Sublinear Algorithms

LECTURE 8

Last time

- Streaming
- Distinct Elements
- k -wise independent hash functions **Today**
- Approximate counting
- Estimation of the 2nd moment
- Linear sketching

Project proposals due Thursday Sign up for project meetings, scribing, grading

Sofya Raskhodnikova;Boston University

Motivation: internet traffic analysis

Model the stream as m elements from $|n|$, e.g., $(a_1, a_2, ..., a_m) = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p -th frequency moment is $F_p = \left|\left|f\right|\right|_p^p$ \overline{p} $=\sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements) $F_1 = m$ (# of elements in the stream) $F_2 = ||f||_2^2$ 2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i}$ i $f_{\boldsymbol{i}}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Approximate Counting: Estimating

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Warm-up: Compute m . How much space do you need?

Goal: Estimate m up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$ 3

Today: $O(\varepsilon^{-2} \log \log m)$ space algorithm [Morris 78]

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Intuitively, X is keeping track of $log(m + 1)$
- Intuitively, expected increment to 2^X at each step is $2^X \cdot 2^{-X} = 1$.

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$
E[2^{X_i}] \stackrel{d}{=} E[E[2^{X_i} | X_{i-1}]]
$$

\n= $E[2^{X_{i-1}+1} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
\n= $E[2 + 2^{X_{i-1}} - 1] = E[2^{X_{i-1}}] + 1 = i + 1$

Claim. $Var[2^X] \leq m^2/2$

Variance Calculation

Claim. $Var[2^X] \leq m^2/2$

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$
E[2^{X_i}] \stackrel{\downarrow}{=} E[E[2^{X_i} | X_{i-1}]]
$$

\n= $E[2^{X_i} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
\n= $E[2 + 2^{X_{i-1}} - 1] = E[2^{X_{i-1}}] + 1 = i + 1$

Claim. $Var[2^X] \le m^2/2$

- By Chebyshev, $Pr[|\widetilde{m} m| \ge \varepsilon m] \le \frac{Var[\widetilde{m}]}{(\varepsilon \cdot m)^2} \le \frac{1}{2\varepsilon}$ $2\varepsilon^2$
- Idea: to reduce variance, keep t independent counters and average their estimates.

Morris Algorithm: Improvement

Morris Algorithm

- 1. Initialize t independent counters $X \leftarrow 0$
- 2. For each element, increment each X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} =$ the average of $2^X 1$ over all counters
- Then $E[\widetilde{m}]$ remains m
- But Var $\left[\widetilde{m}\right]$ is $\frac{1}{t}$ t \cdot Var[2^X

$$
E[2^X] = m + 1
$$

Claim. $Var[2^X] \le m^2/2$

• By Chebyshev, $Pr[|\widetilde{m} - m| \geq \varepsilon m] \leq \frac{Var[\widetilde{m}]}{(\varepsilon \cdot m)^2} \leq \frac{1}{2t\varepsilon}$ $2t\epsilon^2$

• It is sufficient to set
$$
t = O\left(\frac{1}{\varepsilon^2}\right)
$$

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p -th frequency moment is $F_p = \left|\left|f\right|\right|_p^p$ \overline{p} $=\sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements) $F_1 = m$ (# of elements in the stream) $F_2 = ||f||_2^2$ 2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i}$ i $f_{\boldsymbol{i}}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Estimating F_2 [Alon Matias Szegedy 96]

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate F_2 up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$ 3

Today: $O(\varepsilon^{-2} (\log m + \log n))$ space algorithm

AMS Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by $h(a)$ \leftrightarrow

Add or subtract 1

4. Return X^2 .

- Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$
- Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$
- Let's compute the expectation and variance of X^2

The expectation of

AMS Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by $h(a)$

4. Return X^2 .

• Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$

$$
\boxed{\mathbb{E}[X^2] = F_2}
$$

Add or subtract 1

• Then, at the end,
$$
X = Z \cdot f = \sum_{i \in [n]} z_i f_i
$$

\n
$$
X^2 = \left(\sum_{i \in [n]} z_i f_i\right)^2 = \sum_{i \in [n]} \sum_{j \in [n]} z_i z_j f_i f_j
$$
\n
$$
\mathbb{E}[X^2] = \sum_{i \in [n]} \sum_{j \in [n]} \mathbb{E}[z_i z_j] f_i f_j
$$
\nby linearity of expectation\n
$$
= \sum_{i \in [n]} \mathbb{E}[z_i^2] f_i^2 + \sum_{i \neq j} \mathbb{E}[z_i] \cdot \mathbb{E}[z_j] f_i f_j
$$
\n
$$
= \sum_{i \in [n]} f_i^2 = F_2
$$
\n
$$
z_i^2 = 1
$$

The variance of

AMS Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by $h(a)$
- 4. Return X^2 .
	- Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$
	- Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$

$$
\mathbb{E}[X^2] = F_2
$$

Add or subtract 1

$$
Var[X^{2}] = E[X^{4}] - (E[X^{2}])^{2}
$$

=
$$
\sum_{i,j,k,\ell \in [n]} E[z_{i}z_{j}z_{k}z_{\ell}] f_{i}f_{j}f_{k}f_{\ell} - F_{2}^{2}
$$
 by linearity of expectation
=
$$
\sum_{i \in [n]} E[z_{i}^{4}]f_{i}^{4} + 6 \sum_{i < j} E[z_{i}^{2}] \cdot E[z_{j}^{2}] f_{i}^{2}f_{j}^{2} - F_{2}^{2}
$$
 Answer independent
=
$$
\sum_{i \in [n]} f_{i}^{4} + 6 \sum_{i < j} f_{i}^{2}f_{j}^{2} - F_{2}^{2} \le 4 \sum_{i < j} f_{i}^{2}f_{j}^{2} \le 2F_{2}^{2}
$$
 *z*_i² = 1

Estimating F_2 [Alon Matias Szegedy 96]

AMS Algorithm

- 1. $t \leftarrow 20/\varepsilon^2$ Run t copies of initial algorithm and average the results
- 2. Sample t independent hash functions $h_i: [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 3. Initialize t counters $X_i \leftarrow 0$
- 4. For each element a, increment each X_i by $h_i(a)$
- 5. Return $Y=\frac{1}{t}$ $\frac{1}{t}\sum_{i\in[t]}X_i^2$.
	- We proved: $\mathbb{E}[X_i^2] = F_2$ and $\text{Var}[X_i^2] \leq 2F_2^2$

 $\varepsilon \cdot F_2$

• Then $\mathbb{E}[Y] = \mathbb{E}\big[X_i^2\big] = F_2$ and $\text{Var}[Y] = \frac{1}{t}$ $\frac{1}{t}$ Var $[X_i^2] \leq \frac{2}{t}$ $rac{2}{t}F_2^2$ X_i^2 are independent

10

- Correctness: $Pr[|Y F_2| \ge \varepsilon \cdot F_2] = Pr[|Y \mathbb{E}[Y]| \ge \varepsilon \cdot F_2]$ ≤ $\mathrm{Var}[Y]$ $\frac{1}{2} \leq$ $2F_2^2$ $\frac{1}{t \cdot \varepsilon^2 \cdot F_2^2} =$ 1 Chebyshev
- Space: $O(t \log n)$ to store hash functions + $O(t \log m)$ to store X_i 's \mathcal{O} 1 $\frac{1}{\varepsilon^2}(\log n + \log m)$ 13

General Technique: Linear Sketching

A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.

 $Z \rightarrow f =$

- Zf can be computed incrementally:
	- Suppose we have a sketch Zf of the current frequency vector f.
	- $-$ If we see an occurrence of i, the new frequency vector is $f' = f + e_i$.
	- We update the sketch by adding column i of Z to Zf :

 $Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i$ -th column of Z)

• In the AMS algorithm, Z was a matrix of -1s and 1s, with each row chosen independently from a 4-wise independent family

 $\overline{f}+$

 $\overline{\mathbf{1}}$ \boldsymbol{i}

General Technique: Linear Sketching

A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.

 $Z \rightarrow f =$

- Zf can be computed incrementally:
	- Suppose we have a sketch Zf of the current frequency vector f.
	- $-$ If we see an occurrence of i, the new frequency vector is $f' = f + e_i$.
	- We update the sketch by adding column *i* of Z to Zf :

 $Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i$ -th column of Z)

- In general: Need to chose the random matrix so that
	- relevant properties of f can be estimated with high probability from Zf
	- $-$ Z can be stored efficiently

 $\overline{f}+$

 $\overline{\mathbf{1}}$ \boldsymbol{i}