
9/24/2020

Sublinear Algorithms

LECTURE 7
Last time
• Communication complexity

• Other models of computation

Today
• Streaming

Sofya Raskhodnikova;Boston University

Data Stream Model [Alon Matias Szegedy 96]

Motivation: internet traffic analysis

Model the stream as 𝑚 elements from [𝑛], e.g.,
𝑎1, 𝑎2, … , 𝑎𝑚 = 3, 5, 3, 7, 5, 4, …

Goal: Compute a function of the stream, e.g., median, number of distinct
elements, longest increasing sequence.

2

B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2) Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf

Streaming Puzzle

A stream contains 𝑛 − 1 distinct elements from 𝑛 in arbitrary order.

Problem: Find the missing element, using 𝑂(log 𝑛) space.

3

Sampling from a Stream of Unknown Length

Warm-up: Find a uniform sample 𝑠 from a stream 𝑎1, 𝑎2, … , 𝑎𝑚
of known length 𝑚.

4

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample 𝑠 from a stream 𝑎1, 𝑎2, … , 𝑎𝑚
of unknown length 𝑚

Analysis:

What is the probability that 𝑠 = 𝑎𝑖 at some time 𝑡 ≥ 𝑖?

Pr 𝑠 = 𝑎𝑖 =
1

𝑖
⋅ 1 −

1

𝑖 + 1
⋅ … ⋅ 1 −

1

𝑡

=
1

𝑖
⋅

𝑖

𝑖 + 1
⋅ … ⋅

𝑡 − 1

𝑡
=
1

𝑡
Space: 𝑂(𝑘 log 𝑛 + log𝑚) bits to get 𝑘 samples.

5

Algorithm (Reservoir Sampling)

1. Initially, 𝑠 ← 𝑎1
2. On seeing the 𝑡th element, 𝑠 ← 𝑎𝑡 with probability 1/𝑡

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Warm-up: Output the number of distinct elements in the stream.

Exact solutions:

• Store 𝑛 bits, indicating whether each domain element has appeared.

• Store the stream: O(𝑚 log 𝑛) bits.

Known lower bounds:

• Every deterministic algorithm requires Ω(𝑚) bits
(even for a constant-factor approximation).

• Every exact algorithm (even randomized) requires Ω 𝑛 bits.

Need to use both randomization and approximation to get polylog(𝑚, 𝑛) space

6

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

• Studied by [Flajolet Martin 83, Alon Matias Szegedy 96,...]

• Today: 𝑂(𝜀−2 log 𝑛) space algorithm
[Bar−Yossef Jayram Kumar Sivakuar Trevisan 02]

• Optimal: 𝑂(𝜀−2 + log 𝑛) space algorithm [Kane Nelson Woodruff 10]

7

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

Analysis:

• Algorithm uses 𝑂(𝜀−2 log 𝑛) bits of space (not accounting for storing ℎ)

• We'll show: estimate ǁ𝑟 has good accuracy with reasonable probability.

8

Algorithm

1. Apply a random hash function ℎ ∶ 𝑛 → [𝑛] to each element

2. Compute 𝑋, the 𝑡-th smallest value of the hash seen where 𝑡 = 10 ⁄ 𝜀2

3. Return ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋 as estimate for 𝑟, the number of distinct elements.

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥2/3

Counting Distinct Elements: Analysis

Proof: Suppose the distinct elements are 𝑒1, … , 𝑒𝑟
• Overestimation:

Pr ǁ𝑟 ≥ 1 + 𝜀 𝑟 = Pr
𝑡 ⋅ 𝑛

𝑋
≥ 1 + 𝜀 𝑟 = Pr 𝑋 ≤

𝑡 ⋅ 𝑛

𝑟 1 + 𝜀

• Let 𝑌𝑖 = 𝟙 ℎ(𝑒𝑖) ≤
𝑡⋅𝑛

𝑟 1+𝜀
and 𝑌 = σ𝑖=1

𝑟 𝑌𝑖

E 𝑌 = 𝑟 ⋅ 𝐸 𝑌1 = 𝑟 ⋅
𝑡

𝑟 1 + 𝜀
=

𝑡

1 + 𝜀

Var 𝑌 = Var

𝑖=1

𝑟

𝑌𝑖 =

𝑖=1

𝑟

Var 𝑌𝑖

≤

𝑖=1

𝑟

E 𝑌𝑖
2 =

𝑖=1

𝑟

E 𝑌𝑖 =E 𝑌

9

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥ 2/3 𝑋: 𝑡-th smallest hashed value

𝑡 = 10 ⁄ 𝜀2

ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋

𝐸[𝑌] =
𝑡

1 + 𝜀
Var 𝑌 ≤ 𝐸[𝑌]

Counting Distinct Elements: Analysis

Proof: Suppose the distinct elements are 𝑒1, … , 𝑒𝑟
• Overestimation:

Pr ǁ𝑟 ≥ 1 + 𝜀 𝑟 = Pr
𝑡 ⋅ 𝑛

𝑋
≥ 1 + 𝜀 𝑟 = Pr 𝑋 ≤

𝑡 ⋅ 𝑛

𝑟 1 + 𝜀

• Let 𝑌𝑖 = 𝟙 ℎ(𝑒𝑖) ≤
𝑡⋅𝑛

𝑟 1+𝜀
and 𝑌 = σ𝑖=1

𝑟 𝑌𝑖

Pr 𝑋 ≤
𝑡 ⋅ 𝑛

𝑟 1 + 𝜀
= Pr 𝑌 ≥ 𝑡 = Pr 𝑌 ≥ 1 + 𝜀 E 𝑌

• By the Chebyshev’s inequality, for 𝜀 ≤ 2/3,

Pr 𝑌 ≥ 1 + 𝜀 E 𝑌 ≤
Var[𝑌]

𝜀 ⋅ E 𝑌 2
≤

1

𝜀2E 𝑌
=
1 + 𝜀

𝜀2 ⋅ 𝑡
=
1 + 𝜀

10
≤
1

6

• Underestimation: A similar analysis shows Pr ǁ𝑟 ≤ 1 − 𝜀 𝑟 ≤
1

6
10

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥ 2/3 𝑋: 𝑡-th smallest hashed value

𝑡 = 10 ⁄ 𝜀2

ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋

𝐸[𝑌] =
𝑡

1 + 𝜀
Var 𝑌 ≤ 𝐸[𝑌]

Removing the Random Hashing Assumption

Idea: Use limited independence

• A family ℋ = {ℎ: 𝑎 → 𝑏 } of hash functions is 𝑘-wise independent if for
all distinct 𝑥1, … , 𝑥𝑘 ∈ [𝑎] and all 𝑦1, … , 𝑦𝑘 ∈ 𝑏 ,

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑦1, … , ℎ 𝑥𝑘 = 𝑦𝑘 =
1

𝑏𝑘

Note: a uniformly random family is 𝑘-wise independent for all 𝑘

• Observations: For 𝑥1, … , 𝑥𝑘 as above,

1. ℎ(𝑥1) is uniform over 𝑏

2. ℎ 𝑥1 , … , ℎ(𝑥𝑘) are mutually independent.

11Based on Sepehr Assadi’s lecture notes for CS 514 (Lecture 7, 03/20/20) at Rutgers

Construction of 𝒌-wise Independent Family

Idea: Use limited independence

• A family ℋ = {ℎ: 𝑎 → 𝑏 } of hash functions is 𝑘-wise independent if for
all distinct 𝑥1, … , 𝑥𝑘 ∈ [𝑎] and all 𝑦1, … , 𝑦𝑘 ∈ 𝑏 ,

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑦1, … , ℎ 𝑥𝑘 = 𝑦𝑘 =
1

𝑏𝑘

• Space to store ℎ is 𝑂 𝑘 log 𝑝

• For arbitrary 𝑎, 𝑏, need 𝑂 𝑘 ⋅ log 𝑎 + log 𝑏 space.

12Based on Sepehr Assadi’s lecture notes for CS 514 (Lecture 7, 03/20/20) at Rutgers

Construction of 𝑘-wise Independent Family of Hash Functions

1. Let 𝑝 be a prime.

2. Condider the set of polynomials of degree 𝑘 − 1 over 𝔽𝑝
ℋ = {ℎ: {0, … , 𝑝 − 1} → {0,… , 𝑝 − 1} ∣

ℎ 𝑥 = 𝑐𝑘−1𝑥
𝑘−1 +⋯+ 𝑐1𝑥 + 𝑐0, with 𝑐0, … , 𝑐𝑘−1 ∈ 𝔽𝑝}

3. To sample ℎ ∈ ℋ, sample 𝑐0, … , 𝑐𝑘−1 ∈ 𝔽𝑝 u.i.r.

Counting Distinct Elements: Final Algorithm

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

Analysis:

• Algorithm uses 𝑂(𝜀−2 log 𝑛) bits of space

• Our correctness analysis applies.

13

Algorithm

1. Sample a hash function ℎ ∶ 𝑛 → [𝑛] from a 2-wise independent
family and apply ℎ to each element

2. Compute 𝑋, the 𝑡-th smallest value of the hash seen where 𝑡 = 10 ⁄ 𝜀2

3. Return ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋 as estimate for 𝑟, the number of distinct elements.

Frequency Moments Estimation

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑚),
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

• The 𝑝-th frequency moment is 𝐹𝑝 = 𝑓
𝑝

𝑝
= σ𝑖=1

𝑛 𝑓𝑖
𝑝

𝐹0 is the number of nonzero entries of 𝑓 (# of distinct elements)

𝐹1 = 𝑚 (# of elements in the stream)

𝐹2 = 𝑓
2

2
is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

𝐹∞ = max
𝑖

𝑓𝑖 is the most frequent element

Goal: Estimate 𝐹𝑝 up to a multiplicative factor (1 + 𝜀) with probability ≥ 2/3

14

Summary

Streaming Model

• Reservoir sampling

• Distinct Elements (approximating 𝐹0)

• 𝑘-wise independent hashing

20

