Sublinear Algorithms

LECTURE 8

Last time

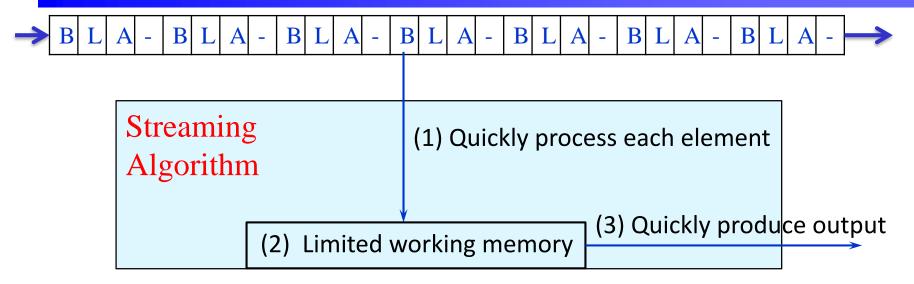
- Streaming
- Distinct Elements
- *k*-wise independent hash functions

Today

- Approximate counting
- Estimation of the 2nd moment
- Linear sketching

Project proposals due Thursday
Sign up for project meetings, scribing, grading

Data Stream Model [Alon Matias Szegedy 96]



Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g., $\langle a_1, a_2, ..., a_m \rangle = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p-th frequency moment is $F_p = \big| |f| \big|_p^p = \sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements)

 $F_1 = m$ (# of elements in the stream)

 $F_2 = \left| \left| f \right| \right|_2^2$ is a measure of non-uniformity used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i} f_{i}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Approximate Counting: Estimating F₁

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Warm-up: Compute m. How much space do you need?

Goal: Estimate m up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$

Today: $O(\varepsilon^{-2} \log \log m)$ space algorithm [Morris 78]

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Intuitively, X is keeping track of $\log(m+1)$
- Intuitively, expected increment to 2^X at each step is $2^X \cdot 2^{-X} = 1$.

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$E[2^{X_i}] \stackrel{\checkmark}{=} E[E[2^{X_i} \mid X_{i-1}]]$$

= $E[2^{X_{i-1}+1} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
= $E[2 + 2^{X_{i-1}} - 1] = E[2^{X_{i-1}}] + 1 = i + 1$

$$E[2^X] = m + 1$$

Claim.
$$Var[2^X] \leq m^2/2$$

Variance Calculation

Claim. $Var[2^X] \leq m^2/2$

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$E[2^{X_i}] \stackrel{\checkmark}{=} E[E[2^{X_i} \mid X_{i-1}]]$$

= $E[2^{X_i} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
= $E[2 + 2^{X_{i-1}} - 1] = E[2^{X_{i-1}}] + 1 = i + 1$

$$E[2^X] = m + 1$$

Claim. $Var[2^X] \leq m^2/2$

- By Chebyshev, $\Pr[|\widetilde{m} m| \ge \varepsilon m] \le \frac{\operatorname{Var}[\widetilde{m}]}{(\varepsilon \cdot m)^2} \le \frac{1}{2\varepsilon^2}$
- Idea: to reduce variance, keep t independent counters and average their estimates.

Morris Algorithm: Improvement

Morris Algorithm

- 1. Initialize t independent counters $X \leftarrow 0$
- 2. For each element, increment each X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} =$ the average of $2^X 1$ over all counters
- Then $E[\widetilde{m}]$ remains m
- But $Var[\widetilde{m}]$ is $\frac{1}{t} \cdot Var[2^X]$

$$E[2^X] = m + 1$$

Claim. $Var[2^X] \leq m^2/2$

- By Chebyshev, $\Pr[|\widetilde{m} m| \ge \varepsilon m] \le \frac{\operatorname{Var}[\widetilde{m}]}{(\varepsilon \cdot m)^2} \le \frac{1}{2t\varepsilon^2}$
- It is sufficient to set $t = O\left(\frac{1}{\varepsilon^2}\right)$

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p-th frequency moment is $F_p = \big| |f| \big|_p^p = \sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements)

 $F_1 = m$ (# of elements in the stream)

 $F_2 = \left| \left| f \right| \right|_2^2$ is a measure of non-uniformity used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i} f_{i}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Estimating F₂ [Alon Matias Szegedy 96]

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate F_2 up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$

Today: $O(\varepsilon^{-2} (\log m + \log n))$ space algorithm

AMS Algorithm (initial version)

- 1. Sample a hash function $h:[n] \to \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by h(a) Add or subtract 1
- 4. Return X^2 .
 - Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$
 - Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$
 - Let's compute the expectation and variance of X^2

The expectation of X^2

AMS Algorithm (initial version)

- Sample a hash function $h:[n] \to \{-1,1\}$ from a 4-wise independent family
- Initialize $X \leftarrow 0$
- For each element a, increment X by h(a)Add or subtract 1
- Return X^2 . 4.
 - Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$

$$\mathbb{E}[X^2] = F_2$$

Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$

$$X^{2} = \left(\sum_{i \in [n]} z_{i} f_{i}\right)^{2} = \sum_{i \in [n]} \sum_{j \in [n]} z_{i} z_{j} f_{i} f_{j}$$

$$\mathbb{E}[X^2] = \sum_{i \in [n]} \sum_{j \in [n]} \mathbb{E}[z_i z_j] f_i f_j$$

by linearity of expectation

$$= \sum_{i \in [n]} \mathbb{E}[z_i^2] f_i^2 + \sum_{i \neq j} \mathbb{E}[z_i] \cdot \mathbb{E}[z_j] f_i f_j$$
 2-wise independent

$$=\sum_{i\in[m]}f_i^2=F_2$$

$$z_i^2 = 1$$

The variance of X^2

AMS Algorithm (initial version)

- Sample a hash function $h:[n] \to \{-1,1\}$ from a 4-wise independent family
- Initialize $X \leftarrow 0$
- For each element a, increment X by h(a)Add or subtract 1
- Return X^2 .
 - Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$

$$\mathbb{E}[X^2] = F_2$$

Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$

$$Var[X^2] = \mathbb{E}[X^4] - (\mathbb{E}[X^2])^2$$

$$= \sum_{i,j,\ell \in [m]} \mathbb{E}[z_i z_j z_k z_\ell] f_i f_j f_k f_\ell - F_2^2$$

by linearity of expectation

$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i < j} f_i^2 f_j^2 - F_2^2 \le 4 \sum_{i < j} f_i^2 f_j^2 \le 2F_2^2$$

$$z_i^2 = 1$$

Estimating F₂ [Alon Matias Szegedy 96]

AMS Algorithm

1. $t \leftarrow 20/\varepsilon^2$

- Run t copies of initial algorithm and average the results
- 2. Sample t independent hash functions h_i : $[n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 3. Initialize t counters $X_i \leftarrow 0$
- 4. For each element a, increment each X_i by $h_i(a)$
- 5. Return $Y = \frac{1}{t} \sum_{i \in [t]} X_i^2$.
 - We proved: $\mathbb{E}[X_i^2] = F_2$ and $\operatorname{Var}[X_i^2] \le 2F_2^2$
 - Then $\mathbb{E}[Y] = \mathbb{E}[X_i^2] = F_2$ and $Var[Y] = \frac{1}{t}Var[X_i^2] \le \frac{2}{t}F_2^2$ X_i^2 are independent
 - Correctness: $\Pr[|Y F_2| \ge \varepsilon \cdot F_2] = \Pr[|Y \mathbb{E}[Y]| \ge \varepsilon \cdot F_2]$

$$\leq \frac{\operatorname{Var}[Y]}{(\varepsilon \cdot F_2)^2} \leq \frac{2F_2^2}{t \cdot \varepsilon^2 \cdot F_2^2} = \frac{1}{10}$$

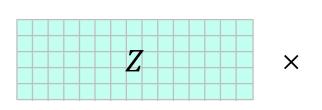
Chebyshev

• Space: $O(t \log n)$ to store hash functions + $O(t \log m)$ to store X_i 's

$$O\left(\frac{1}{\varepsilon^2}(\log n + \log m)\right)$$

General Technique: Linear Sketching

• A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.



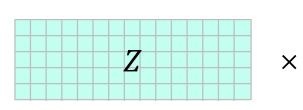
- *Zf* can be computed incrementally:
 - Suppose we have a sketch Zf of the current frequency vector f.
 - If we see an occurrence of i, the new frequency vector is $f'=f+e_i$.
 - We update the sketch by adding column i of Z to Zf:

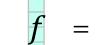
$$Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-th column of Z)$$

• In the AMS algorithm, Z was a matrix of -1s and 1s, with each row chosen independently from a 4-wise independent family

General Technique: Linear Sketching

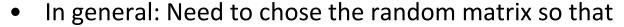
• A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.





- Zf can be computed incrementally:
 - Suppose we have a sketch Zf of the current frequency vector f.
 - If we see an occurrence of i, the new frequency vector is $f' = f + e_i$.
 - We update the sketch by adding column i of Z to Zf:

$$Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-th column of Z)$$



- relevant properties of f can be estimated with high probability from Zf
- Z can be stored efficiently