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Testing Triangle-Freeness

Input: parameters &, n, access to undirected graph ¢ = (V, E)
represented by n X n adjacency matrix.

Goal: Accept if G has no triangles;
reject w.p. = % if G is e-far from triangle-free

(at least & (721

e [Alon Fischer Krivelevich Szegedy 09]: Time that depends only on ¢

) edges need to be removed to get rid of all triangles).



Tester

~

Algorithm (Input: &, n; query access to adjacency matrix of G=(T,E))

1. Repeat s times:

2. Sample vertices vq, V,, V3 uniformly at random
3. Reject if they form a triangle.
K4. Accept. /

How many repetitions suffice?

/Triangle-RemovaI Lemma A

Vead = 6(&) such that every n-node graph that is e-far from triangle-free

: n .
contains at least 6 - ( ) triangles.
- 3 J

e |tis easytosee thatif G is e-far from triangle-free then it has

n
at leas ¢ (2) triangles. This is asymptotically better.
e By Witness Lemma, setting s = 2/0 yields a tester.



Definitions from Last Lecture

e The edge density of the pair (I3, V5),

. |e(V,V2)|
denoted d(V,V,), is AT

e Apair (Vq,V,) of disjoint subsets of vertices is y-regular if
vV €V, V, €V, suchthat |V{| > y|V;| and |V,| > y|V;],

[d(Vy, Vo) —d(V1, V)| <.

e An equipartition of a graph is a partition of its vertices into sets

that differ in size by at most 1. ﬁmﬁ: VA m
K oo /\0 @ y
@ o @ o
e A partition B is a refinement % o

of a partition A I
if every set in B is a subset of set in A. & ° °L°




Regularity Lemma

Every large graph G has an equipartition where
e (almost) all pairs of sets are regular,
e the number of parts is not too large.

ﬁegularity Lemma [Szemerédi 78] \

Va,Vy > 0,3T = T(a,y) such that if G is a graph with more that T nodes
and <4 is an equipartition of G into a sets then there is an equipartition Z#
of G into b sets which is a refinement of 4 satisfying:

1. a<<b<T;

Q at most y (g) pairs of sets in Zare not y-regular. /

Important: T does not depend on the size of the graph

e But the dependence of T on y is a tower 22 of height poly(%)



Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits] I

vn>0, if A4, B, C are disjoint subsets of V and each pair of them is y*-regular
with density at least 1 then G contains at least 62 |A]| - |B] - |C| triangles,

1
where y2 = y2(n) = gand 5% =8%(n) = 5(1 —nn3.




Proof of the Triangle-Removal Lemma: Idea

/Triangle-RemovaI Lemma A

Vedd = §(&) such that every n-node graph that is e-far from triangle-free

. ny ,. .. .
\contalns at least 9 - ( ) distinct triangles.

3
Main Idea: Consider a graph G which is e-far from being triangle-free.

e We apply the Regularity Lemma to get a regular partition.

n
e We carefully remove fewer than ¢ (2) edges, and show that

there remains a triangle consisting of edges between regular dense pairs.
e We apply [Kolmos Simonovits] to get many triangles.




Proof of the Triangle-Removal Lemma

/Triangle-RemovaI Lemma

Vedd = §(&) such that every n-node graph that is e-far from triangle-free
\contains at least 9 - (g) distinct triangles.

Proof: Consider a graph G which is e-far from being triangle-free.
e Start with an equipartition A of G with 4/¢ sets.
Apply the regularity lemma with a = 4/ and ¥y = min(e/4,y%(e/4)) = /8
e By Regularity Lemma, A can be refined into equipartition B={V/y, ...,V }:
4 .
1. ~<b<T Vil =2 € |2, 2 forall i € [p]

2. atmosty - (g) pairs among Vy, ..., V,, are not y-regular

e Anedge (u,v), whereu € V; and v € V; is useful if it satisfies:
1. 1 #]
2.  (V,V;)isy-regular
3. the density d(Vi, V]) > c/4

{Claim. Graph G has less than ¢ (g) non-useful edges.]




Proof of Claim

e Anedge (u,v), whereu € V; and v € V; is useful if it satisfies:
1. i#]j
2.  (V,V;)isy-regular
3. the density d(Vi, V]) > ¢c/4

[Claim. Graph G has less than ¢ (n) non-useful edges.]

2

Total: =+ (1) < 2 ()



Proof of the Triangle-Removal Lemma

/Triangle-RemovaI Lemma A

Vedd = §(&) such that every n-node graph that is e-far from triangle-free

3) distinct triangles.

Proof: Consider a graph G which is e-far from being triangle-free.

e Anedge (u,v), whereu € V; and v € V; is useful if it satisfies:
1. i #]j
2. (Vi,V;)is €/8-regular
3. the density d(Vi, V,) > c/4

. n
\contalns at least ¢ - (

2) non-useful edges.] Triangle of useful edges

e When we remove all non-useful edges,
there is still a triangle!

By [Kolmos Simonovits], there are at least

88 ()l - w23 (1-9) () - 5
triangles.

[ Claim. Graph G has less than ¢ (n




Testing Other Properties

ﬁsting Subgraph-Freeness [Alon 02] \

Let H be a fixed graph on h nodes.
Let P be the property that G does not contain a copy of H as a subgraph.

1. If H is bipartite:

Polynomial
inl/e

L \h?/4 for fixed H.

— There is a 1-sided error tester for Py with O <h2 (Z) > queries.

— There is a 2-sided error tester for Py with O G) queries.

2. If H is not bipartite, then there exists c > 0, such that every 1-sided

c\¢log g - -
\ error tester for Py makes Q((;) ) queries. Super-pcilynomlal In /
E.

e We will prove part (2) for triangles.
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Main Tool for Proving the Lower Bound
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Dense Sets of Integers with no Arithmetic Progression

( Behrend’s Theorem A
. . m
> C >
For all integer m > 1, there exists a set S © [m] such that |S| > s
(_and the only solutiontox + y = 2zforx,y,z€Sisx =y = z. )
e Behrend’s bound [Behrend 46] is slightly better. X z y
@ @ @

e The best known is Q) (sz/iglogﬁ log;/‘L m) [Elkin 10]

Proof idea: Represent integers in [m] as k-digit numbers base d,
where k and d are parameters.

e For a number x, view its digits
as coordinates of a point (xg, X1, ..., X—1)

e Pick points that lie on the same sphere:
i.e., with fixed x& + x2 + -+ + x¢_,
e Then no three of them lie on the same line,

which ensures that no point is
the average of two other points.
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Proof of Behrend’s Theorem

( Behrend’s Theorem A
. . m
> C >
For all integer m = 1, there exists a set S € [m] such that |S| = Toe
(_and the only solutiontox + y = 2zforx,y,z€Sisx =y = z. )
Proof: For an integer B > 0, define a set
k—1 i k—1
Sg = Z xl-di:each X; € {O, T 1} and B = z xl-2
i=0 i=0

e All numbers in sets Sg are less than d¥.
We set d® = m to ensure Sz € [m] VB.
(Claim
LFor all B, the only solutiontox + y = 2zforx,y,z€ Sgisx =y = z.

— 1
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Proof of Claim

For an integer B > 0, define a set

k-1 i k-1
SB = indi:eachxi € {0, ...,E— 1} and B = Exlz
i=0 i=0

(Claim

LFor all B, the only solutiontox +y = 2zforx,y,z€ Sgisx =y = Z.J

y

Proof: Suppose x +y = 2z forsome x,y,z € Sp.

e Representing x,y, z base d, we get
k_

e Since x;,y;, z; are less than d /2 for all i, there are no carries.

Thatis, (xg, X1, ) Xx—1) + Vo, Vi, -o0r Vi—1) = 2(20, 21, o) Zi—1)
But these three points are on a sphere,
so one can be the average of the other two only if they are identical.
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Proof of Behrend’s Theorem: Setting Parameters

( Behrend’s Theorem A
For all integer m = 1, there exists a set S € [m] such that |S| = 23\/173);7
(_and the only solutiontox + y = 2zforx,y,z€Sisx =y = z. )
Proof: For an integer B > 0, define a set
k—1 i k—1
Sg = Z xl-di:each X; € {O, T 1} and B = z xl-2
i=0 i=0

e Setd* =mandd = 2V1/21ogm Then k =

e How many possibilities for B?

e How many numbers are in all sets Sg?

e By Pigeonhole Principle, at least one of the sets has size at least
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