Sublinear Algorithms

LECTURE 7

Last time

- Communication complexity
- Other models of computation

Today

• Streaming

Project proposals due next Thursday Sign up for project meetings, scribing, grading

Sofya Raskhodnikova;Boston University

Motivation: internet traffic analysis

Model the stream as m elements from $|n|$, e.g., $(a_1, a_2, ..., a_m) = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Streaming Puzzle

A stream contains $n - 1$ distinct elements from $[n]$ in arbitrary order.

Problem: Find the missing element, using $O(\log n)$ space.

Sampling from a Stream of Unknown Length

Warm-up: Find a uniform sample *s* from a stream $\langle a_1, a_2, ..., a_m \rangle$ of *known* length m.

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample *s* from a stream $\langle a_1, a_2, ..., a_m \rangle$ of *unknown* length

Algorithm (Reservoir Sampling)

- 1. Initially, $s \leftarrow a_1$
- 2. On seeing the t^{th} element, $s \leftarrow a_t$ with probability $1/t$

Analysis:

What is the probability that $s = a_i$ at some time $t \geq i$?

$$
\Pr[s = a_i] = \frac{1}{i} \cdot \left(1 - \frac{1}{i+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{t}\right)
$$

$$
= \frac{1}{i} \cdot \frac{i}{i+1} \cdot \dots \cdot \frac{t-1}{t} = \frac{1}{t}
$$

Space: $O(k (\log n + \log m))$ bits to get k samples.

Counting Distinct Elements

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Warm-up: Output the number of distinct elements in the stream.

Exact solutions:

- Store n bits, indicating whether each domain element has appeared.
- Store the stream: $O(m \log n)$ bits.

Known lower bounds:

- Every deterministic algorithm requires $\Omega(m)$ bits (even for a constant-factor approximation).
- Every exact algorithm (even randomized) requires $\Omega(n)$ bits.

Need to use both randomization and approximation to get polylog (m, n) space

Counting Distinct Elements

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate the number of distinct elements in the stream up to a multiplicative factor $(1 + \varepsilon)$ with probability $\geq 2/3$

- Studied by [Flajolet Martin 83, Alon Matias Szegedy 96,...]
- Today: $O(\varepsilon^{-2} \log n)$ space algorithm [Bar−Yossef Jayram Kumar Sivakuar Trevisan 02]
- Optimal: $O(\varepsilon^{-2} + \log n)$ space algorithm [Kane Nelson Woodruff 10]

Counting Distinct Elements

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate the number of distinct elements in the stream up to a multiplicative factor $(1 + \varepsilon)$ with probability $\geq 2/3$

Algorithm

- 1. Apply a random hash function $h: [n] \rightarrow [n]$ to each element
- 2. Compute X, the t-th smallest value of the hash seen where $t = 10 / \varepsilon^2$
- 3. Return $\tilde{r} = t \cdot n / X$ as estimate for r, the number of distinct elements.

Analysis:

- Algorithm uses $O(\varepsilon^{-2} \log n)$ bits of space (not accounting for storing h)
- We'll show: estimate \tilde{r} has good accuracy with reasonable probability.

Counting Distinct Elements: Analysis

Claim.	$Pr[\tilde{r} - r \leq \varepsilon r] \geq \frac{2}{3}$
Proof: Suppose the distinct elements are $e_1, ..., e_r$	$\begin{cases}\nx : t \text{-th smallest hashed value} \\ t = 10 / \varepsilon^2 \\ \tilde{r} = t \cdot n / X\n\end{cases}$
Overestimation:	$Pr[\tilde{r} \geq (1 + \varepsilon)r] = Pr\left[\frac{t \cdot n}{X} \geq (1 + \varepsilon)r\right] = Pr\left[X \leq \frac{t \cdot n}{r(1 + \varepsilon)}\right]$
Let $Y_i = 1$ $\left[h(e_i) \leq \frac{t \cdot n}{r(1 + \varepsilon)}\right]$ and $Y = \sum_{i=1}^r Y_i$	$E[Y] = \frac{t}{1 + \varepsilon}$
$E[Y] = r \cdot E[Y_1] = r \cdot \frac{t}{r(1 + \varepsilon)} = \frac{t}{1 + \varepsilon}$	$Var[Y] \leq E[Y]$
$Var[Y] = Var\left[\sum_{i=1}^r Y_i\right] = \sum_{i=1}^r Var[Y_i]$	
$\leq \sum_{i=1}^r E[Y_i^2] = \sum_{i=1}^r E[Y_i] = E[Y]$	

Counting Distinct Elements: Analysis

Proof: Suppose the distinct elements are e_1 , ..., e_r • Overestimation: $Pr[\tilde{r} \geq (1+\varepsilon)r] = Pr$ $t \cdot n$ \overline{X} $\geq (1 + \varepsilon)r$ = Pr $|X \leq$ $t \cdot n$ $r(1 + \varepsilon$ • Let $Y_i = \mathbb{1} \left| h(e_i) \leq \frac{t \cdot n}{r(1 + 1)} \right|$ $\left| \frac{t \cdot n}{r(1 + \varepsilon)} \right|$ and $Y = \sum_{i=1}^r Y_i$ $Pr|X \leq$ $t \cdot n$ $r(1 + \varepsilon$ $= Pr[Y \ge t] = Pr[Y \ge (1 + \varepsilon)E[Y]$ **Claim.** Pr $[|\tilde{r} - r| \le \varepsilon r] \ge 2/3$ $\begin{cases} X: t \text{-th smallest hashed value} \end{cases}$ $t = 10 / \varepsilon^2$ $\tilde{r} = t \cdot n / X$ $E[Y] =$ \bar{t} $1 + \varepsilon$ $Var[Y] \leq E[Y]$

By the Chebyshev's inequality, for $\epsilon \leq 2/3$, $Pr[Y \geq (1 + \varepsilon)E[Y]] \leq$ $Var[Y]$ $\frac{1}{\varepsilon \cdot E[Y])^2} \leq$ 1 $\mathcal{E}^2E[Y]$ = $1 + \varepsilon$ $\varepsilon^2 \cdot t$ = $1 + \varepsilon$ $\frac{1}{10} \leq$ 1 6

• Underestimation: A similar analysis shows $Pr[\tilde{r} \leq (1 - \varepsilon)r] \leq \frac{1}{\varepsilon}$ 6

Removing the Random Hashing Assumption

Idea: Use limited independence

• A family $\mathcal{H} = \{h : [a] \to [b]\}$ of hash functions is k-wise independent if for all distinct $x_1, ..., x_k \in [a]$ and all $y_1, ..., y_k \in [b]$,

$$
\Pr_{h \in \mathcal{H}}[h(x_1) = y_1, ..., h(x_k) = y_k] = \frac{1}{b^k}
$$

Note: a uniformly random family is k -wise independent for all k

- Observations: For $x_1, ..., x_k$ as above,
	- 1. $h(x_1)$ is uniform over [b]
	- 2. $h(x_1),...,h(x_k)$ are mutually independent.

Construction of k-wise Independent Family

Idea: Use limited independence

• A family $\mathcal{H} = \{h : [a] \to [b]\}$ of hash functions is k-wise independent if for all distinct $x_1, ..., x_k \in [a]$ and all $y_1, ..., y_k \in [b]$,

$$
\Pr_{h \in \mathcal{H}}[h(x_1) = y_1, ..., h(x_k) = y_k] = \frac{1}{b^k}
$$

Construction of k -wise Independent Family of Hash Functions

- 1. Let p be a prime.
- 2. Condider the set of polynomials of degree $k-1$ over \mathbb{F}_p $\mathcal{H} = \{h: \{0, ..., p-1\} \rightarrow \{0, ..., p-1\}$ $h(x) = c_{k-1}x^{k-1} + \dots + c_1x + c_0$, with $c_0, \dots, c_{k-1} \in \mathbb{F}_p$
- 3. To sample $h \in \mathcal{H}$, sample $c_0, ..., c_{k-1} \in \mathbb{F}_p$ u.i.r.
- Space to store h is $O(k \log p)$
- For arbitrary a, b , need $O(k \cdot (\log a + \log b))$ space.

Counting Distinct Elements: Final Algorithm

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate the number of distinct elements in the stream up to a multiplicative factor $(1 + \varepsilon)$ with probability $\geq 2/3$

Algorithm

- 1. Sample a hash function $h : [n] \rightarrow [n]$ from a 2-wise independent family and apply h to each element
- 2. Compute X, the t-th smallest value of the hash seen where $t = 10 / \varepsilon^2$
- 3. Return $\tilde{r} = t \cdot n / X$ as estimate for r, the number of distinct elements.

Analysis:

- Algorithm uses $O(\varepsilon^{-2} \log n)$ bits of space
- Our correctness analysis applies.

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_m)$, where f_i is the number of times i appears in the stream
- The p -th frequency moment is $F_p = \left|\left|f\right|\right|_p^p$ \overline{p} $=\sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements) $F_1 = m$ (# of elements in the stream) $F_2 = ||f||_2^2$ 2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i}$ i $f_{\boldsymbol{i}}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 + \varepsilon)$ with probability $\geq 2/3$

Summary

Streaming Model

- Reservoir sampling
- Distinct Elements (approximating F_0)
- \bullet k -wise independent hashing