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Probabilistic Inequalities: Review

This note reviews probabilistic inequalities that are frequently used in the analysis of randomized algo-
rithms. Our focus will mainly be on Markov’s inequality, Chebyshev’s inequality, and Chernoff/Hoeffding
bounds. We will also have a few examples to go along. Some of this material is taken from the two handouts
posted on the course webpage [Ron06, LR06].

1 The Basics

Theorem 1 (Union bound). Given n events E1, E2, . . . , En over the same sample space,

Pr[E1 ∪ E2 ∪ · · · ∪ En] ≤ Pr[E1] + Pr[E2] + · · ·+ Pr[En].

Proof Idea. Prove using Venn diagrams for n = 2. Use induction for more events.

Theorem 2 (Linearity of Expectation). For all random variables R1 and R2 and numbers α, β ∈ R, the
expectation

E[αR1 + βR2] = α · E[R1] + β · E[R2].

2 Tail Bounds

It is usually easy to compute the expectation of the quantities of interest, while analyzing algorithms. But
what we need in most cases are statements which say that, with high probability the actual value of the
quantity of interest does not deviate very far from expectation. One can use tail bounds for such situations.

2.1 Markov’s Inequality

Markov’s inequality is one of the most basic tail bounds that applies to a wide range of random variables.
To apply Markov’s inequality, we require just the expectation of the random variable and the fact that it is
non-negative.

Theorem 3 (Markov’s Inequality). If R is a non-negative random variable, then for all x > 0,

Pr[R ≥ x] ≤ E[R]

x
.

Proof. This is a proof that is more general than what we saw in the class.

E[R] = E[R|R ≥ x] Pr[R ≥ x] + E[R|R ≤ x] Pr[R ≤ x] (rewriting E[R])

≥ E[R|R ≥ x] Pr[R ≥ x] (a+ b ≥ a when a, b ≥ 0)

≥ x · Pr[R ≥ x]

Rearranging the terms, Pr[R ≥ x] ≤ E[R]
x . Note that this bound is interesting only for x > E[R].

Corollary 4 (Alternative formulation of Markov’s inequality). If R is a non-negative random variable, then
for all c > 0,

Pr[R ≥ c · E[R]] ≤ 1

c
.
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Proof. Substitute x = c · E[R] into the Markov’s Inequality. Then

Pr[R ≥ c · E[R]] ≤ E[R]

c · E[R]
=

1

c
.

Exercise 1.1. If we pull some random person aside, what is the probability their weight R is at least 200
given that the average weight (expected value of R) is 100? What is the probability they weigh at least 300?

Solution. Using Corollary 2, Pr[R ≥ 200] ≤ 1
2 and Pr[R ≥ 300] ≤ 1

3 .

Exercise 1.2. Chinese appetizer problem: There are n people eating appetizers in a Chinese restaurant,
and there is a spinner on the table holding n appetizers, one for each person. Someone antisocial decides
to spin it. What is the expected number of people who get their dishes back in front of them? What is the
probability that all the people get their dish back?

Solution. Let C denote the r.v. of the number of people who get their dish back. Using the definition of
expectation and the fact that either everyone gets their dish (with probability 1

n ) or no one gets their dish
(with probability n−1

n ),

E[C] = Pr[everyone gets their dish] · n+ Pr[no one gets their dish] · 0 =
1

n
· n = 1.

By Markov’s inequality, Pr[C ≥ n] ≤ 1
n and we know that Pr[C = n] = 1

n , so the bound is tight in this
case.

Exercise 1.3. Hat check problem: n people checked in their hats, and when they went to take their
hats back the hatter went mad and started giving random people random hats. What is the expected number
of people who get their hat back? What is the probability that everyone gets their hat back?

Solution. Let Ci denote the random variable that is 1 if person i gets her hat back and 0 if she does not.

So, the count of people who get their hats back is C =
n∑

i=1

Ci, and by linearity of expectation,

E[C] = E

[
n∑

i=1

Ci

]
=

n∑
i=1

E[Ci].

Since E[Ci] = Pr[wrong hat] · 0 + Pr[right hat] · 1, and every person is equally likely to get any hat back,
Pr[right hat] = 1

n and E[Ci] =
1
n . Hence, E[C] = 1. So, by Markov’s Inequality, Pr[C ≥ n] ≤ 1

n , but we
know that Pr[C = n] = 1

n! , so the bound is extremely loose in this case.
The above examples illustrate the fact that the bound from Markov’s Inequality can be either extremely

loose or extremely tight, and without further information about a variable we cannot tell how tight the
bound is.

Exercise 1.4. Why R must be positive: Let’s say R takes value 1 with probability .5, and value -1 with
probability .5. What is the probability that R is at least 0?

Solution. E[R] is clearly 0, and with Markov’s inequality we would get that Pr[R ≥ 1] ≤ 0, but we know
that’s not true. Markov’s inequality does not apply in this case.

If we know that R has a lower bound, we can try to shift the variable instead. So, in the previous case,
we could look at R′ = R+ 1. The following corollary uses this property.

Corollary 5 (Reverse Markov’s inequality). If R ≤ u for some u ∈ R, then for all x < u,

Pr[R ≤ x] ≤ u− E[R]

u− x
.
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Proof. This can be proved by applying Markov’s inequality to R′ = u − R. Note that R′ is a non-negative
random variable, since R ≤ u.

Exercise 1.5 (Quiz scores). Take R to be the score of a random student, and suppose all scores ≤ 100 and
E[score] = 75. What is the probability that a student gets a score of at most 50?

Solution. Using the inequality from Corollary 4, Pr[R ≤ 50] ≤ 100−75
100−50 = 1

2 .

2.2 Chebyshev’s Inequality

Recall that the variance of a random variable R is

V ar[R] = E[(R− E[R])2] = E[R2]− E[R]2,

and its standard deviation is σ[R] =
√

V ar[R].

Theorem 6 (Chebyshev’s Inequality). For all x > 0 and all random variables R,

Pr[|R− E[R]| ≥ x] ≤ V ar[R]

x2
.

Proof. It is easy to see that

Pr[|R− E[R]| ≥ x] ≤ V ar[R]

x2
= Pr[(R− E[R])2 ≥ x] ≤ V ar[R]

x2
.

Applying Markov’s inequality to R′ = (R− E[R])2 is then enough to prove the theorem.

Corollary 7. Pr[|R− E[R]| ≥ c · σ[R]] ≤ 1
c2 .

Proof. We can prove the corollary by substituting x = c · σ[R] in Chebyshev’s inequality.

Exercise 1.6 (IQ). Take R to be the IQ of a random person you pull off the street. What is the probability
that someone’s IQ is at least 200 given that the average IQ is 100 and the standard deviation of IQ is 10?

Solution. Let R denote the IQ of a random individual. We know that the IQ is at least 0. Applying
Markov’s inequality, we get that Pr[R ≥ 200] ≤ 100

200 = 1
2 .

Applying Chebyshev’s inequality, we get that

Pr[R ≥ 200] = Pr[R− 100 ≥ 100]

≤ Pr[|R− 100| ≥ 100

= 10 · σ[R]]

≤ 1

102

Remark: Additionally, there exists a Chebyshev bound for one-sided analysis. But we will mainly use the
two-sided version in this course.
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2.3 Chernoff bound and Hoeffding bound

We will now see some of the most useful and widely used inequalities for getting tight bounds on the tails
of sums of independent random variables. Depending on the way in which we define a tail, they are called
Chernoff or Hoeffding bounds. These inequalities in their current form are taken from [Ron06].

Theorem 8 (Concentration Inequalities). Let R1, R2, ...Rn be independent random variables such that Ri ∈
[0, 1] for all i ∈ [n]. Define R = 1

m ·
∑m

i=1 Ri and let p = E[R]. Let γ ∈ (0, 1]. Then the following
concentration bounds hold for R.

1. Additive form (Hoeffding bounds)

• Pr[R ≥ p+ γ] ≤ e−2γ2m.

• Pr[R ≥ p− γ] ≤ e−2γ2m.

2. Multiplicative form (Chernoff bounds)

• Pr[R ≥ (1 + γ) · p] ≤ e−
γ2pm

3 .

• Pr[R ≥ (1− γ) · p] ≤ e−
γ2pm

2 .

Exercise 1.7. If 10 million people pick a 4-digit number (0000 till 9999) at random and only one of those
numbers is a win, what is the probability that at least 1100 people win?

Solution. Let Ri be the indicator random variable for person i guessing correctly. Therefore, Ri = 1 if
the person i guesses correctly and is 0 otherwise. Define R as in the statement of Chernoff bound. It is
easy to see that E[Ri] = 10−4 and E[R] = 10−4, where the latter is applying linearity of expectation to the
definition of R. If we apply Markov’s inequality to bound the required probability, we get the following.

Pr[R > 1100/107] ≤ 10/11

If we apply Chernoff bounds, we get the following.

Pr(R > 1100/107) = Pr[R > 1.1× 10−4]

= Pr[R > (1 + 0.1) · 10−4]

≤ e−
0.01·10−4·107

3

≤ e−10/3

≤ 1

8
.

References

[LR06] Tom Leighton and Ronitt Rubinfeld. Large deviations. http://www.cs.tau.ac.il/~ronitt/

COURSES/F08/lec25.pdf, 2006.

[Ron06] Dana Ron. Some useful probabilitic facts. http://www.eng.tau.ac.il/~danar/TOP06/prob.pdf,
2006.

4


