
CS 591: Sublinear Algorithms Professor: Sofya Raskhodnikova
Boston University September 14, 2020

Homework 2 – Due Thursday, September 17 before 10am on
Gradescope

Instructions

• Solutions written in LATEX are strongly preferred, but you can upload any pdf files, including
scanned hand-written solutions. Template latex files are on the course webpage.

• Collaboration is allowed and encouraged. However, each of you should think about a problem
before discussing it with others and write up your solution independently. You may consult
books and online sources to get information about well-known theorems, such as the Chernoff
bound. But you are not allowed to look up solutions directly in papers or any other sources.
And you must list all collaborators and sources! (See full details in the General Information
Handout.)

• Correctness, clarity, and succinctness of the solution will determine your score.

Problems

1. This is a collection of questions with short answers (at most several sentences per question).

(a) Recall that the relative Hamming distance between two strings is the fraction of character
positions on which they differ. Give an algorithm for estimating the relative Hamming
distance between two strings of the same length within additive error ε. Your algorithm
should give a good estimate with probability at least 2/3. What’s the running time of your
algorithm?

(b) We define the property as a set P of objects (intuitively, the collection of objects that
satisfy the property). For example, it can be the set of monotone functions of the form
f : {0, 1}d → {0, 1}. Recall that an ε-tester for P has to, with probability at least 2/3,

• accept objects in P;

• reject objects that are ε-far from P.

Consider properties P1 and P2 such that P1 ⊆ P2. Let q(ε) be some function that represents
query complexity. E.g., q(ε) could be 1/ε or 1/ε2.

Prove or disprove:

i. If P1 has an ε-tester that makes O(q(ε)) queries then so does P2.
ii. If P2 has an ε-tester that makes O(q(ε)) queries then so does P1.

iii. If P1 has an ε-tester that makes O(q(ε)) queries then so does P1.

2. In class we saw an algorithm, based on spanners, for testing if a list of numbers x1, . . . , xn is
sorted. Now we will design another algorithm for this problem, based on binary search.

BinarySearchSortednessTest(n, ε)

1 Pick an index i from {1, 2, . . . , n} uniformly at random and read the number xi.
2 Perform a binary search for xi and reject if you find any numbers out of order

(among all numbers queried, including xi).

1

(a) Analyze the probability that BinarySearchSortednessTest(n, ε) rejects a list that is
ε-far from sorted. Hint: Call a number xi bad if it “fails” the binary search, i.e., Step 2
performed on xi would reject.

(b) Prove that, with enough repetitions, BinarySearchSortednessTest(n, ε) is an ε-tester
for sortedness.

(c) How does the query complexity and running time of this test compare to those of the test
we saw in class?

(d) An algorithm is called nonadaptive if its queries do not depend on answers to previous
queries. Otherwise, it is called adaptive. Was the spanner-based algorithm adaptive? Is
your new algorithm adaptive? Hint: One of them is adaptive and the other is nonadaptive.
Can you modify the adaptive algorithm to make it nonadaptive without changing its running
time?

3. In class we saw a tester for connectedness that made O(1
ε2d

) queries. Give a tester for connected-
ness that makes O(1εpolylog 1

ε2d
) queries, where polylog m means that there is a constant c such

that the expression is logcm.

Hint: In class we proved that if a graph is ε-far from connected, it has many small connected
components. (”Many” was ≥ εdn

4 and ”small” was of size ≤ 4
εd .) Try to do a more careful

accounting by considering small components of different sizes separately. I.e., break components
into buckets according to their size (1, 2 to 3, 4 to 7, etc.) and prove that at least one of the
buckets contains ”enough” components. Modify the test accordingly.

2

