LECTURE 16

Last time

• Testing triangle-freeness
• Testing other properties of dense graphs
• Behrend’s construction

Today

• Lower bound for testing triangle-freeness
• Canonical testers for the dense graph model

Project progress reports due today on Gradescope
Testing Triangle-Freeness

Input: parameters ε, n, access to undirected graph $G = (V, E)$ represented by $n \times n$ adjacency matrix.

Goal: Accept if G has no triangles; reject w.p. $\geq \frac{2}{3}$ if G is ε-far from triangle-free (at least $\varepsilon \binom{n}{2}$ edges need to be removed to get rid of all triangles).

- **[Alon Fischer Krivelevich Szegedy 09]:** Time that depends only on ε

- **Today**

Lower Bound for Testing Triangle-Freeness [Alon 02]

Testing triangle-freeness with 1-sided error requires super-polynomial dependence on $1/\varepsilon$.

$$\Omega \left(\left(\frac{c}{\varepsilon} \right)^c \log \frac{c}{\varepsilon} \right)$$

queries for some $c > 0$
Canonical Tester for Dense Graphs

 Canonical Tester (Input: ε, n; query access to adjacency matrix of $G=(V,E)$)

1. Sample s nodes uniformly at random.
2. Query all pairs of sampled nodes.
3. **Accept** or **reject** based on available information.

- Consider any property \mathcal{P} of graphs that does not depend on the names of the nodes. That is, if $G \in \mathcal{P}$ and G' is isomorphic to G then $G' \in \mathcal{P}$.

Exercise: Show that if there is an ε-tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε-tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

A lower bound q for canonical tester implies a lower bound \sqrt{q} for every tester.

Sufficient to prove our lower bound $\Omega \left(\frac{c}{\varepsilon} c \log \frac{c}{\varepsilon} \right)$ for 1-sided error canonical testers.
Exercise: Show that if there is an ϵ-tester T for \mathcal{P} with query complexity $q(\epsilon,n)$, then there is a canonical ϵ-tester T' for \mathcal{P} with query complexity $O(q^2(\epsilon,n))$. Moreover, if T has 1-sided error, so does T'.
Exercise: Show that if there is an ε-tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε-tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.
Goal for Proving the Lower bound

- A 1-sided error tester can reject only if it finds a triangle.
- Suppose we construct a graph G that is ε-far from being triangle free, where p fraction of triples are triangles for some small p.
- Consider a canonical tester T that samples q vertices.
- Let X be the number of triangles the tester catches.

$$\mathbb{E}[X] = p \binom{q}{3} = \Theta(p \cdot q^3)$$

- Suppose q is set so that $\mathbb{E}[X] \leq 1/2$
- By Markov, $\Pr[T \text{ rejects } G] \leq \Pr[X \geq 1] \leq \mathbb{E}[X] \leq \frac{1}{2} < \frac{2}{3}$
- So, for T to reject with high enough probability, $q = \Omega\left(p^{-\frac{1}{3}}\right)$

Sufficient to ensure $p = O\left(\left(\frac{\varepsilon}{c}\right)^c \log \frac{c}{\varepsilon}\right)$
Behrend’s Theorem

For all integer $m \geq 1$, there exists a set $S \subseteq [m]$ such that $|S| \geq \frac{m}{8 \sqrt[3]{\log_2 m}}$ and the only solution to $x + y = 2z$ for $x, y, z \in S$ is $x = y = z$.

- We will use such a set S to construct a graph that is
 - far from triangle free
 - has relatively few triangles
Initial Graph Construction

- Let $S \subset [m]$ be a set from Behrend’s Thm
- We construct a tripartite graph with m, $2m$, and $3m$ nodes in the three parts
- Intended triangles

\[i \quad i + s \quad i + 2s \]

- No other triangles:
 If $(i, i + x, i + x + y)$ is a triangle, then $x \in S$, $y \in S$, and $x + y = 2z$ for $z \in S$
 But then $x = y = z$ by construction of S
- All triangles are edge disjoint: each edge participates in exactly one triangle.
Parameters of the Initial Construction

- Number of nodes, n

 $6m$

- Number of edges

 $3m \cdot |S|$

- Number of (edge-disjoint) triangles, T

 $m \cdot |S|$

- Distance to triangle-freeness

 Necessary and sufficient to remove one edge from each triangle, because they are edge-disjoint.

\[
\frac{T}{\binom{n}{2}} = \Theta \left(\frac{m \cdot |S|}{m^2} \right) = \Theta \left(\frac{|S|}{m} \right) = \Theta \left(\frac{1}{8 \sqrt{\log m}} \right)
\]

Not constant!
Blowup of a Graph

To construct a b-**blowup** of a graph,

- make b copies of each node;
- make two copies (of different nodes) adjacent iff their originals are adjacent.

![Blowup Diagram](image-url)
Parameters of the Blowup Construction

- Number of nodes, n
 \[6mb \]
- Number of edges
 \[3m \cdot |S| \cdot b^2 \]
- Number of triangles
 \[m \cdot |S| \cdot b^3 \]
- Number of (edge-disjoint) triangles, T
 \[m \cdot |S| \cdot b^2 \]
- Distance to triangle-freeness
 \[\frac{T}{\binom{n}{2}} = \Theta \left(\frac{m \cdot |S| \cdot b^2}{(m \cdot b)^2} \right) = \Theta \left(\frac{|S|}{m} \right) = \Theta \left(\frac{1}{8 \sqrt{\log m}} \right) \]
- Given ε and n, pick m so that $\varepsilon = \Theta \left(\frac{1}{8 \sqrt{\log m}} \right)$ and $b = \frac{n}{6m}$
- Fraction of triples that are triangles:
 \[\approx \frac{m \cdot |S| \cdot b^3}{n^3} \approx \frac{m \cdot |S|}{m^3} = \frac{|S|}{m^2} = \frac{\varepsilon}{m} < \frac{1}{m} \]
Conclusion: Triangle-Freeness

- The query complexity of testing triangle-freeness with 1-sided error depends only on ε (and is independent of the size of the graph).

- However, the dependence is super-polynomial in $1/\varepsilon$.