot q$ (testing k-parity).

Reduction from $DISJ_{k/2}$ to Testing k-Parity

• *T* receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T Correctness:

•
$$h = f + g \pmod{2} = \chi_S + \chi_T \pmod{2} = \chi_{S\Delta T}$$

• $|S\Delta T| = |S| + |T| - 2|S \cap T|$

•
$$|S\Delta T| = \begin{cases} k & \text{if } S\cap T = \emptyset \\ \leq k - 2 & \text{if } S\cap T \neq \emptyset \end{cases}$$

$$h \text{ is } \begin{cases} k-\text{parity} & \text{if } S \cap T = \emptyset \\ k'-\text{parity where } k' \neq k & \text{if } S \cap T \neq \emptyset \end{cases}$$

$$\frac{1}{2-\text{far from every } k-\text{parity}}$$

Summary: q(testing k-parity) $\geq \Omega(k)$ for $k \leq n/2$

Testing Lipschitz Property on Hypercube

Lower Bound

Lipschitz Property of Functions f: $\{0,1\}^n \rightarrow \mathbf{R}$

- A function f : {0,1}ⁿ → R is Lipschitz
 if changing a bit of x changes f(x) by at most 1.
- Is f Lipschitz or ε-far from Lipschitz
 (f has to change on many points to become Lipschitz)?
 Edge x y is violated by f if |f(x) f(y)| > 1.

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n

[Chakrabarty Seshadhri]

- $\Omega(n)$ [Jha Raskhodnikova]

Testing Lipschitz Property

Theorem

Testing Lipschitz property of functions f: $\{0,1\}^n \rightarrow \{0,1,2\}$ requires $\Omega(n)$ queries.

Prove it.

Summary of Lower Bound Methods

• Yao's Principle

- testing membership in 1*, sortedness of a list and monotonicity of Boolean functions
- Reductions from communication complexity problems
 - testing if a Boolean function is a k-parity

Other Models of Sublinear Computation

- $\leq \alpha$ fraction of the input is erased (or modified) adversarially before algorithm runs
- Algorithm does not know in advance what's erased (or modified)
- Can we still perform computational tasks?

Property Testing

Property Testing with Erasures

Can We Make Testers α -Erasure-Resilient?

It is easy if a tester makes only **uniform** queries (and the property is **extendable**).

• Use the original tester as black box and ignore erasures:

 $O\left(\frac{1}{1-\alpha}\right)$ factor query complexity overhead for all $\alpha \in (0,1)$.

- Applies to many properties
 - Monotonicity over poset domains
 [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]
 - Convexity of black and white images
 [Berman Murzabulatov Raskhodnikova 16]
 - Boolean arrays having at most k alternations in values

Erasure-Resilient Sortedness Tester?

Example: Testing sortedness of *n*-element arrays

- Every uniform tester requires $\Omega(\sqrt{n})$ queries.
- [EKKRV00] (optimal) tester that makes $O(\log n)$ queries

- Can we make it erasure-resilient $O\left(\frac{1}{1-\alpha}\right)$ factor overhead?
- All known optimal sortedness testers [EKKRV00, BGJRW09, CS13a] break with just one erasure.

Known optimal testers for monotonicity, Lipschitz property and convexity of functions [GGLRS00, DGLRRS99, EKKRV00, F04, CS13a, CS13b, CST14, BRY14, BRY14, CDST15, KMS15, BB16, JR13, CS13a, BRY14, BRY14, CDJS15, PRR03, BRY14] break on a constant number of erasures.

Erasure-Resilient Sortedness Tester

Input: $\varepsilon, \alpha \in (0,1)$; query access to an array

1. Repeat Θ(1/ε) times:

- a. Sample uniformly until you get a nonerased *search* point *s*.
- b. Binary search for *s* with uniform nonerased *split points*.
- c. **Reject** if there are violations along the search path.
- 2. Accept if no violations were found.

Analysis of the Sortedness Tester

- 1. Array is sorted \implies tester accepts
- 2. Array is ε -far from sorted \Rightarrow one iteration rejects with probability $\ge \varepsilon$
 - Need to repeat only $\Theta(1/\epsilon)$ times to get error probability 2/3
- 3. Want to show: expected # of queries per iteration is $O\left(\frac{\log n}{1-\alpha}\right)$
 - Tester traverses a uniformly random search path in a random binary search tree.
 - The # of levels in a random binary search is $O(\log n)$ w.h.p.

Claim. Expected # of queries to one level of binary search is $O\left(\frac{1}{1-\alpha}\right)$

Expected Number of Queries in One Iteration

What We Proved

• [Dixit Raskhodnikova Thakurta Varma 16]

Property Testing with Erasures

Property Testing with Errors

Property Testing with Errors

Relationships Between Models

Containments are strict:

- [Fischer Fortnow 05]: standard vs. tolerant
- [Dixit **R** Thakurta Varma 16]: standard vs. erasure-resilient
- [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

Distance Approximation for Boolean Functions

Goal: Output $dist(f, \mathcal{P}) \pm \varepsilon$

in sublinear time

Sublinear-Time "Restoration" Models

Local Decoding

Input: A slightly corrupted codeword Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

Program Checking

Input: A program P computing f correctly on most inputs.

Requirement: Self-correct program P: for a given input x, compute f(x) by making a few calls to P.

Local Reconstruction

Input: Function f nearly satisfying some property PRequirement: Reconstruct function f to ensure that the reconstructed function g satisfies P, changing f only when necessary. For each input x, compute g(x) with a few queries to f.

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

- Compute the *i*-th character y_i of a legal output y.
- If there are several legal outputs for a given input, be consistent with one.
- Example: maximal independent set in a graph.

What if we cannot get a sublinear-time algorithm? Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space complexity ≤ time complexity)

Data Stream Model

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g., $\langle x_1, x_2, ..., x_m \rangle = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Streaming Puzzle

A stream contains n - 1 distinct elements from [n] in arbitrary order.

Problem: Find the missing element, using $O(\log n)$ space.

Conclusion

Sublinear algorithms are possible in many settings

- simple algorithms, more involved analysis
- nice combinatorial problems
- unexpected connections to other areas
- many open questions

In the remainder of the course, we will cover research papers in the area.