Sublinear Algorithms

LECTURE 9

Last time

-
- Approximate counting
- Estimation of the 2nd moment
- Linear sketching

Today

- Multipurpose sketches
- Count-min and count-sketch
- Range queries, heavy hitters, quantiles

HIW'S out Sign up for scribing, grading

Sofya Raskhodnikova;Boston University

Multipurpose Sketches: Problems

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

• The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries

- Point Query: For $i \in [n]$, estimate f_i
- Range Query: For $i, j \in [n]$, estimate $f_i + f_{i+1} + ... + f_i$
- Quantile Query: For $\phi \in [0, 1]$, find j with $f_1 + ... + f_i \approx \phi m$
- Heavy Hitters Query: For $\phi \in [0, 1]$, find all *i* with $f_i \ge \phi m$.

Desired accuracy: $\pm \varepsilon m$ with error probability δ

Initial Solution to Point Queries

- We could maintain the whole frequency vector $(f_1, ..., f_n)$
- Then, on query i, we can output f_i

Idea: Group counts for some numbers together

If *i* falls into bucket *j*, then $f_i \leq c_j$.

Point Query Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow [b]$ from a 2-wise independent family
- 2. Initialize counters c_1 , ..., c_b to 0
- 3. For each element a, increment $c_{h(a)}$ by 1.
- $4.$ To answer a point query i, return $c_{h(i)}$.

Never underestimate

Initial Solution to Point Queries: Analysis

Point Query Algorithm (initial version)

- 1. Sample a hash function $h: [n] \rightarrow [b]$ from a 2-wise independent family
- 2. Initialize counters c_1 , ..., c_b to 0
- 3. For each element a, increment $c_{h(a)}$ by 1.
- $4.$ To answer a point query i, return $c_{h(i)}$.
- Fix $i^* \in [n]$.
- Let $Z = c_{h(i^*)} f_{i^*}$ be the overestimation error.

by 2-wise independence

Never underestimate

• For all
$$
i \neq i^*
$$
, let $X_i = \begin{cases} 1 & \text{if } h(i) = h(i^*) \\ 0 & \text{otherwise} \end{cases}$ $E[X_i] = Pr[h(i) = h(i^*)] = \frac{1}{b}$

$$
Z = \sum_{i \neq i^*} X_i \cdot f_i
$$

$$
E[Z] = \sum_{i \neq i^*} E[X_i] \cdot f_i = \frac{1}{b} \sum_{i \neq i^*} f_i \leq \frac{m}{b} \text{ by linearity of expectation}
$$

By Markov's inequality, if $b = 2/\varepsilon$ then $Pr[Z \ge \varepsilon m] \le$ $\mathbb{E}[Z$ εm ≤ 1 $\frac{-}{\varepsilon b} \leq$ 1 2

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

Count-Min Sketch **[Cormode Muthukrishnan 03]**

Point Query Algorithm

- 1. Set $t = \log_2 1/\delta$ and $b = 2/\varepsilon$
- 2. Sample *t* hash functions $h_j: [n] \rightarrow [b]$ from a 2-wise independent family
- 3. Initialize *tb* counters $c_{i,k}$ to 0
- 4. For each element a and each $j \in [t]$, increment $c_{j,h(a)}$ by 1.

5. To answer a point query i, return $\widetilde{f}_i = \min_{i \in \mathbb{N}}$ $j\in[t]$ $c_{j,h(i)}$. Never underestimate

- Correctness: $Pr[f_i \leq \tilde{f}_i \leq f_i + \varepsilon m]$ $= 1 - Pr[all t hash functions overestimate by more than ϵm]$ $\geq 1 -$ 1 2 \bar{t} $= 1 - \delta$ since hash functions are chosen independently
- Space: $O(t (\log n + \log b))$ for the hash functions + $O(tb \log m)$ for the counters

Total:
$$
O\left((\log n + \log m) \frac{1}{\varepsilon} \log \frac{1}{\delta}\right)
$$

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

Multipurpose Sketches: Problems

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

• The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries

- Point Query: For $i \in [n]$, estimate f_i
- Range Query: For $i, j \in [n]$, estimate $f_i + f_{i+1} + ... + f_j$
- Quantile Query: For $\phi \in [0, 1]$, find j with $f_1 + ... + f_i \approx \phi m$
- Heavy Hitters Query: For $\phi \in [0, 1]$, find all *i* with $f_i \ge \phi m$.

Desired accuracy: $\pm \varepsilon m$ with error probability δ

Denote by $f_{[i,j]}$

Range Queries

• We could estimate $f_{[i,j]}$ by $\widetilde{f}_i + \widetilde{f}_{i+1} + ... + \widetilde{f}_i$ But errors add up: need too much space to keep accurate enough estimates Idea: We could estimate counts for some intervals directly by grouping $i, ..., j$

How many intervals do we need so that each interval is a sum of $O(\log n)$ original intervals?

Dyadic Intervals

- Exercise: Each interval $[i, j]$ is a sum of at most $2 \lg n$ dyadic intervals.
- Such a representation of an interval is its dyadic decomposition.

Count-Min Strikes Back

Range Query Algorithm

- 1. Construct $\lg n + 1$ Count-Min sketches, one for each level such that for all intervals I at that level, our estimate \widetilde{f}_{I} for f_{I} satisfies $Pr[f_l \leq \tilde{f}_l \leq f_l + \varepsilon m] \leq 1 - \delta$
- 2. To answer a range query $[i, j]$, let $I_1, ..., I_k$ be its dyadic decomposition Return $\tilde{f}_{[i,j]} = \tilde{f}_{I_1} + \cdots + \tilde{f}_{I_k}$
- Correctness: $Pr[f_{[i,j]} \leq \tilde{f}_{[i,j]} \leq f_{[i,j]} + \varepsilon m(2 \lg n)] \geq 1 \delta(2 \lg n)$
- Space:

Multiply the old space complexity by $\log n$ and divide ε and δ by $\log n$:

$$
O\left(\log^2 n \left(\log n + \log m\right) \frac{1}{\varepsilon} \log \frac{\log n}{\delta}\right)
$$

• Quantile Query: For $\phi \in [0, 1]$ find j with $f_{[1, j]} \approx \phi m$

Approximate Median: Find j such that $f_{[1, j]} \geq \frac{m}{2}$ $\frac{m}{2}$ – εm and $f_{[1,j-1]} \leq \frac{m}{2}$ 2 $+ \varepsilon m$ We can approximate median via binary search of range queries.

Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For $\phi \in (\varepsilon, 1)$, find a set S that

- includes all *i* with $f_i \geq \phi m$
- excludes all *j* with $f_i \leq (\phi \varepsilon)m$

Heavy Hitters Algorithm

- 1. Construct $\lg n + 1$ Count-Min sketches for levels of dyadic tree, as before
- 2. To answer query ϕ , mark the root. Going level-by-level from the root, mark children *I* of marked nodes if $\tilde{f}_I \ge \phi m$
- 3. Return all marked leaves

Correctness: If $f_i \geq \phi m$, then for all ancestors I of the leaf i, $\tilde{f}_I \geq f_I \geq \phi m$

- If we ensure that Pr[point query overestimates by $> \varepsilon m$] $\leq \delta/n$, then, by union bound, all point queries are correct w.p. $\geq 1 - \delta$
- There are at most $1/\phi$ indices *i* with $f_i \ge \phi m$ Thus, $O(\phi^{-1}\log n)$ time suffices for post-processing

CR-Precis: Deterministic Count-Min **[Ganguly Majumder 07]**

Use deterministic hash functions:

 $h_j(a) = a \text{ mod } p_j$, where p_j is the *j*-th prime, for $j \in [t]$

Analysis: Fix $i^* \in [n]$. Define $z_1, ..., z_t$ such that $c_{j,h_j(i^*)} = f_{i^*} + z_j$, that is,

$$
z_j = \sum_{i \neq i^* : h_j(i) = h_j(i^*)} f_i
$$

• Claim: For each $i \neq i^*$, we have $h_j(i) = h_j(i^*)$ for at most $\log n$ primes p_j by Chinese Remainder Theorem

- Thus, $\sum_{j\in[t]}z_j=\sum_j\sum_{i}f_i=\sum_i\sum_{j}f_i\leq \sum_{i}f_i\log n=m\log n$ $\widetilde{f_{i^*}} = \min_{i \in [t]}$ $j\in[t]$ $c_{j,h(i^*)} = \min_{i \in [h]}$ $j\in[t]$ $(f_{i^*} + z_j) = f_{i^*} + \min_{i \in [t]}$ $j\in[t]$ $z_j \leq f_{i^*} +$ $m \log n$ \boldsymbol{t}
- We set $t = \frac{\log n}{\epsilon}$ $\frac{\log n}{\varepsilon}$ to get $f_i \leq \widetilde{f}_i \leq f_i + \varepsilon m$
- Requires keeping at most $t \cdot p_t = \tilde{O}\left(\frac{\log^2 n}{s^2}\right)$ $\left(\frac{e}{\varepsilon^2} \right)$ counters since $p_t = O(t \log t)$

Count-Sketch: Count-Min+AMS combined

Count-Sketch

- 1. In addition to $h_j\colon [n]\to [b]$, use hash functions $r_j\colon [n]\to \{-1,1\}$
- 2. Maintain tb counters $c_{j,k} = \sum_{i:h_j(i)=k} r_j(i) f_i$
- 3. To answer a point query i, return $\hat{f}_i =$ median $(r_1(i)c_{1,h_1(i)},...,r_t(i)c_{t,h_t(i)})$

Claim.
$$
\mathbb{E}\left[r_j(i)c_{j,h_j(i)}\right] = f_i
$$
 and $\text{Var}\left[r_j(i)c_{j,h_j(i)}\right] \leq \frac{F_2}{b} \quad \forall j \in [t]$

• By Chebyshev, for
$$
b = 2/\varepsilon^2
$$
,
Pr $\left[\left| f_i - r_j(i)c_{j,h_j(i)} \right| \ge \varepsilon \sqrt{F_2} \right] \le \frac{F_2}{\varepsilon^2 b F_2} = \frac{1}{3}$

By Chernoff, for $t = \Theta(\log 1/\delta)$ $\Pr\left|\left|f_i - \hat{f}_i\right| \geq \varepsilon \sqrt{F_2}\right| \leq \delta$

Count-Sketch: Proof of Claim

Count-Sketch: $\hat{f}_i =$ median $(r_1(i)c_{1,h_1(i)},...,r_t(i)c_{t,h_t(i)})$

$$
\begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$

Claim. $\mathbb{E}\left[r_j(i)c_{j,h_j(i)}\right] = f_i$ and $\text{Var}\left[r_t(i)c_{t,h_t(i)}\right] \leq \frac{F_2}{b}$ \boldsymbol{b} $\forall j \in [t]$ Proof: Fix $i = i^*$ and $j \in [b]$. We omit subscripts j.

• For all
$$
i \neq i^*
$$
, let $X_i = \begin{cases} 1 & \text{if } h(i) = h(i^*) \\ 0 & \text{otherwise} \end{cases}$
\n• Expectation: $\mathbb{E}[r(i^*) c_{h(i^*)}] = \mathbb{E}\left[f_i^* + \sum_{i \neq i^*} r(i)r(i^*)X_if_i\right] \stackrel{\downarrow}{=} f_i^*$
\n• Variance: $\text{Var}[r(i^*) c_{h(i^*)}] \leq \mathbb{E}\left[\left(\sum_{i \neq i^*} r(i)r(i^*)X_if_i\right)^2\right]$
\n
$$
= \mathbb{E}\left[\sum_{i \neq i^*} X_i^2 f_i^2 + \sum_{i \neq k} r(i)r(k)X_iX_kf_if_k\right] = \frac{F_2}{b}
$$

Count-Sketch: Count-Min+AMS combined

Count-Sketch

- 1. In addition to $h_j\colon [n]\to [b]$, use hash functions $r_j\colon [n]\to \{-1,1\}$
- 2. Maintain tb counters $c_{j,k} = \sum_{i:h_j(i)=k} r_j(i) f_i$
- 3. To answer a point query i, return $\hat{f}_i =$ median $(r_1(i)c_{1,h_1(i)},...,r_t(i)c_{t,h_t(i)})$
- Fix $i^* \in [n]$.
- Let $Z = c_{h(i^*)} f_{i^*}$ be the overestimation error.

by 2-wise independence

• For all
$$
i \neq i^*
$$
, let $X_i = \begin{cases} 1 & \text{if } h(i) = h(i^*) \\ 0 & \text{otherwise} \end{cases}$ $E[X_i] = Pr[h(i) = h(i^*)] = \frac{1}{b}$

$$
Z = \sum_{i \neq i^*} X_i \cdot f_i
$$
 $E[Z] = \sum_{i \neq i^*} E[X_i] \cdot f_i = \frac{1}{b} \sum_{i \neq i^*} f_i \leq \frac{m}{b}$ by linearity of expectation

By Markov's inequality, if $b = 2/\varepsilon$ then $Pr[Z \ge \varepsilon m] \le$ $\mathbb{E}[Z$ εm ≤ 1 $\frac{-}{\varepsilon b} \leq$ 1 2