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Data Stream Model [Alon Matias Szegedy 96]
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(1) Quickly process each element

(2) Limited working memory

(3) Quickly produce output

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g.,
(aq,a,,...,ay,)=3,573,7,5,4, ..

Goal: Compute a function of the stream, e.g., median, number of distinct
elements, longest increasing sequence.



Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3



Approximate Counting: Estimating F4

Input: a stream (a4, a,, ..., a,,) € [n|™
Warm-up: Compute m. How much space do you need?

Goal: Estimate m up to a multiplicative factor (1 + €) with probability > %

Today: O(¢~%loglogm) space algorithm [Morris 78]

Morris Algorithm (initial version) )
1. Initialize X < 0
2. For each element, increment X by 1 w. p. 27X

3. Return i = 2% —1, y

e Intuitively, X is keeping track of log(m + 1)
e Intuitively, expected increment to 2% at each step is 2% - 274 = 1.



Morris Algorithm: Analysis

Morris Algorithm (initial version) )

Initialize X < 0
For each element, increment X by 1 w. p. 27%

~ _ X
Returnm = 2 1. )

(W N e

e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
o E[2%] = E[E[2% | X, ]]
— E[ZXi—1+1 .2~ Xi—1 4 2Xi—1 . (1 _ Z_Xi—l)]
=FE[2+2Xi-1 — 1] = E[2¥Xi1]+1=i+1

E[2¥]=m + 1

[Claim. Var[2X] < m?/2 J




Variance Calculation

[Claim. Var[2X] < m?/2 ]




Morris Algorithm: Analysis

Morris Algorithm (initial version) )
1. Initialize X < 0
2. Foreach element, increment X by 1 w. p. 27%
\3. Returniii = 2% — 1. )
e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
o E[2%] = E[E[2% | Xy ]]
E[2¥]=m + 1

= E[2%i . 27%i-1 4 2%Xi-1 . (1 — 27%i-1)]
=E[2 +2%i-1 — 1] = E[2¥i1]+1=i+1

[Claim. Var[2X] < m?/2 J

e By Chebyshev, Pr[|m — m| = em] <

e |dea: to reduce variance, keep t independent counters and average their
estimates.



Morris Algorithm: Improvement

Morris Algorithm A

1. Initialize t independent counters X < 0
2. For each element, increment each X by 1 w. p. 27%
@. Return 711 = the average of 2% — 1 over all counters )

e Then E[m] remains m
e ButVar[m]is % - Var[2%]

E[2¥]=m + 1

[Claim. Var[2X] < m?/2 J

Var[m] 1

e By Chebyshev, Pr[|i —m| = em] < (e:m)2 = 2te?

. o . 1
e ltissufficienttosett =0 (g)




Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3



Estimating F, [Alon Matias Szegedy 96]

Input: a stream (a4, a,, ..., a,,) € [n|™
Goal: Estimate F, up to a multiplicative factor (1 &+ ¢) with probability > %
Today: 0(¢~2 (logm + logn)) space algorithm

/AMS Algorithm (initial version) )

1. Sample a hash function h : [n] = {—1,1} from a 4-wise independent family
2. Initialize X < 0
3. Foreach element a, increment X by h(a) < Add orsubtract 1

\4. Return X?. 4

e letZ = (z4,...,2,), Where z; = h(i)
e Then,attheend, X =Z - f = Y Zifi

e Let’s compute the expectation and variance of X2
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The expectation of X?

/AMS Algorithm (initial version) )

1. Sample a hash function h : [n] = {—1,1} from a 4-wise independent family
2. Initialize X < 0
3. Foreach element a, increment X by h(a) < Addorsubtract 1
\4. Return X2 4
e letZ =(z4,...,2,), Where z; = h(i) E[X?] = F,

Then, attheend, X =Z - f = Zle[n] Zifi

X2=<Z zl-fl> z Ezlzjflf]
i€[n]

lE n
[E[Xz] — z E[z; ]] fzf] by linearity of expectation
/ z;’s are
= z Elz fl Z Efz;] 1fif;  2-wise independent
i#j
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The variance of X4

/AMS Algorithm (initial version) )

1. Sample a hash function h : [n] = {—1,1} from a 4-wise independent family
2. Initialize X < 0
3. Foreach element a, increment X by h(a) < Addorsubtract 1
\4. Return X2 4
e letZ =(z4,...,2,), Where z; = h(i) E[X?] = F,
* Then,attheend, X =Z - f = Y Zifi
Var[x2] = E[X*] — (E[X?])’
= Z IE[zl- ziZiZe| fif fife — F? by linearity of expectation
i,j,k,L€[n
Z;’s are
2 E[z{1f;" + 62 E[z fl fJ —F3 4-wise independent
i<j
Zfl +6Zflf]—F2<4Zflf] 2F2 A=
i<j i<j
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Estimating F, [Alon Matias Szegedy 96]

/IAMS Algorithm :

1.
2.

t « 20/&? Run t copies of initial algorithm and average the results

Sample t independent hash functions h;: [n] —» {—1,1} from a 4-wise
independent family

Initialize t counters X; « 0
For each element a, increment each X; by h;(a)

1
Return Y = < ¥;c ¢ X7 /

We proved: E|X?| = F, and Var|X?| < 2F7
Then E[Y] = E[X?] = F, and Var[Y] = %Var[Xl-Z] < %FZZ X7 are independent

Correctness: Pr[|Y — F,| = - F,] =Pr[|Y — E[Y]| = ¢ F,]
Var[Y] 2F% 1
< < =
(e-F,)? " t-e2-Ff 10
Space: O(tlogn) to store hash functions + O(tlogm) to store X;’s

1
0 (8—2 (logn + log m)) 13

Chebyshev




General Technique: Linear Sketching

e A sketching algorithm stores a random matrix Z € RY™*™ where t < n and
computes projection Zf of the frequency vector f.

Z x [ =

e Zf can be computed incrementally:
— Suppose we have a sketch Zf of the current frequency vector f.
— If we see an occurrence of i, the new frequency vectoris f' = f + e;.
— We update the sketch by adding column i of Z to Zf : f_|_
Zf' = Z(f + e) = Zf + Ze; = Zf + (i-th column of Z)

e Inthe AMS algorithm, Z was a matrix of -1s and 1s,
with each row chosen independently from a 4-wise independent family

14



General Technique: Linear Sketching

e A sketching algorithm stores a random matrix Z € RY™*™ where t < n and
computes projection Zf of the frequency vector f.

Z x [ =

e Zf can be computed incrementally:
— Suppose we have a sketch Zf of the current frequency vector f.
— If we see an occurrence of i, the new frequency vectoris f' = f + e;.
— We update the sketch by adding column i of Z to Zf : f_|_
Zf' = Z(f + e) = Zf + Ze; = Zf + (i-th column of Z)

e In general: Need to chose the random matrix so that
— relevant properties of f can be estimated with high probability from Zf
— Z can be stored efficiently
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