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Sublinear Algorithms

LECTURE 8
Last time
• Streaming

• Distinct Elements

• 𝑘-wise independent hash functions

Today
• Approximate counting

• Estimation of the 2nd moment

• Linear sketching

Sofya Raskhodnikova;Boston University



Data Stream Model [Alon Matias Szegedy 96]

Motivation: internet traffic analysis

Model the stream as 𝑚 elements from [𝑛], e.g.,
𝑎1, 𝑎2, … , 𝑎𝑚 = 3, 5, 3, 7, 5, 4, …

Goal: Compute a function of the stream, e.g., median, number of distinct 
elements, longest increasing sequence.
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(2)  Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming 

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf



Frequency Moments Estimation

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),                              
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

• The 𝑝-th frequency moment is 𝐹𝑝 = 𝑓
𝑝

𝑝
= σ𝑖=1

𝑛 𝑓𝑖
𝑝

𝐹0 is the number of nonzero entries of 𝑓 (# of distinct elements)

𝐹1 = 𝑚 (# of elements in the stream)

𝐹2 = 𝑓
2

2
is a measure of non-uniformity                                              

used e.g. for anomaly detection in network analysis

𝐹∞ = max
𝑖

𝑓𝑖 is the most frequent element

Goal: Estimate 𝐹𝑝 up to a multiplicative factor (1 ± 𝜀) with probability ≥ 2/3
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Approximate Counting: Estimating 𝑭𝟏

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Warm-up: Compute 𝑚. How much space do you need? 

Goal: Estimate 𝑚 up to a multiplicative factor (1 ± 𝜀) with probability ≥
2
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Today: 𝑂(𝜀−2 log log𝑚) space algorithm [Morris 78]

• Intuitively, 𝑋 is keeping track of log 𝑚 + 1

• Intuitively, expected increment to 2𝑋 at each step is 2𝑋 ⋅ 2−𝑋 = 1.
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Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return 𝑚 = 2𝑋 − 1.

Based on Jelani Nelson’s lecture notes: https://www.sketchingbigdata.org/fall20/lec/notes.pdf



Morris Algorithm: Analysis

• Let 𝑋𝑖 represent 𝑋 after 𝑖 elements.

• 2𝑋0 = 1

• 𝐸 2𝑋𝑖 = 𝐸 𝐸 2𝑋𝑖 𝑋𝑖−1

= 𝐸 2𝑋𝑖−1+1 ⋅ 2−𝑋𝑖−1 + 2𝑋𝑖−1 ⋅ (1 − 2−𝑋𝑖−1)

= 𝐸 2 + 2𝑋𝑖−1 − 1 = 𝐸 2𝑋𝑖−1 + 1 = 𝑖 + 1
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Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return 𝑚 = 2𝑋 − 1.

By the compact form of the Law of Total Expectation

E[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2



Variance Calculation
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Claim. Var 2𝑋 ≤ 𝑚2/2



Morris Algorithm: Analysis

• Let 𝑋𝑖 represent 𝑋 after 𝑖 elements.

• 2𝑋0 = 1

• 𝐸 2𝑋𝑖 = 𝐸 𝐸 2𝑋𝑖 𝑋𝑖−1

= 𝐸 2𝑋𝑖 ⋅ 2−𝑋𝑖−1 + 2𝑋𝑖−1 ⋅ (1 − 2−𝑋𝑖−1)

= 𝐸 2 + 2𝑋𝑖−1 − 1 = 𝐸 2𝑋𝑖−1 + 1 = 𝑖 + 1

• By Chebyshev, Pr | 𝑚 −𝑚| ≥ 𝜀𝑚 ≤
Var[ 𝑚]

𝜀⋅𝑚 2 ≤
1

2𝜀2

• Idea: to reduce variance, keep 𝑡 independent counters and average their 
estimates.
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Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return 𝑚 = 2𝑋 − 1.

By the compact form of the Law of Total Expectation

E[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2



Morris Algorithm: Improvement

• Then 𝐸[ 𝑚] remains 𝑚

• But Var 𝑚 is 
1

t
⋅ Var 2𝑋

• By Chebyshev, Pr | 𝑚 −𝑚| ≥ 𝜀𝑚 ≤
Var[ 𝑚]

𝜀⋅𝑚 2 ≤
1

2𝑡𝜀2

• It is sufficient to set 𝑡 = 𝑂
1

𝜀2
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Morris Algorithm

1. Initialize 𝑡 independent  counters 𝑋 ← 0

2. For each element, increment each X by 1 w. p. 2−𝑋

3. Return 𝑚 = the average of 2𝑋 − 1 over all counters

E[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2



Frequency Moments Estimation

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),                              
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

• The 𝑝-th frequency moment is 𝐹𝑝 = 𝑓
𝑝

𝑝
= σ𝑖=1

𝑛 𝑓𝑖
𝑝

𝐹0 is the number of nonzero entries of 𝑓 (# of distinct elements)

𝐹1 = 𝑚 (# of elements in the stream)

𝐹2 = 𝑓
2

2
is a measure of non-uniformity                                              

used e.g. for anomaly detection in network analysis

𝐹∞ = max
𝑖

𝑓𝑖 is the most frequent element

Goal: Estimate 𝐹𝑝 up to a multiplicative factor (1 ± 𝜀) with probability ≥ 2/3
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Estimating 𝑭𝟐 [Alon Matias Szegedy 96]

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate 𝐹2 up to a multiplicative factor (1 ± 𝜀) with probability ≥
2

3

Today: 𝑂(𝜀−2 (log𝑚 + log 𝑛)) space algorithm

• Let 𝑍 = 𝑧1, … , 𝑧𝑛 , where 𝑧𝑖 = ℎ 𝑖

• Then, at the end, 𝑋 = 𝑍 ⋅ 𝑓 = σ𝑖∈ 𝑛 𝑧𝑖𝑓𝑖

• Let’s compute the expectation and variance of 𝑋2
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AMS Algorithm (initial version)

1. Sample a hash function ℎ ∶ 𝑛 → {−1,1} from a 4-wise independent family 

2. Initialize 𝑋 ← 0

3. For each element 𝑎, increment X by ℎ(𝑎)

4. Return 𝑋2.

Add or subtract 1

Based on Sepehr Assadi’s lecture notes for CS 514 (Lecture 7, 03/20/20) at Rutgers



The expectation of 𝑿𝟐

• Let 𝑍 = 𝑧1, … , 𝑧𝑛 , where 𝑧𝑖 = ℎ 𝑖

• Then, at the end, 𝑋 = 𝑍 ⋅ 𝑓 = σ𝑖∈ 𝑛 𝑧𝑖𝑓𝑖

𝑋2 = 

𝑖∈ 𝑛

𝑧𝑖𝑓𝑖

2

= 

𝑖∈ 𝑛



𝑗∈ 𝑛

𝑧𝑖𝑧𝑗𝑓𝑖𝑓𝑗

𝔼 𝑋2 = 

𝑖∈ 𝑛



𝑗∈ 𝑛

𝔼[𝑧𝑖𝑧𝑗] 𝑓𝑖𝑓𝑗

= 

𝑖∈ 𝑛

𝔼[𝑧𝑖
2]𝑓𝑖

2 +

𝑖≠𝑗

𝔼[𝑧𝑖] ⋅ 𝔼[𝑧𝑗] 𝑓𝑖𝑓𝑗

= 

𝑖∈ 𝑛

𝑓𝑖
2 = 𝐹2
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AMS Algorithm (initial version)

1. Sample a hash function ℎ ∶ 𝑛 → {−1,1} from a 4-wise independent family 

2. Initialize 𝑋 ← 0

3. For each element 𝑎, increment X by ℎ(𝑎)

4. Return 𝑋2.

Add or subtract 1

by linearity of expectation

𝑧𝑖’s are 

2-wise independent

𝑧𝑖
2 = 1

𝔼 𝑋2 = 𝐹2



The variance of 𝑿𝟐

• Let 𝑍 = 𝑧1, … , 𝑧𝑛 , where 𝑧𝑖 = ℎ 𝑖

• Then, at the end, 𝑋 = 𝑍 ⋅ 𝑓 = σ𝑖∈ 𝑛 𝑧𝑖𝑓𝑖

Var 𝑋2 = 𝔼 𝑋4 − 𝔼 𝑋2 2

= 

𝑖,𝑗,𝑘,ℓ∈ 𝑛

𝔼[𝑧𝑖𝑧𝑗𝑧𝑘𝑧ℓ] 𝑓𝑖𝑓𝑗 𝑓𝑘𝑓ℓ − 𝐹2
2

= 

𝑖∈ 𝑛

𝔼[𝑧𝑖
4]𝑓𝑖

4 + 6

𝑖<𝑗

𝔼[𝑧𝑖
2] ⋅ 𝔼[𝑧𝑗

2] 𝑓𝑖
2𝑓𝑗

2 − 𝐹2
2

= 

𝑖∈ 𝑛

𝑓𝑖
4 + 6

𝑖<𝑗

𝑓𝑖
2𝑓𝑗

2 − 𝐹2
2 ≤4

𝑖<𝑗

𝑓𝑖
2𝑓𝑗

2 ≤ 2𝐹2
2
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AMS Algorithm (initial version)

1. Sample a hash function ℎ ∶ 𝑛 → {−1,1} from a 4-wise independent family 

2. Initialize 𝑋 ← 0

3. For each element 𝑎, increment X by ℎ(𝑎)

4. Return 𝑋2.

Add or subtract 1

by linearity of expectation

𝑧𝑖’s are 

4-wise independent

𝑧𝑖
2 = 1

𝔼 𝑋2 = 𝐹2



Estimating 𝑭𝟐 [Alon Matias Szegedy 96]

• We proved: 𝔼 𝑋𝑖
2 = 𝐹2 and Var 𝑋𝑖

2 ≤ 2𝐹2
2

• Then 𝔼 𝑌 = 𝔼 𝑋𝑖
2 = 𝐹2 and Var 𝑌 =

1

𝑡
Var 𝑋𝑖

2 ≤
2

𝑡
𝐹2
2

• Correctness: Pr 𝑌 − 𝐹2 ≥ 𝜀 ⋅ 𝐹2 =Pr 𝑌 − 𝔼 𝑌 ≥ 𝜀 ⋅ 𝐹2

≤
Var 𝑌

𝜀 ⋅ 𝐹2
2
≤

2𝐹2
2

𝑡 ⋅ 𝜀2 ⋅ 𝐹2
2 =

1
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• Space: 𝑂(𝑡 log 𝑛) to store hash functions + 𝑂(𝑡 log𝑚) to store 𝑋𝑖’s

𝑂
1

𝜀2
log 𝑛 + log𝑚
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AMS Algorithm

1. 𝑡 ← 20/𝜀2

2. Sample 𝑡 independent hash functions ℎ𝑖: 𝑛 → {−1,1} from a 4-wise 
independent family 

3. Initialize 𝑡 counters 𝑋𝑖 ← 0

4. For each element 𝑎, increment each 𝑋𝑖 by ℎ𝑖(𝑎)

5. Return 𝑌 =
1

𝑡
σ𝑖∈ 𝑡 𝑋𝑖

2.

Run 𝑡 copies of initial algorithm and average the results

𝑋𝑖
2 are independent

Chebyshev



General Technique: Linear Sketching

• A sketching algorithm stores a random matrix Z ∈ ℝ𝑡×𝑛 where 𝑡 ≪ 𝑛 and 
computes projection 𝑍𝑓 of the frequency vector 𝑓. 

• 𝑍𝑓 can be computed incrementally: 

– Suppose we have a sketch 𝑍𝑓 of the current frequency vector 𝑓. 

– If we see an occurrence of 𝑖, the new frequency vector is 𝑓′ = 𝑓 + 𝑒𝑖 . 

– We update the sketch by adding column 𝑖 of 𝑍 to 𝑍𝑓 : 

𝑍𝑓′ = 𝑍 𝑓 + 𝑒𝑖 = 𝑍𝑓 + 𝑍𝑒𝑖 = 𝑍𝑓 + (𝑖-th column of 𝑍)

• In the AMS algorithm, 𝑍 was a matrix of -1s and 1s,                                                
with each row chosen independently from a 4-wise independent family

14Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors-2.pdf

𝑍 𝑓× =

𝑓+

1 𝒊



General Technique: Linear Sketching

• A sketching algorithm stores a random matrix Z ∈ ℝ𝑡×𝑛 where 𝑡 ≪ 𝑛 and 
computes projection 𝑍𝑓 of the frequency vector 𝑓. 

• 𝑍𝑓 can be computed incrementally: 

– Suppose we have a sketch 𝑍𝑓 of the current frequency vector 𝑓. 

– If we see an occurrence of 𝑖, the new frequency vector is 𝑓′ = 𝑓 + 𝑒𝑖 . 

– We update the sketch by adding column 𝑖 of 𝑍 to 𝑍𝑓 : 

𝑍𝑓′ = 𝑍 𝑓 + 𝑒𝑖 = 𝑍𝑓 + 𝑍𝑒𝑖 = 𝑍𝑓 + (𝑖-th column of 𝑍)

• In general: Need to chose the random matrix so that 

– relevant properties of 𝑓 can be estimated with high probability from 𝑍𝑓

– 𝑍 can be stored efficiently 

15Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors-2.pdf

𝑍 𝑓× =

𝑓+

1 𝒊


